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Abstract

We study two problems in high-dimensional robust statistics: robust mean estimation and outlier
detection. In robust mean estimation the goal is to estimate the mean µ of a distribution on Rd given
n independent samples, an ε-fraction of which have been corrupted by a malicious adversary. In outlier
detection the goal is to assign an outlier score to each element of a data set such that elements more
likely to be outliers are assigned higher scores. Our algorithms for both problems are based on a new
outlier scoring method we call QUE-scoring based on quantum entropy regularization. For robust mean
estimation, this yields the first algorithm with optimal error rates and nearly-linear running time Õ(nd) in

all parameters, improving on the previous fastest running time Õ(min(nd/ε6, nd2)). For outlier detection,
we evaluate the performance of QUE-scoring via extensive experiments on synthetic and real data, and
demonstrate that it often performs better than previously proposed algorithms.

1 Introduction

We study outlier-robust statistics in high dimensions, focusing on the question: can theoretically sound
outlier robust algorithms have practical running times for large, high-dimensional data sets? We address
two related problems: robust mean estimation, which is primarily theoretical, and an applied counterpart,
outlier detection.

Robust mean estimation Our main theoretical contribution is the first nearly-linear time algorithm
for robust mean estimation with nearly-optimal error. Here the goal is to estimate the mean µ ∈ Rd of a
d-dimensional distribution D given ε-corrupted samples X1, . . . , Xn – that is, i.i.d. samples, an unknown
ε-fraction of which have been maliciously corrupted. Under (for instance) the assumption that the covariance
of D is bounded by Id, it has been long known to be possible in exponential time to estimate µ by µ̂ having
‖µ− µ̂‖2 ≤ O(

√
ε). In particular, this rate of error is independent of d.

Polynomial-time algorithms provably achieving such d-independent error became known only recently,
starting with the works [1, 2]. Until our work, the running time of algorithms with provably d-independent
error remained suboptimal by polynomial factors in d or ε: the fastest running time achieved before this
work was Õ(min(nd2, nd/ε6)) [3, 1, 2, 4]. (Here Õ(·) notation hides logarithmic factors in n and d). While
these running times represent a dramatic improvement over previous exponential-time algorithms, there are
still many interesting regimes where the additional runtime overheads these algorithms incur render them
impractically slow. We give the first algorithm for robust mean estimation with running time Õ(nd) which
achieves error ‖µ− µ̂‖2 ≤ O(

√
ε). Note that this running time is nearly-linear in the input size nd. Similar

to prior works, our algorithm has information-theoretically optimal sample complexity and nearly-optimal
error rates in both the bounded-covariance and sub-Gaussian regimes.

Outlier detection Our main applied contribution is a new algorithm for high-dimensional outlier de-
tection, which we assess via experiemnts on both synthetic and real data. Our goal is to take a dataset
X1, . . . , Xn ∈ Rd and assign to each Xi an outlier score τi ≥ 0, so that higher scores τi are assigned to points
Xi more likely to be outliers. Of course, what constitutes an outlier varies across applications, so no single
algorithm for outlier detection is likely to be the best in all domains. We show that our method performs
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well in settings where individual outliers are difficult to pick out on their own (by, say, their `2 norms or their
distances to nearby points), but still collectively bias empirical statistics such as the mean and covariance.

We compare our method to baselines based on PCA and Euclidean distances, as well as more sophisticated
algorithms from existing literature based on nearest-neighbor distances. Our algorithm has nearly-linear
running time in theory, and simple implementations in practice incur minimal overhead beyond standard
spectral methods, allowing us to run on 103-dimensional data with no special optimizations. It can therefore
be used in practice to complement existing approaches to outlier detection in exploratory data analysis.

1.1 What is an outlier and why are they hard to find?

For us, an outlier is an element of a data set which was generated according to a different process than the
majority of the data. For instance, we may imagine that our samples X1, . . . , Xn were sampled i.i.d. from a
distribution (1− ε)D + εN over Rd, where D is the distribution of inliers, N is the distribution of outliers,
and ε > 0 is a small number – that is, we imagine that a constant fraction of our data may be outliers.

