
Variational Graph Recurrent Neural Networks:
Supplementary Material

Ehsan Hajiramezanali†∗, Arman Hasanzadeh†∗, Nick Duffield†, Krishna Narayanan†,
Mingyuan Zhou‡, Xiaoning Qian†

† Department of Electrical and Computer Engineering, Texas A&M University
{ehsanr, armanihm, duffieldng, krn, xqian}@tamu.edu
‡McCombs School of Business, The University of Texas at Austin

mingyuan.zhou@mccombs.utexas.edu

This document contains the detailed discussion of related works, the derivation of the ELBO lower
bound for SI-VGRNN inference, additional dataset details, experimental setups and implementation
details as well as additional results on interpretability of the derived latent representations.

A Related works

Several dynamic graph embedding methods have been developed using various techniques such as
matrix factorization [23, 21], random walk [20, 7], deep learning [13, 2, 3, 10], and stochastic process
[22, 14, 15]. The shortcomings of the existing methods can be categorized as follows:

• Most of these existing methods either capture topological evolution or node attribute changes
to learn dynamic node embeddings [18, 11]. But only a few of them model both changes
simultaneously [15].

• Some of the existing methods, such as the ones in [22, 2, 21], assume that the temporal
patterns of evolving processes are of short duration and fail to capture long-range temporal
dependencies in dynamic networks.

• A common assumption in the literature is that the topological changes are smooth. The
methods with this assumption [2, 21] usually use a regularization term to avoid abrupt
changes, which limits their flexibility. Deep learning based models, such as the ones
in [10, 3], have been proposed to address this shortcoming; however, these methods only
care about the topological changes over time but do not model node attribute dynamics or
complex dependencies between two evolving processes.

• Many of the existing methods, such as [13, 15], cannot model the deletion of nodes or edges
which limits their generalizability and flexibility.

• While generative models in form of parametric temporal point processes [14] and deep
temporal point processes [15] have been used for modeling dynamic graphs, none of the
existing methods are capable of modeling the uncertainty of the latent representations.

Our proposed (SI-)VGRNN is the first variational based deep generative model for representation
learning of dynamic graphs. On the contrary to existing methods, (SI-)VGRNN is capable of
inferring the uncertainty of latent representations which is the key in modeling non-smooth changes
in dynamic graphs. Moreover, (SI-)VGRNN can capture long-term dependencies in node attribute
dynamics as well as topological evolution. Furthermore, (SI-)VGRNN can handle node and edge
addition/deletion.
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B Lower bound for ELBO in SI-VGRNN

SI-VGRNN posterior can be derived by marginalizing out the mixing distribution as follows,

Z(t) ∼ q(Z(t) |ψt), ψt ∼ qφ(ψt |A(≤t),X(≤t),Z(<t)) = qφ(ψt|A(t),X(t),ht−1),

gφ(Z(t) |A(t),X(t),ht−1) =

∫
ψt

q(Z(t) |ψt) qφ(ψt |A(t),X(t),ht−1) dψt .

Based on the first theorem in Yin and Zhou [19], which shows that

KL(Eψ∼qφ(ψ |X,A)[q(Z |ψ)] || p(Z)) ≤ Eψ∼qφ(ψ |X,A)[KL(q(Z |ψ) || p(Z))],

the lower bound for ELBO can be derived as follows,

L =

T∑
t=1

L
(
q(Z(t) |ψt), qφ(ψt |A(t),X(t),ht−1)

)
=

T∑
t=1

Eψt∼qφ(ψt |A(t),X(t),ht−1)
EZ(t)∼q(Z(t) |ψt)log

(
p(A(t) |Z(t),ht−1) p(Z(t) |ht−1)

q(Z(t) |ψt)

)

= −
T∑
t=1

Eψt∼qφ(ψt |A(t),X(t),ht−1)
KL

(
q(Z(t) |ψt) || p(Z(t) |ht−1)

)
+ Eψt∼qφ(ψt |A(t),X(t),ht−1)

EZ(t)∼q(Z(t) |ψt)log p(A
(t) |Z(t),ht−1)

