
Trust Region-Guided Proximal Policy Optimization

Yuhui Wang , Hao He , Xiaoyang Tan , Yaozhong Gan

College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence

Collaborative Innovation Center of Novel Software Technology and Industrialization
{y.wang, hugo, x.tan, yzgancn}@nuaa.edu.cn

Abstract

Proximal policy optimization (PPO) is one of the most popular deep reinforcement
learning (RL) methods, achieving state-of-the-art performance across a wide range
of challenging tasks. However, as a model-free RL method, the success of PPO
relies heavily on the effectiveness of its exploratory policy search. In this paper, we
give an in-depth analysis on the exploration behavior of PPO, and show that PPO
is prone to suffer from the risk of lack of exploration especially under the case of
bad initialization, which may lead to the failure of training or being trapped in bad
local optima. To address these issues, we proposed a novel policy optimization
method, named Trust Region-Guided PPO (TRGPPO), which adaptively adjusts
the clipping range within the trust region. We formally show that this method not
only improves the exploration ability within the trust region but enjoys a better
performance bound compared to the original PPO as well. Extensive experiments
verify the advantage of the proposed method.

1 Introduction

Deep model-free reinforcement learning has achieved great successes in recent years, notably in
video games [11], board games [19], robotics [10], and challenging control tasks [17, 5]. Among
others, policy gradient (PG) methods are commonly used model-free policy search algorithms [14].
However, the first-order optimizer is not very accurate for curved areas. One can get overconfidence
and make bad moves that ruin the progress of the training. Trust region policy optimization (TRPO)
[16] and proximal policy optimization (PPO) [18] are two representative methods to address this
issue. To ensure stable learning, both methods impose a constraint on the difference between the new
policy and the old one, but with different policy metrics.

In particular, TRPO uses a divergence between the policy distributions (total variation divergence or
KL divergence), whereas PPO uses a probability ratio between the two policies1. The divergence
metric is proven to be theoretically-justified as optimizing the policy within the divergence constraint
(named trust region) leads to guaranteed monotonic performance improvement. Nevertheless, the
complicated second-order optimization involved in TRPO makes it computationally inefficient and
difficult to scale up for large scale problems. PPO significantly reduces the complexity by adopting
a clipping mechanism which allows it to use a first-order optimization. PPO is proven to be very
effective in dealing with a wide range of challenging tasks while being simple to implement and tune.

However, how the underlying metric adopted for policy constraints influence the behavior of the
algorithm is not well understood. It is normal to expect that the different metrics will yield RL
algorithms with different exploration behaviors. In this paper, we give an in-depth analysis on the

1There is also a variant of PPO which uses KL divergence penalty. In this paper we refer to the one clipping
probability ratio as PPO by default, which performs better in practice.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

exploration behavior of PPO, and show that the ratio-based metric of PPO tends to continuously
weaken the likelihood of choosing an action in the future if that action is not preferred by the current
policy. As a result, PPO is prone to suffer from the risk of lack of exploration especially under the
case of bad initialization, which may lead to the failure of training or being trapped in bad local
optima.

To address these issues, we propose an enhanced PPO method, named Trust Region-Guided PPO
(TRGPPO), which is theoretically justified by the improved exploration ability and better performance
bound compared to the original PPO. In particular, TRGPPO constructs a connection between the
ratio-based metric and trust region-based one, such that the resulted ratio clipping mechanism allows
the constraints imposed on the less preferred actions to be relaxed. This effectively encourages the
policy to explore more on the potential valuable actions, no matter whether they were preferred by the
previous policies or not. Meanwhile, the ranges of the new ratio-based constraints are kept within the
trust region; thus it would not harm the stability of learning. Extensive results on several benchmark
tasks show that the proposed method significantly improves both the policy performance and the
sample efficiency. Source code is available at https://github.com/wangyuhuix/TRGPPO.