For this discussion, we also informally imagine that N is sufficiently distinct from D that the set of
outliers could be approximately identified by brute-force search over subsets of (1 − ε)n samples, if given
unlimited computational resources. Otherwise, outlier detection is not a meaningful problem, and robust
mean estimation is easy (because the empirical mean will be a good estimator). Under these circumstances,
what makes identifying outliers and estimating the mean in their presence difficult? Chiefly:

Outliers may not be identifiable in isolation. On its own, a typical outlier Xi ∼ N may look much like
a typical inlier Xj ∼ D. For instance, it could be ‖Xi‖2 ≈ ‖Xj‖2, and Xi, Xj may have similar distance to
the nearest few neighboring samples, especially in high dimensions where samples are far apart.

Outliers still introduce bias, collectively Even if individual outliers look innocuous, the collective effect
a modified ε-fraction of samples Xi can still substantially change the empirical distribution of X1, . . . , Xn.
As a result, even simple statistical tasks like estimating the mean or covariance of D require sophisticated
estimators: naively pruning individual outliers and then employing standard empirical estimators typically
leads to far-suboptimal error rates. For example, an ε-fraction of X1, . . . , Xn which are all slightly biased
in a single direction may shift the empirical mean of X1, . . . , Xn, but this bias will be difficult to detect by
looking at small numbers of samples at once. This also demonstrates that successful outlier detection can
require global geometric information about a high-dimensional dataset, such as whether or not a direction
exists in which many (say, εn) samples are unusually biased.

Outliers may be inhomogeneous. Outliers need not exhibit unusual bias in only one direction, or all have
the same norm, or lie in a single cluster. Rather, if a dataset exhibits several forms of corruption, there
may be as many different-looking kinds of outliers. In the theoretical robust mean estimation setting, the
adversary producing ε-corrupted samples may corrupt εn/10 samples by biasing them in some direction,
another εn/10 samples by unusually enlarging their norms, and so forth.

Since robust mean estimation involves a malicious adversary, all of the above phenomena must be ad-
dressed by our robust mean estimation algorithm. In the empirical section of this paper, we focus on
designing an outlier detection method suited to situations where at least one of them occurs – in other cases,
existing methods (such as those based on Euclidean norms or local neighborhoods of individual samples [5])
may be more appropriate.

1.2 QUE: Quantum Entropy Scoring

Recent innovations in robust mean estimation [2, 1] rely on the following crucial observation about ε-corrupted
samples X1, . . . , Xn from a distribution D with covariance Σ � Id. Namely: any subset S ⊆ {X1, . . . , Xn}
of samples which shift the empirical mean by distance more than

√
ε in some direction v also introduce an

eigenvalue of magnitude greater than 1 to the empirical covariance.
In robust mean estimation, this leads to (amongst others) the filter algorithm of [1, 4], one of the first

to achieve dimension-independent error rates. Roughly speaking, the algorithm iterates the following until
the empirical covariance Σ has small spectral norm: (1) compute the top eigenvector v of the empirical
covariance of Σ, then (2) throw out samples Xi whose projections |〈Xi−µ, v〉| � 1 is unusually large, where
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µ is the empirical mean of the corrupted dataset. For outlier detection this suggests a natural scoring rule
– let the outlier score τi of sample Xi be proportional to |〈Xi − µ, v〉|.

The main drawback of these algorithms is that they do not adequately account for inhomogeneity of
outliers. For the filter, this leads to a worst-case running time of Õ(nd2), because the filter operation (which

can be implemented in Õ(nd) time) may have to be repeated as many as d times if the adversary introduces
outliers lying in d orthogonal directions. The rule τi = |〈Xi − µ, v〉| may miss outliers causing a large
eigenvalue of Σ, but in a direction orthogonal to the top eigenvector v.

In the opposite extreme, if outliers are maximally inhomogeneous – no group of them is unusually biased
in some shared direction v – then the only way they can bias the empirical mean is for the individual `2
norms ‖Xi − µ‖2 to be larger than typical. This suggests a different scoring rule: τi = ‖Xi − µ‖2. But this
approach breaks down when outliers are not identifiable in isolation.