≤ −
T∑
t=1

KL
(
Eψt∼qφ(ψt |A(t),X(t),ht−1)

q(Z(t) |ψt) || p(Z(t) |ht−1)
)

+ Eψt∼qφ(ψt |A(t),X(t),ht−1)
EZ(t)∼q(Z(t) |ψt)log p(A

(t) |Z(t),ht−1)

=

T∑
t=1

EZ(t)∼gφ(Z(t) |A(t),X(t),ht−1)
log

(
p(A(t) |Z(t),ht−1) p(Z(t) |ht−1)

gφ(Z(t) |A(t),X(t),ht−1)

)
= EZ∼q(Z(≤t) |A(≤t),X(≤t))

[
log p(A(≤t),X(≤t),Z(≤t))− log q(Z(≤t) |A(≤t),X(≤t))

]
= L

While a Monte Carlo estimation of L only requires qφ(Z(t) |ψt) to have an analytic density functions
and qφ(ψt |X(t),ht−1) to be convenient to sample from, the marginal posterior gφ(Z(t) |X(t),ht−1)
is often intractable and so the Monte Carlo estimation of the ELBO L is prohibited. SI-VGRNN
evaluates the lower bound separately from the distribution sampling. This captures the idea that
combining an explicit qφ(Z(t) |ψt) with an implicit qφ(ψt |X(t),ht−1) is as powerful as needed, but
makes the computation tractable.

As discussed in [19], if optimizing the variational parameter by climbing L, without stopping the
optimization algorithm early, qφ(ψt |X(t),ht−1) could converge to a point mass density, making SI-
VGRNN degenerate to VGRNN. To prevent this problem and inspired by SIVI, we add a regularization
term to the lower bound as follows,

LK = L+BK ,

where

BK =

T∑
t=1

E
ψt,ψ

(1)
t ,...,ψ

(K)
t ∼qφ(ψt |A(t),X(t),ht−1)

KL(q(Z(t) |ψt) || g̃K(Z(t)|A(t),X(t),ht−1)),

g̃K(Z(t) |A(t),X(t),ht−1)) =
qφ(ψt |A(t),X(t),ht−1) +

∑K
k=1 qφ(ψ

(k)
t |A

(t),X(t),ht−1)

K + 1
.

The lower bound leads to an asymptotically exact ELBO that satisfies L0 = L and limK→∞ LK = L.
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C Additional dataset details

Enron emails (Enron). This graph constructed from 500,000 email messages exchanged between
184 Enron employees from 1998 to 2002 [8]. The nodes represent the employees and the edges are
emails exchanged between two employees. Following the same procedure as in [17, 9] we clean the
data to get 10 temporal snapshots of the graph. This graph does not have any node or edge attribute.

Collaboration (COLAB). This dataset represents collaborations between 315 authors. Each node
in this dynamic graph is an author and the edges represent co-authorship relationships. The data,
provided by Rahman and Al Hasan [9], are collected from years 2000-2009 with a total of 10
snapshots considering each year as a time stamp. This COLAB graph does not have any node or edge
attribute.

Facebook. The Facebook wall posts dynamic graph, provided by [16], has 9 time stamps. Following
the same data cleaning procedure as in [17, 9], we get 663 nodes at each snapshot. No node or edge
attribute is provided for this graph.

HEP-TH. The original dataset [1] covers all the citations of the papers in High Energy Physics
Theory conference from January 1993 to April 2003 [5]. For each month, we create a citation graph
using all the papers published up to that month. We only consider the first ten months leading to 10
snapshots in this dynamic graph. The graph has 1199 nodes at the first month and 2462 at the last
one. This graph also has no node or edge attributes.

Cora. The Cora dataset is another citation graph consists of 2708 scientific publications [12]. The
nodes in the graph represent the publications and the edges indicate the citation relations. Each node
is provided with a 1433-dimensional binary attribute vector. Each dimension of the attribute vector
indicates the presence of a word in the publication from a dictionary. Originally, Cora is a static
graph dataset, therefore in order to use it in a dynamic fashion, we preprocess the data as follows in
the same manner as in [6]. We take the indices of nodes as their arriving order in the dynamic graph
and add 200 nodes with their corresponding edges, at each temporal snapshot. The dynamic graph
includes 11 snapshots, starting with 708 nodes and reaches to 2708 nodes at the last snapshot.