2 Related Work

Many researchers have tried to improve proximal policy learning from different perspectives. Chen
et al. also presented a so-called “adaptive clipping mechanism" for PPO [3]. Their method adaptively
adjusts the scale of policy gradient according to the significance of state-action. They did not make
any alteration on the clipping mechanism of PPO, while our method adopts a newly adaptive clipping
mechanism. Fakoor et al. used proximal learning with penalty on KL divergence to utilize the
off-policy data, which could effectively reduce the sample complexity [6]. In our previous work,
we also introduced trust region-based clipping to improve boundness on policy of PPO [22]. While
in this work, we use the trust region-based criterion to guide the clipping range adjustment, which
requires additional computation but is more flexible and interpretable.

Several methods have been proposed to improve exploration in recent research. Osband et al. tried to
conduct consistent exploration using posterior sampling method [12]. Fortunato et al. presented a
method named NoisyNet to improve exploration by generating perturbations of the network weights
[7]. Another popular algorithm is the soft actor-critic method (SAC) [9], which maximizes expected
reward and entropy simultaneously.

3 Preliminaries

A Markov Decision Processes (MDP) is described by the tuple (S,A, T , c, ρ1, γ). S and A are
the state space and action space; T : S × A × S → R is the transition probability distribution;
c : S ×A → R is the reward function; ρ1 is the distribution of the initial state s1, and γ ∈ (0, 1) is
the discount factor. The return is the accumulated discounted reward from timestep t onwards, Rγt =∑∞
k=0 γ

kc(st+k, at+k). The performance of a policy π is defined as η(π) = Es∼ρπ,a∼π [c(s, a)]
where ρπ(s) = (1−γ)

∑∞
t=1 γ

t−1ρπt (s), ρπt is the density function of state at time t. Policy gradients
methods [20] update the policy by the following surrogate performance objective, Lπold

(π) =

Es∼ρπold ,a∼πold

[
π(a|s)
πold(a|s)A

πold(s, a)
]

+ η(πold), where π(a|s)/πold(a|s) is the probability ratio

between the new policy π and the old policy πold, Aπ(s, a) = E[Rγt |st = s, at = a;π]−E[Rγt |st =

s;π] is the advantage value function of policy π. Let Ds
KL (πold, π) , DKL (πold(·|s)||π(·|s)),

Schulman et al. [16] derived the following performance bound:

Theorem 1. Define that C = max
s,a
|Aπold (s, a)| 4γ

/
(1− γ)

2, Mπold
(π) = Lπold

(π) −
C maxs∈S D

s
KL (πold, π). We have η(π) ≥Mπold

(π), η(πold) = Mπold
(πold).

This theorem implies that maximizing Mπold
(π) guarantee non-decreasing of the performance of the

new policy π. To take larger steps in a robust way, TRPO optimizes Lπold
(π) with the constraint

maxs∈S D
s
KL (πold, π) ≤ δ, which is called the trust region.

2

https://github.com/wangyuhuix/TRGPPO

4 The Exploration Behavior of PPO

In this section will first give a brief review of PPO and then show that how PPO suffers from an
exploration issue when the initial policy is sufficiently far from the optimal one.

PPO imposes the policy constraint through a clipped surrogate objective function:

LCLIP
πold

(π) = E
[
min

(
π(a|s)

πold(a|s)
Aπold(s, a), clip

(
π(a|s)

πold(a|s)
, ls,a, us,a

)
Aπold(s, a)

)]
(1)

where ls,a ∈ (0, 1) and us,a ∈ (1,+∞) are called the lower and upper clipping range on state-
action (s, a). The probability ratio π(a|s)/πold(a|s) will be clipped once it is out of (ls,a, us,a).
Therefore, such clipping mechanism could be considered as a constraint on policy with ratio-
based metric, i.e., ls,a ≤ π(a|s)/πold(a|s) ≤ us,a, which can be rewritten as, −πold(a|s)(1 −
ls,a) ≤ π(a|s) − πold(a|s) ≤ πold(a|s)(us,a − 1). We call (Llπold

(s, a),Uuπold
(s, a)) ,

(−πold(a|s)(1− ls,a), πold(a|s)(us,a − 1)) the feasible variation range of policy π w.r.t. πold on
state-action (s, a) with the clipping range setting (l, u), which is a measurement on the allowable
change of policy π on state-action (s, a).