Our main conceptual contribution is an approach to utilize information about outliers beyond what is
available in the top eigenvector of the empirical covariance Σ and in individual `2 norms. Appropriately
adapted to their respective settings, this leads to our algorithms for both robust mean estimation and outlier
detection.

Our first observation is that any eigenvalue/eigenvector λ, v of the empirical covariance with λ � 1
must be due to outliers. We therefore consider the intermediate goal of finding a distribution over directions
v ∈ Rd containing information about as many outlier directions as possible. We formalize this as the following
entropy-regularized convex program over d× d positive semidefinite matrices:

max
U∈Rd×d

α · 〈U,Σ〉+ S(U) such that U � 0, tr(U) = 1 , (1)

where α ≥ 0 is some constant and 〈A,B〉 = tr(AB>) denotes the trace inner product of matrices. Here,
S(U) = −〈U, logU〉 is the quantum entropy (also known as the von Neumann entropy) of the matrix U .

If U =
∑d
i=1 µiviv

>
i is the eigendecomposition of U , since it has tr(U) = 1 we may interpret it as a

distribution over orthonormal vectors v1, . . . , vd with weights µ1, . . . , µd and hence with entropy S(U). Under
this interpetation, 〈U,Σ〉 = Evi∼µ〈vi,Σvi〉. As α varies, (1) trades off optimizing for a distribution supported
on many distinct directions for a distribution supported on eigenvectors of Σ with large eigenvalues. The
optimizer of (1) takes the form U = exp(α ·Σ)/tr exp(α ·Σ) where exp(·) is the matrix exponential function.

Definition 1.1. Let U = exp(α·Σ)/tr exp(α·Σ) be the optimizer of (1), for some data set X = X1, . . . , Xn ∈
Rd where Σ is the covariance of X . The quantum entropy (QUE) scores with parameter α are given by
τi = (Xi − µ)>U(Xi − µ), where µ is the mean of X .

Intuitively, the QUE scores will penalize any point which is causing a large eigenvalue in any direction,
which should allow us to find more outliers than the naive spectral scores presented above. QUE scores also
interpolate between two more naive scoring rules: when α = 0 we have U = Id /d and so τi = 1

d‖Xi − µ‖22
is the `2 norm (up to a scaling), while when α→∞ we have U → vv> where v is the top eigenvector of Σ,
recovering naive spectral scoring. In both experiments and theory we find that choosing α strictly between 0
and ∞ outperforms either of the extreme choices.

QUE scores are also appealing from a computational perspective: we show that a list of approximate
QUE scores τ ′i = (1 ± 0.01)τi can be computed from X1, . . . , Xn in nearly-linear time, by appropriate use
of Johnson-Lindenstrauss sketching and efficient computation of the matrix exponential by series expansion.
This is crucial to both the nearly-linear running time of our algorithm for robust mean estimation and to
the scalability of our outlier detection method.

In Section 2 we describe refinements of QUE scoring which fit it into the matrix multiplicative weights
framework [6], leading to our nearly-linear time algorithms for robust mean estimation. We give two very
similar algorithms, one for when the distribution of inliers is only assumed to have bounded covariance, and
one when the inliers are assumed to be subgaussian. The resulting algorithms are conceptually similar to the
following modification of the filter mentioned above: until ‖Σ‖2 ≤ O(1), compute QUE scores, throw out
data points Xi with τi � 1, and repeat. (To obtain provable guarantees, our final algorithms are somewhat
more complex: in some iterations we use QUE scores based on certain reweightings of the data learned in
previous iterations.)
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In Section 3 we describe experiments validating the QUE scoring rule on both synthetic and real data
sets. We show that it performs especially well by comparison to local-neighborhood methods and to scoring
based on only the top eigenvector in data sets where the inliers are close to isotropic (or can be made so by
applying data whitening procedures) and in which there are heterogeneous outliers.