Social evolution. The social evolution dataset is collected from Jan 2008 to June 30, 2009 and
released by MIT Human Dynamics Lab [15]. For this dataset, we consider Calls and SMS records
between users as node attributes and all Close Friendship records and Proximity as graph topology.
We consider the collected information from Jan 2008 until Sep 10, 2008 (i.e. survey date) to form
the initial network. We used cumulative data for 10 days periods of to form a snapshot of dynamic
network for 27 snapshots.

D Details on the experimental setup and hyper-parameters selection

Dynamic autoencoder (DynAE) [3]. This autoencoder model uses multiple fully connected layers
for both encoder and decoder to capture highly non-linear interactions between nodes at each time
step and across multiple time steps. It can take a set of graphs with different adjacency matrices. This
model has O(nld1) parameters, where n, l, and d1 are the number of nodes, autoregressive lag, and
dimension of the first hidden layer, respectively. Learning to optimize this huge number of parameters
can be challenging for sparse graphs [3], which is often the case when studying real-world datasets.
The input to this model at each node is the neighborhood vector of that node.

Dynamic recurrent neural network (DynRNN) [3]. This model uses LSTM networks as both
encoder and decoder to capture the long-term dependencies in dynamic graphs. Comparing to
DynAE, the number of parameters is reduced and the model is capable of learning complex temporal
patterns more efficiently. The input to this model at each node is the neighborhood vector of that
node.

Dynamic autoenncoder recurrent neural network (DynAERNN) [3]. Instead of passing the input
adjacency matrices into LSTM, DynAERNN uses a fully connected encoder to initially acquire low
dimensional hidden representations and then pass them as the input of LSTM to learn the embedding.
The decoder of this model is a fully connected network similar to DynAE. The input to this model at
each node is the neighborhood vector of that node.

Experimental setups. For VGAE at each snapshot, we use two GCN layers with 32 and 16 units
for GCNµ and GCNσ . Since VGAE is a method for static graph embedding, we start training with
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Figure S1: Latent representation of the simulated graph in different time steps in 2-d space using DynAERNN.

the first snapshot and use the inferred parameters as initialization for the next snapshot. We continue
this process until the last training snapshot. In all VGAE experiments, the learning rate is set to be
0.01. We learn the model for 500 training epochs and use the validation set for the early stopping. We
use the code provided by the author [4] in our experiments. For DynAE, DynRNN, and DynAERNN,
we chose the dimension and number of layers of the encoder and decoder such that the total numbers
of parameters is comparable to (SI-)VGRNN. For these methods, we use the source code published by
the authors. In these methods, the learning rate is set to be 0.01 and the learning procedure converges
in 250 training epochs. The look back parameter in these models, which indicates how much in the
past the model looks to learn the embedding, is set to be 2. In all of the experiments in this paper, the
embedding dimension is set to 16 except for HEP-TH where embedding dimension is 32.

All of the node embedding methods for link prediction performance comparison are run on a single
cluster node with dual-GPU Tesla K80 accelerator and 128GB RAM. For running each epoch on the
HEP-TH dataset using one of the GPUs on this cluster, SI-VGRNN, VGRNN, DynRNN, DynAERNN,
and DynAE take around 36, 12, 40, 5, and 1 seconds, respectively. This is expected as DynRNN
has two 2-layer LSTMs as decoders and encoders. On the other hand, the number of parameters in
DynAERNN, which includes just one 2-layer LSTM, is less than that of DynRNN. DynAE are faster
as they do not have LSTM units.

E Additional experimental results on interpretability of latent representations

Here, we include the latent representations of the simulated graph (in Section 4.2 of the main text)
learned by DynAERNN (shown in Figure S1). Compared to the latent representation learned by
VGRNN, not only DynAERNN is not capable of modeling uncertainty of representations, but also it
fails to separate the communities of the graph at different time steps, which VGRNN has successfully
accomplished.
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