Note that the original PPO adopts a constant setting of clipping range, i.e., ls,a = 1− ε, us,a = 1 + ε
for any (s, a) [18]. The corresponding feasible variation range is (L1−ε

πold
(s, a),U1+ε

πold
(s, a)) =

(−πold(a|s)ε, πold(a|s)ε). As can be seen, given an optimal action aopt and a sub-optimal
one asubopt on state s, if πold(aopt|s) < πold(asubopt|s), then |(L1−ε

πold
(s, a

opt
),U1+ε

πold
(s, a

opt
))|<

|(L1−ε
πold

(s, a
subopt

),U1+ε
πold

(s, a
subopt

))|. This means that the allowable change of the likelihood on opti-
mal action, i.e., π(aopt|s), is smaller than that of π(asubopt|s). Note that π(aopt|s) and π(asubopt|s)
are in a zero-sum competition, such unequal restriction may continuously weaken the likelihood of
the optimal action and make the policy trapped in local optima. We now give a formal illustration.

Algorithm 1 Simplified Policy Iteration with PPO
1: Initialize a policy π0, t← 0.
2: repeat
3: Sample an action ât ∼ πt.
4: Get the new policy πt+1 by optimizing the empirical surrogate objective function of PPO based on ât:

π̂t+1(a) =

πt(a)ua a = ât and c(a) > 0

πt(a)la a = ât and c(a) < 0

πt(a)−
πt(ât)uât

−πt(ât)
|A|−1

a 6= ât and c(ât) > 0

πt(a) +
πt(ât)(1−lât)
|A|−1

a 6= ât and c(ât) < 0

πt(a) c(ât) = 0

(2)

5: πt+1 = Normalize(π̂t+1)
2. t← t+ 1.

6: until πt converge

We investigate the exploration behavior of PPO under the discrete-armed bandit problem, where there
are no state transitions and the action space is discrete. The objective function of PPO in this problem
is LCLIP

πold
(π) = E

[
min

(
π(a)
πold(a)c(a), clip

(
π(a)
πold(a) , la, ua

)
c(a)

)]
. Let A+ , {a ∈ A|c(a) > 0},

A− , {a ∈ A|c(a) < 0} denote the actions which have positive and negative reward respectively,
and Asubopt = A+/{aopt} denote the set of the sub-optimal actions. Let aopt = argmaxa c(a)
and asubopt ∈ Asubopt denote the optimal 3 and a sub-optimal action. Let us consider a simplified
online policy iteration algorithm with PPO. As presented in Algorithm 1, the algorithm iteratively
sample an action ât based on the old policy πold at each step and obtains a new policy πnew.

We measure the exploration ability by the expected distance between the learned policy πt and the
optimal policy π∗ after t-step learning, i.e., ∆π0,t , Eπt [‖πt − π∗‖∞|π0], where π∗(aopt) = 1,
π∗(a) = 0 for a 6= aopt, π0 is the initial policy, πt is a stochastic element in the policy space and

2π̂t+1 may violate the probability rules, e.g.,
∑
a π̂t+1(a) > 1. Thus we need to enforce specific normaliza-

tion operation to rectify it. To simplify the analysis, we assume that πt+1 = π̂t+1.
3Assume that there is only one optimal action.

3

depends on the previous sampled actions {at′}t−1
t′=1 (see eq. (2)). Note that smaller ∆π0,t means

better exploration ability, as it is closer to the optimal policy. We now derive the exact form of ∆π0,t.

Lemma 1. ∆π0,t , Eπt [‖πt − π∗‖∞|π0] = 1− Eπt [πt(aopt)|π0].