1.3 Related work

Robust mean estimation: The study of robust statistics and in particular robust mean estimation began
with major works by Anscombe, Huber, Tukey and others in the 1960s [7, 8, 9, 10]. The literature on
polynomial-time algorithms for robust statistics has exploded in recent years, following works by Diakonikolas
et al and Lai, Rao and Vempala giving the first polynomial-time algorithms for robust mean estimation with
dimension-independent (or nearly dimension-indepedent) error [1, 2]. A full survey is beyond our scope here
– see e.g. the recent theses [11, 12] for a thorough account. Particularly relevant to our work is the recent
work of Cheng, Diakonikolas, and Ge who design an algorithm for robust mean estimatin with running time
Õ(nd/ε6) – the first to achieve nearly linear time for constant ε – by appeal to nearly linear time solvers for
packing and covering semidefinite programs [3]. Our algorithms carry two advantages over this prior work:
first, our algorithm runs in nearly linear time for any choice of ε = ε(n, d), and second, because we avoid the
1/ε6 scaling and appeal to semidefinite programming, our theoretical ideas lead to a practical method for
outlier detection. The techniques of Diakonikolas et al. were later extended to robust covariance estimation
[13]; it remains an interesting direction to extend our techniques to covariance estimation.

Outlier detection Detection of outliers goes back nearly to the beginning of statistics itself [14]. Even
restricting to the high dimensional case it has a literature too broad to survey here. Much recent work has
focused on so-called local outlier factor -based methods, which assign outlier scores based on the local density
of other samples near each Xi – see e.g. [15, 16] and further references in [5]. We find that QUE scoring
compares favorably to such local methods in high-dimensional datasets like we describe in Section 1.1 – see
Section 3 and supplementary material for details.

2 Robust mean estimation: results and algorithm

We turn to our algorithm for robust mean estimation, deferring details to supplemental material.

Definition 2.1 (ε-corrupted samples). Let D be a distribution on Rd. We say that X1, . . . , Xn are an
ε-corrupted set of samples from D if they are first drawn i.i.d. from D, then modified by an adversary who
may adaptively inspect all the samples, remove εn of them, and replace them with arbitrary vectors in Rd.

Note that ε-corruption is a stronger outlier model than the (1 − ε)D + εN mixture model we described
in Section 1; our algorithms also work in this milder mixture model. Our main theoretical result is:

Theorem 2.1. For every n, d ∈ N and ε > 0 there are algorithms QUEScoreFilter ,s.g.-QUEScoreFilter
with running time Õ(nd), such that for every distribution D on Rd with mean µ and covariance Σ, given

n ε-corrupted samples from D, QUEScoreFilter produces µ̂ such that ‖µ̂ − µ‖2 ≤ O(
√
ε) + Õ(

√
d/n)

if Σ � Id, and s.g.-QUEScoreFilter produces µ̂ such that ‖µ̂ − µ‖2 ≤ O(ε
√

log(1/ε) +
√
d/n) if D is

sub-Gaussian with Σ = Id, all with probability at least 0.99.

For the bounded covariance case, theO(
√
ε) term information-theoretically optimal up to constant factors.

The other term, Õ(
√
d/n), is information-theoretically optimal up to the logarithmic factors in the Õ(·)

even without corruptions. For the sub-Gaussian case, the O(ε
√

log 1/ε) term is believed to be necessary
for computationally efficient algorithms (see e.g the statistical-query lower bound [17]), although that term
can be made O(ε) by using computationally-intractable estimators such as Tukey median, and the latter is
information-theoretically optimal [10]. The

√
d/n term is information-theoretically optimal even without

corruptions.
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In this section we discuss our algorithm for the bounded-covariance case Σ � Id in the setting that
the adversary may not remove samples, leaving technical details and the modifications necessary to handle
removed samples and sub-Gaussian D to supplementary material.

Definition 2.2 (Simplified robust mean estimation). Let S = {X1, . . . , Xn} ⊆ Rd be a dataset with the
property that S partitions into S = Sg ∪ Sb with |Sb| ≤ εn and Ei∼Sg (Xi − µg)(Xi − µg)> � Id, where
µg = Ei∼Sg Xi. Given S, the goal is to find a vector µ̂ with ‖µg − µ̂‖2 ≤ O(

√
ε).