Lemma 2. Eπt+1
[πt+1(a)|π0] = Eπt

[
Eπt+1

[πt+1(a)|πt] |π0

]
.

We provide all the proofs in Appendix E. Lemma 1 implies that we can obtain the exploration ability
∆π0,t by computing the expected likelihood of the optimal action aopt, i.e., Eπt [πt(aopt)|π0]. And
Lemma 2 shows an iterative way to compute the exploration ability. By eq. (2), for action a which
satisfies c(a) > 0, we have

Eπt+1

[
πt+1(a)|πt

]
= πt(a) +

π2
t (a)(ua − 1)−

∑
a+∈A+/{a}

π2
t (a

+)

|A|−1
(u
a+
− 1) +

∑
a−∈A−

π2
t (a
−)

|A|−1
(1− l

a−)

 (3)

This equation provides a explicit form of the case when the likelihood of action a would decrease.
That is, if the second term in RHS of eq. (3) is negative, then the likelihood on action a would
decrease. This means that the initialization of policy π0 profoundly affects the future policy πt. Now
we show that if the policy π0 initializes from a bad one, π(aopt) may continuously be decreased.
Formally, for PPO, we have the following theorem:
Theorem 2. Given initial policy π0, if π2

0(aopt) · |A|<
∑
asubopt∈Asubopt

π2
0(asubopt) −∑

a−∈A− π
2
0(a−), then we have

(i)
∑
asubopt∈Asubopt

π0(asubopt) <
∑
asubopt∈Asubopt

EπPPO
1

[
πPPO

1 (asubopt)|π0

]
< · · · <∑

asubopt∈Asubopt
EπPPO

t

[
πPPO
t (asubopt)|π0

]
;

(ii) π0(aopt) > EπPPO
1

[
πPPO

1 (aopt)|π0

]
> · · · > EπPPO

t

[
πPPO
t (aopt)|π0

]
;

(iii) ∆π0,0 < ∆PPO
π0,1 < · · · < ∆PPO

π0,t .

Conclusion (i) and (ii) implies that if the optimal action aopt is relatively less preferred than the
sub-optimal action asubopt by the initial policy, then the preference of choosing the optimal action
would continue decreasing while that of the sub-optimal action would continue increasing. This is
because the feasible variation of probability on the optimal action π(aopt) is larger than that on the
sub-optimal one π(asubopt), increasing probability on the latter one could diminish the former one.
Conclusion (iii) implies that the policy of PPO is expected to diverge from the optimal one (in terms
of the infinity metric). We give a simple example below.
Example 1. Consider a three-armed bandit problem, the reward function is c(aopt) =
1, c(asubopt) = 0.5, c(aworst) = −50. The initial policy is π0(aopt) = 0.2, π0(asubopt) =
0.6, π0(aworst) = 0.2. The hyperparameter of PPO is ε = 0.2. We have ∆PPO

π0,0 = 0.8,
∆PPO
π0,1 = 0.824,. . . , ∆PPO

π0,6 ≈ 0.999, which means the policy diverges from the optimal one.

Note that the case that the optimal action aopt is relatively less preferred by the initial policy may be
avoided in discrete action space, where we can use uniform distribution as initial policy. However,
such a case could hardly be avoided in the high dimensional action space, where the policy is possibly
initialized far from the optimal one. We have experimented Example 1 and a continuous-armed bandit
problem with random initialization for multiple trials; about 30% of the trials were trapped in the
local optima. See Section 6.1 for more detail.

In summary, PPO with constant clipping range could lead to an exploration issue when the policy is
initialized from a bad one. However, eq. (3) inspires us a method to address this issue − enlarging the
clipping range (la, ua) when the probability of the old policy πold(a) is small.