Like prior algorithms for robust mean estimation, ours maintains a weight vector w1, . . . , wn ≥ 0 with∑
wi ≤ 1, initialized to wi = 1/n. The algorithm iteratively decreases the weight of points suspected to be

outliers that are causing ‖µ(w)−µg‖2 to be large.1 A key insight of recent work on robust mean estimation
is that it suffices to find weights w which place almost as much mass on Sg as does the uniform weighting
and whose empirical covariance is small. This is formalized in the following lemma. For a weight vector
w, let |w| =

∑
wi, µ(w) = 1

|w|
∑
wiXi, and M(w) = 1

|w|
∑
wi(Xi − µ(w))(Xi − µ(w))>. Let ‖M‖2 be the

spectral norm of a matrix M .

Lemma 2.2 (Implicit in prior work). Let S = {X1, . . . , Xn} be as in Definition 2.2. Suppose that w is a
weight vector such that ‖M(w)‖2 ≤ O(1) and w is mostly good, by which we mean | 1n1Sg

−wg| ≤ | 1n1Sb
−wb|,

where 1Sg ,1Sb
are the indicators of Sg, Sb and wg, wb are w restricted to Sg, Sb respectively. (Intuitively,

w is mostly good if it results by removing from the uniform weighting 1S/n more weight from Sb than from
Sg.) Then ‖µ(w)− µg‖2 ≤ O(

√
ε).

Lemma 2.2 captures the following geometric intuition: if the bad points Sb receive enough weight in w
to cause ‖µ(w)−µg‖2 �

√
ε, then an O(ε)-fraction of the mass of w is on Xi which are unusually correlated

with the vector µ(w) − µg, which leads to a large maximum eigenvalue in M(w). Prior works employ a
variety of methods to find a mostly good weight vector w with ‖M(w)‖2 ≤ O(1). Perhaps the simplest is
the filter of [1], which iterates: While ‖M(w)‖2 � 1, compute its top eigenvector v and naive spectral scores
τi = 〈Xi − µ(w), v〉2. Throw out Xi with large τi and repeat.

The filter ensures that the weight vector it maintains is mostly good because (in an averaged sense) τi
can be large only for Xi which are corrupted. This is because the (weighted) sum of all scores

∑
wiτi =

〈M(w), vv>〉 � 1, while the contribution to this sum from Sg has
∑
i∈Sg

wiτi ≈ 〈 1n
∑
i∈Sg

(Xi − µg)(Xi −
µg)
>, vv>〉 ≤ 1. (Here we ignore some details about centering Xi at µg rather than µ(w).) Thus, the τi from

Sb must make up almost all of
∑
wiτi. Simple approaches to removing or downweighting Xi with large τi

then remove strictly more weight from Sb than from Sg.
However, filtering based on naive spectral scores alone faces a barrier to achieving nearly-linear running-

time. If the corruptions Sb are split among many orthogonal directions, the naive spectral filter will have to
find those directions one at a time. Thus, it may require Ω(d) iterations (leading to Ω(nd2) running time)
to arrive at w with ‖M(w)‖2 ≤ O(1).

Our main idea is that by replacing naive spectral scores with slightly modified QUE scores, each iteration
of the filter can take into account projections of each sample onto many large eigenvectors of M(w). We show
that our modified QUE scores τi maintain the property that

∑
i∈Sb

wiτi �
∑
i∈Sg

wiτi, and so downweighting
according to τi removes more mass from Sb than Sg. However, filtering with QUE scores makes faster progress
than with naive spectral scores: roughly speaking, we show that only O(log d)2 rounds of filtering according
to QUE scores are required to find a mostly-good weight vector w with ‖M(w)‖2 ≤ O(1).

The core of our algorithm is a subroutine, DecreaseSpectralNorm, to take a mostly good weight
vector w with ‖M(w)‖2 � 1 and in O(log d) rounds of QUE filtering produce another mostly good w′ with
‖M(w′)‖2 ≤ 3

4‖M(w)‖2. Repeating this subroutine O(log d) times and then outputting the resulting µ(w)
yields our main algorithm. An outline of this subroutine is presented as Algorithm 1. We first establish a
rigorous sense in which downweighting according to outlier scores τi makes progress: it decreases the weighted
average of the scores while removing more weight from bad points than good.

1Some prior algorithms, e.g. the filter of [1] instead iteratively throw out points suspected to be outliers. However, since
those algorithms are (necessarily) randomized, they can also be viewed as weighting points, where the weight of Xi is the
probability it has not been thrown out. The algorithm we present here can also be implemented by throwing out points in a
randomized fashion – we discuss further in supplementary material.
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Lemma 2.3 (Progress in one round of downweighting, informal). There is a downweighting algorithm which
takes a density matrix U and a mostly good weight vector w and produces a mostly good weight vector w′ by
downweighting points with large score τi = 〈Xi − µ(w), U(Xi − µ(w)〉 such that

∑
w′iτi ≤ 1

3

∑
wiτi so long

as
∑
wiτi � 1. Furthermore, M(w′) �M(w).

Let us give a geometric interpretation to Lemma 2.3: it establishes that if
∑
wiτi = 〈U,M(w)〉 � 1 then

the quadratic form of M(w′) decreases in the directions defined by U , since

〈M(w′), U〉 ≈
∑

w′iτi ≤
1

3

∑
wiτi =

1

3
〈M(w), U〉 . (2)

This guarantee becomes more meaningful as the entropy S(U) increases, because it suggests the quadratic
form of M(w) has decreased in more directions. To make this formal, we appeal to the matrix multiplica-
tive weights framework. DecreaseSpectralNorm applies downweighting iteratively using a sequence of
entropy-maximizing density matrices U1, . . . , UT chosen according to the matrix multiplicactive weights up-
date rule, leading to a series of mostly good weight vectors w1, . . . , wT such that ‖M(wT )‖2 ≤ 3

4‖M(w0)‖2.
We choose

Ut = exp

(
1

‖M(w)‖2

t−1∑
k=0

M(wk)

)/
tr exp

(
1

‖M(w)‖2

t−1∑
k=0

M(wk)

)
, (3)

where w0 = w is the input weight vector, U0 = Id, and wt results from applying the downweighting of
Lemma 2.3 to wt−1 using Ut (if 〈M(wt−1), Ut〉 � 1). The following lemma is a special case of the standard
(local norm) regret bound for matrix multiplicative weights.

Lemma 2.4 (Special case of Theorem 3.1, [18]). For any w0, . . . , wT , if α ≤ 1/‖M(wt)‖2 for all t ≤ T , then∥∥∥∥∥
T−1∑
t=0

M(wt)

∥∥∥∥∥
2

≤
T−1∑
t=0

〈Ut,M(wt)〉+ α

T−1∑
t=0

〈Ut,M(wt)〉 · ‖M(wt)‖2 +
log d

α
. (4)

Now we sketch the analysis of DecreaseSpectralNorm.

Claim 2.5 (Informal). If w = w0 is mostly good, with ‖M(w0)‖2 ≥ 100, then DecreaseSpectralNorm
produces mostly good wT with ‖M(wT )‖2 ≤ 3

4‖M(w)‖2.

Proof sketch. Since M(wt) � M(wt+1) by Lemma 2.3, we have ‖M(wt)‖2 ≤ ‖M(w0)‖2 for all t, and
hence α = 1/‖M(w0)‖2 ≤ 1/‖M(wt)‖2 for all t, so w0, . . . , wT and U0, . . . , UT−1 satisfy the hypotheses
of Lemma 2.4. By our choice of α and M(wT ) �M(wt) for all t, (4) implies

T · ‖M(wT )‖2 ≤

∥∥∥∥∥
T−1∑
t=0

M(wt)

∥∥∥∥∥
2

≤ 2
T−1∑
t=0

〈Ut,M(wt)〉+ ‖M(w0)‖2 · log d .

If 〈Ut,M(wt−1)〉 ≥ ‖M(w0)‖2/3 � 1, then DecreaseSpectralNorm performs downweighting, and by
Lemma 2.3 and (2) (which we establish rigorously in supplemental material), 〈M(wt), Ut〉 ≤ 1

3 〈M(wt−1), Ut〉 ≤
1
3‖M(w0)‖. Otherwise, by hypothesis 〈M(wt), Ut〉 = 〈M(wt−1), Ut〉 ≤ ‖M(w0)‖2/3. Using this bound and

dividing by T , we obtain ‖M(wT )‖2 ≤ ( 2
3 + log d

T )‖M(w0)‖2. Choosing T ≥ 20 log d completes the proof
sketch.