5 Method

5.1 Trust Region-Guided PPO

In the previous section, we have concluded that the constant clipping range of PPO could lead to an
exploration issue. We consider how to adaptively adjust the clipping range to improve the exploration

4

behavior of PPO. The new clipping range (lδs,a, u
δ
s,a), where δ is a hyperparameter, is set as follows:

lδs,a = min
π

{
π(a|s)
πold(a|s)

: Ds
KL(πold, π) ≤ δ

}
, uδs,a = max

π

{
π(a|s)
πold(a|s)

: Ds
KL(πold, π) ≤ δ

}
(4)

To ensure the new adaptive clipping range would not be over-strict, an additional truncation operation
is attached: lδ,εs,a = min(lδs,a, 1− ε), uδ,εs,a = max(uδs,a, 1 + ε). This setting of clipping range setting
could be motivated from the following perspectives.

First, the clipping range is related to the policy metric of constraint. Both TRPO and PPO imposes
a constraint on the difference between the new policy and the old one. TRPO uses the divergence
metric of the distribution, i.e., Ds

KL(πold, π) = Ea
[
log πold(a|s)

π(a|s)

]
≤ δ for all s ∈ S, which is more

theoretically-justified according to Theorem 1. Whereas PPO uses a ratio-based metric on each action,
i.e., 1− ε ≤ π(a|s)

πold(a|s) ≤ 1 + ε for all a ∈ A and s ∈ S . The divergence-based metric is averaged over
the action space while the ratio-based one is an element-wise one on each action point. If the policy
is restricted within a region with the ratio-based metric, then it is also constrained within a region
with divergence-based one, but not vice versa. Thus the probability ratio-based metric constraint is
somewhat more strict than the divergence-based one. Our method connects these two underlying
metrics − adopts the probability ratio-based constraint while getting closer to the divergence metric.

Second, a different underlying metric of the policy difference may result in different algorithm
behavior. In the previous section, we have concluded that PPO’s metric with constant clipping range
could lead to an exploration issue, due to that it imposes a relatively strict constraint on actions which
are not preferred by the old policy. Therefore, we wish to relax such constraint by enlarging the
upper clipping range while reducing the lower clipping range. Fig. 1a shows the clipping range of
TRGPPO and PPO. For TRGPPO (blue curve), as πold(a|s) gets smaller, the upper clipping range
increases while the lower one decreases, which means the constraint is relatively relaxed as πold(a|s)
gets smaller. This mechanism could encourage the agent to explore more on the potential valuable
actions which are not preferred by the old policy. We will theoretically show that the exploration
behavior with this new clipping range is better than that of with the constant one in Section 5.2.

Last but not least, although the clipping ranges are enlarged, it will not harm the stability of learning,
as the ranges are kept within the trust region. We will show that this new setting of clipping range
would not enlarge the policy divergence and has better performance bound compared to PPO in
Section 5.3.

Our TRGPPO adopts the same algorithm procedure as PPO, except that it needs an additional
computation of adaptive clipping range. We now present methods on how to compute the adaptive
clipping range defined in (4) efficiently. For discrete action space, by using the KKT conditions, the
problem (4) is transformed into solving the following equation w.r.t X .

g(πold(a|s), X) , (1− πold(a|s)) log
1− πold(a|s)

1− πold(a|s)X
− πold(a|s) logX = δ (5)

which has two solutions, one is for lδs,a which is within (0, 1), and another one is for uδs,a which is
within (1,+∞). We use MINPACK’s HYBRD and HYBRJ routines [15] as the solver. To accelerate
this computation procedure, we adopt two additional measures. First, we train a Deep Neural Network

0 0.2 0.4 0.6 0.8 1
old(a|s)

1.0

2.0

3.0

4.0

Clipping Range
us, a of TRGPPO
ls, a of TRGPPO
1 + of PPO
1 of PPO

(a)

0 0.2 0.4 0.6 0.8 1.0
old(a|s)

-0.2
-0.15
-0.1

-0.05

0.05
0.1

0.15
0.2

Variation

TRGPPO
TRGPPO
PPO
PPO

(b)

3 2 1 0 1 2 3 a

1.0

2.0

3.0

4.0

5.0 ua of TRGPPO
la of TRGPPO
1 of PPO
1 + of PPO

old(a)

(c)
Figure 1: (a) and (b) plot the clipping range and the feasible variation range under different πold(a|s)
for discrete action space task. (c) plots the clipping range under different a for continuous action
space task; the black curve plots the density of πold(a|s) = N (a|0, 1).