Running time: Our overall algorithm only requires log(nd)O(1) iterations of DecreaseSpectralNorm,
and the latter only requires O(log(d)) iterations of downweighting, so we just have to implement downweight-
ing in nearly-linear time. We show in supplemental material that this can be done by avoiding representing
any of the matrices Ut explicitly in memory: instead, we maintain only low-rank sketches of them. This
leads to some approximation error in computing the QUE scores, but we show that approximations to the
QUE scores suffice for all arguments above.

For remaining technical details and full proofs, see Sections 5-9 of supplemental materials.
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Algorithm 1 DecreaseSpectralNorm

1: Input: X1, . . . , Xn as in Definition 2.2, mostly good weight vector w0.
2: For iteration t = 0, . . . , O(log d), If ‖M(wt)‖2 ≤ 3

4‖M(w0)‖2, output wt and halt. Otherwise, let Ut as
in (4). If 〈Ut,M(wt−1)〉 ≤ 1

3‖M(w0)‖2, let wt+1 = wt. Else let wt+1 be the output of downweighting
from Lemma 2.3 with Ut.

3: Output wT .

3 Outlier detection: algorithm and experimental results

In this section, we empirically evaluate outlier detection using QUE scoring. We must work with data
containing well-defined and known inliers and outliers so that we can compare our results to ground-truth.
We generate such data sets in three distinct ways, leading to three main experiments. (In supplemental
material we also study some outlier-detection data sets appearing in prior work [5].)

Synthetic: We create synthetic data sets in 128 dimensions and 103 − 104 samples with an ε-fraction of
inhomogeneous outliers in k directions by sampling from a mixture of k + 1 Gaussians (1 − ε)N (0, Id) +∑k
i=1 εi(

1
2N (C

√
k/ε · ei, σ2 Id) + 1

2N (−C
√
k/ε · ei, σ2 Id), where e1, . . . , ek are standard basis vectors, with

C ≈ 1 and σ � 1. The outliers are the samples from N (±C
√
k/εei, σ

2 Id). By varying ε, k and the
distribution ε1, . . . , εk of outlier weights, we demostrate in this simplified model how max-entropy outlier
scoring improves on baseline algorithms in the presence of inhomogeneous outliers. We choose the scaling√
k/ε · ei because then standard calculations predict that if εi ≈ ε/k the outliers from N (±C

√
k/εei, σ

2 Id)
will contribute an eigenvalue greater than 1 to the overall empirical covariance.

Mixed – word embeddings: We create a data set consisting of word embeddings drawn from several
sources. Inliers are the 100-dimensional GloVe embeddings ([19]) of the words in a random ≈ 103 word long
section of a novel (we use Sherlock Holmes) and outliers are embeddings of the first paragraphs of k featured
Wikipedia articles from May 2019 [20].

Perturbed – images: We create a data set consisting of CIFAR10 images some of which have artificially-
introduced dead pixels. Inliers are ≈ 4500 random CIFAR images X ∈ {1, . . . , 256}1024. Outliers are ≈ 500
random CIFAR images, partitioned into groups S1, . . . , Sk, such that for each group i a random coordinate
pi ∈ {1, . . . , 1024} and a random value ci ∈ {1, . . . , 256} is chosen and for each X ∈ Si we set Xpi = ci.

Metric: All the methods we evaluate produce a vector of scores τ1, . . . , τn ∈ R. We use the standard
ROCAUC metric to compare these scores to a ground-truth partition S = Sg ∪ Sb into inlier and outlier
sets. ROCAUC(τ1, . . . , τn, Sb, Sg) = Pri∼Sb,j∼Sg

(τi ≥ τj) is simply the probability that a randomly chosen
outlier is scored higher than a random inlier.