5

(DNN) which input πold(a|s) and δ, and approximately output the initial solution. Note that the
solution in (5) only depends on the probability πold(a|s) and the hyperparameter δ, and it is not
affected by the dimension of the action space. Thus it is possible to train one DNN for all discrete
action space tasks in advance. Second, with fixed δ, we discretize the probability space and save all
the solutions in advance. This clipping range computation procedure with these two acceleration
measures only requires only additional 4% wallclock computation time of the original policy learning.
See Appendix B.3 for more detail.

While for the continuous actions space task, we make several transformations to make the problem in-
dependent of the dimension of the action space, which makes it tractable to apply the two acceleration
measures above. See Appendix B.2 for more detail.

5.2 Exploration Behavior

In this section, we will first give the property of the clipping range of TRGPPO, which could affect
the exploration behavior (as discussed in Section 4). Then a comparison between TRGPPO and PPO
on the exploration behavior will be provided.

Lemma 3. For TRGPPO with hyperparameter δ, we have
duδs,a

dπold(a|s) < 0,
dlδs,a

dπold(a|s) > 0.

This result implies that the upper clipping range becomes larger as the preference on the action by the
old policy πold(a|s) approaches zero, while the lower clipping range is on the contrary. This means
that the constraints are relaxed on the actions which are not preferred by the old policy, such that it
would encourage the policy to explore more on the potential valuable actions, no matter whether they
were preferred by the previous policies or not.

We now give a formal comparison on the exploration behavior. As mentioned in Section 4, we
measure the exploration ability by the expected distance between the learned policy πt and the
optimal policy π∗ after t-step learning, i.e., ∆π0,t , Eπt [‖πt − π∗‖∞|π0]. Smaller ∆π0,t means the
better exploration ability. The exploration ability of TRGPPO is denoted as ∆TRGPPO

π0,t while that of
PPO is denoted as ∆PPO

π0,t . By eq. (3) and Lemma 3, we get the following conclusion.

Theorem 3. For TRGPPO with hyperparameter (δ, ε) and PPO with same ε. If δ ≤
g(maxa∈Asubopt

πt(a), 1 + ε) for all t, then we have ∆TRGPPO
π0,t ≤ ∆PPO

π0,t for any t.

This theorem implies that our TRGPPO has better exploration ability than PPO, with proper setting
of the hyperparameter δ.

5.3 Policy Divergence and Lower Performance Bound

To investigate how TRGPPO and PPO perform in practical, let us consider an empirical version
of lower performance bound: M̂πold

(π) = L̂πold
(π) − C maxtD

st
KL (πold, π) , where L̂πold

(π) =
1
T

∑T
t=1

[
π(at|st)
πold(at|st)At

]
+ η̂πold , st ∼ ρπold

, at ∼ πold(·|st) are the sampled states and actions,
where we assume si 6= sj for any i 6= j, At is the estimated value of Aπold(st, at), η̂πold is the
estimated performance of old policy πold.

Let ΠPPO
new denote the set of all the optimal solutions of the empirical surrogate objective function of

PPO, and let πPPO
new ∈ ΠPPO

new denote the optimal solution which achieve minimum KL divergence
over all optimal solutions, i.e., Dst

KL(πold, π
PPO
new) ≤ Dst

KL(πold, π) for any π ∈ ΠPPO
new under all st.

This problem can be formalized as πPPO
new = argminπ∈ΠPPO

new
(Ds1

KL(πold, π), . . . , DsT
KL(πold, π)).

Note that π(·|st) is a conditional probability and the optimal solution on different states are
independent from each other. Thus the problem can be optimized by independently solving
minπ(·|st)∈{π(·|st):π∈ΠPPO

new }DKL (πold(·|st), π(·|st)) for each st. The final πPPO
new is obtained by

integrating these independent optimal solutions πPPO
new (·|st) on different state st. Similarly, πTRGPPO

new
is the one of TRGPPO which has similar definition as πPPO

new . Please refer to Appendix E for more
detail.

To analyse TRGPPO and PPO in a comparable way, we introduce a variant of TRGPPO.
The hyperparameter δ of TRGPPO in eq. (4) is set adaptively by ε. That is, δ =

max
(

(1− p+) log 1−p+
1−p+(1+ε) − p

+ log(1 + ε), (1− p−) log 1−p−
1−p−(1−ε) − p

− log(1− ε)
)
, where

6

p+ = max
t:At>0

πold(at|st), p− = max
t:At<0

πold(at|st). One may note that this equation has a simi-

lar form to that of eq. (5). In fact, if TRGPPO and PPO share a similar ε, then they have the same KL
divergence theoretically. We conclude the comparison between TRGPPO and PPO by the following
theorem.

Theorem 4. Assume that maxtD
st
KL(πold, π

PPO
new) < +∞ for all t. If TRGPPO and PPO have the

same hyperparameter ε, we have:

(i) uδst,at ≥ 1 + ε and lδst,at ≤ 1− ε for all (st, at);

(ii) maxtD
st
KL(πold, π

TRGPPO
new) = maxtD

st
KL(πold, π

PPO
new);

(iii) M̂πold
(πTRGPPO

new) ≥ M̂πold
(πPPO

new). Particularly, if there exists at least one (st, at) such that
πold(at|st) 6= max

t̂:At̂<0
πold(at̂|st̂) and πold(at|st) 6= max

t̂:At̂>0
πold(at̂|st̂), then M̂πold

(πTRGPPO
new) >

M̂πold
(πPPO

new).

Conclusion (i) implies that TRGPPO could enlarge the clipping ranges compared to PPO and
accordingly allow larger update of the policy. Meanwhile, the maximum KL divergence is retained,
which means TRGPPO would not harm the stability of PPO theoretically. Conclusion (iii) implies
that TRGPPO has better empirical performance bound.

6 Experiment

We conducted experiments to answer the following questions: (1) Does PPO suffer from the lack of
exploration issue? (2) Could our TRGPPO relief the exploration issue and improve sample efficiency
compared to PPO? (3) Does our TRGPPO maintain the stable learning property of PPO? To answer
these questions, we first evaluate the algorithms on two simple bandit problems and then compare
them on high-dimensional benchmark tasks.

6.1 Didactic Example: Bandit Problems

We first evaluate the algorithms on the bandit problems. In the continuous-armed bandit problem,
the reward is 0.5 for a ∈ (1, 2); 1 for a ∈ (2.5, 5); and 0 otherwise. We use a Gaussian policy. The
discrete-armed bandit problem is defined in Section 4. We use a Gibbs policy π(a) ∝ exp(θa), where
the parameter θ is initialized randomly from N (0, 1). We also consider the vanilla Policy Gradient
method as a comparison. Each algorithm was run for 1000 iterations with 10 random seeds.

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Discrete Bandit

TRPPO
PPO
Vanilla PG

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Continuous Bandit

TRPPO
PPO
Vanilla PG

TRGPPO TRGPPO

Figure 2: The performance on discrete
and continuous-armed bandit problems
during training process.

Fig. 2 plots the performance during the training process.
PPO gets trapped in local optima at a rate of 30% and 20%
of all the trials on discrete and continuous cases respec-
tively, while our TRGPPO could find the optimal solution
on almost all trials. For continuous-armed problem, we
have also tried other types of parametrized policies like
Beta and Mixture Gaussian, and these policies behaves
similarly as the Gaussian policy. In discrete-armed prob-
lem, we find that when the policy is initialized with a local
optima, PPO could easily get trapped in that one. Notably,
since vanilla PG could also find the optimal one, it could
be inferred that the exploration issue mainly derives from
the ratio-based clipping with constant clipping range.

6.2 Evaluation on Benchmark Tasks

We evaluate algorithms on benchmark tasks implemented in OpenAI Gym [2], simulated by MuJoCo
[21] and Arcade Learning Environment [1]. For continuous control tasks, we evaluate algorithms on
6 benchmark tasks. All tasks were run with 1 million timesteps except that the Humanoid task was
20 million timesteps. The trained policies are evaluated after sampling every 2048 timesteps data.
The experiments on discrete control tasks are detailed in Appendix C.

7

0 4 8 12 16 20
Timesteps(×106)

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
wa

rd

Humanoid

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0

2000

4000

6000

8000

10000

Re
wa

rd

HalfCheetah
TRGPPO
PPO
SAC
PPO-penalty
PPO-entropy
PPO-0.6

Figure 3: Episode rewards during the training process; the shaded area indicate half the standard
deviation over 10 random seeds.

Table 1: Results of timesteps to hit a threshold within 1 million timesteps (except Humanoid with 20
million) and averaged rewards over last 40% episodes during training process.

(a) Timesteps to hit threshold (×103) (b) Averaged rewards

Threshold TRGPPO PPO PPO-
penalty SAC TRGPPO PPO PPO-

penalty SAC

Humanoid 5000 4653 7241 13096.0 343.0 7074.9 6620.9 3612.3 6535.9
Reacher -5 201 178.0 301.0 265 -7.9 -6.7 -6.8 -17.2

Swimmer 90 353.0 564 507.0 /4 101.9 100.1 94.1 49
HalfCheetah 3000 117 148 220.0 53.0 4986.1 4600.2 4868.3 9987.1

Hopper 3000 168.0 267 188.0 209 3200.5 2848.9 3018.7 3020.7
Walker2d 3000 269.0 454 393.0 610 3886.8 3276.2 3524 2570

For our TRGPPO, the trust region coefficient δ is adaptively set by tuning ε (see Appendix B.4
for more detail). We set ε = 0.2, same as PPO. The following algorithms were considered in the
comparison. (a) PPO: we used ε = 0.2 as recommended by [18]. (b) PPO-entropy: PPO with an
explicit entropy regularization term βEs [H (πold(·|s), π(·|s))], where β = 0.01. (c) PPO-0.6: PPO
with a larger clipping range where ε = 0.6. (d) PPO-penalty: a variant of PPO which imposes
a penalty on the KL divergence and adaptively adjust the penalty coefficient [18]. (e) SAC: Soft
Actor-Critic, a state-of-the-art off-policy RL algorithm [9]. Both TRGPPO and PPO adopt exactly
same implementations and hyperparameters except the clipping range based on OpenAI Baselines
[4]. This ensures that the differences are due to algorithm changes instead of implementations or
hyperparameters. For SAC, we adopt the implementations provided in [9].

Sample Efficiency: Table 1 (a) lists the timesteps required by algorithms to hit a prescribed threshold
within 1 million timesteps and Figure 3 shows episode rewards during the training process. The
thresholds for all tasks were chosen according to [23]. As can be seen in Table 1, TRGPPO requires
about only 3/5 timesteps of PPO on 4 tasks except HalfCheetah and Reacher.

Performance/Exploration: Table 1 (b) lists the averaged rewards over last 40% episodes during
training process. TRGPPO outperforms the original PPO on almost all tasks except Reacher. Fig. 4a
shows the policy entropy during training process, the policy entropy of TRGPPO is obviously higher
than that of PPO. These results implies that our TRGPPO method could maintain a level of entropy
learning and encourage the policy to explore more.

4‘/’ means that the method did not reach the reward threshold within the required timesteps on all the seeds.

8