Baselines: We compare QUE scoring to the following other scoring rules. `2: τi = ‖Xi − µ‖ is the
distance of Xi to the empirical mean; top eigenvector naive spectral: τi = 〈Xi − µ, v〉2 where v is the top
eigenvector of the empirical covariance; k-nearest neighbors (k-NN) [21, 5] and local outlier factor (LOF)
[22, 5] methods: τi is a function of the distances to its k nearest neighbors; isolation forest and elliptic
envelope: standard outlier detection methods as implemented in scikit-learn [23, 24, 25].

Whitening: Scoring methods based on the projection of data points Xi onto large eigenvectors of the
empirical covariance works best when those eigenvectors correspond to directions in which many outliers lie.
In particular, if Σg, the covariance of Sg, itself has large eigenvalues then such spectral methods perform

poorly. We assume access to a whitening transformation W ∈ Rd×d, which captures a small amount of prior
knowledge about the distribution of inliers Sg. For best performance W should approximate W ∗ = (Σg)

−1/2

since W ∗Xi form an isotropic set of vectors. Of course, to compute W ∗ exactly would require knowing which
points are inliers, but we find that relatively naive approximations suffice. In particular, if a clean dataset
Y1, . . . , Ym whose distribution is similar to the distribution of inliers is available, its empirical covariance can
be used to find a good whitening transformation W . In our synthetic data we use W = Id. In our word
embeddings experiment, we obtain W using the empirical covariance of the embedding of another random
section of Sherlock Holmes. In our CIFAR-10 experiment, we obtain W from the empirical covariance of a
fresh sample of ≈ 5000 randomly chosen images from CIFAR-10.
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Algorithm 2 QUE-Scoring for Outlier Detection

1: Input: dataset X1, . . . , Xn ∈ Rd, optional whitening transformation W ∈ Rd×d, scalar α > 0.
2: Let X ′i = WXi be whitened data, µ = 1

n

∑n
i=1X

′
i and Σ = 1

n

∑d
i=1(X ′i − µ)(X ′i − µ)>.

3: For i ≤ n, let τi = (X ′i
>

exp(αΣ/‖Σ‖2)X ′i)/Tr exp(αΣ/‖Σ‖2). Return τ1, . . . , τn.

Note on α: in both synthetic and real data we find that α = 4 is a good rule-of-thumb choice, consistently
resulting in improved scores over baseline methods.

High-dimensional scaling: Implementing Algorithm 2 by explicitly forming the matrix Σ and perform-
ing a singular value decomposition (SVD) to compute exp(αΣ) is feasible on relatively low-dimensional data
(d ≈ 100). See supplementary material for discussion and results of a nearly-linear time implementation.
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(a) synthetic (b) whitened CIFAR-10 (c) whitened word embeddings

(d) synthetic (e) whitened CIFAR-10 (f) whitened word embeddings

(g) synthetic (h) whitened CIFAR-10 (i) whitened word embeddings

Figure 1: (a-f): We plot the difference between ROCAUC performance of QUE and naive spectral (a-c), `2
scoring (d-f) on all three data sets, as α varies. Error bars represent one empirical standard deviation in 20
trials. Note that in all three cases the mean improvement in ROCAUC score given by QUE is at least one
standard deviation above 0 for a wide range of α. Observe also that in synthetic data (which most closely
parallels theory) the optimal α decreases with increasing number of outlier directions, in accord with the
need to find a higher-entropy solution to (1). (g-i) We plot ROCAUC scores of QUE (with α = 4) and a
variety of other methods as the number of outlier directions increases. Error bars represent one standard
deviation over 3− 4 trials. Number of trials is small due to large running time requirements of Scikit-learn
methods IsolationForest and EllipticEnvelope. The methods ”lof” and ”knn” are based on nearest-neighbor
distances [5]. All except spectral methods perform poorly on synthetic data; as k increases the performance
gap between QUE and naive spectral scoring grows. In all plots ε = 0.2. Experiments were generated on a
quad-core 2.6Ghz machine with 16GB RAM and an NVIDIA P100 GPU.
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Roadmap of supplementary material

Here we provide a quick guide to the rest of the supplementary material. In Part I (Sections 4—9), we give
omitted details to the description, and proof of correctness, of our nearly-linear time robust mean estimation
algorithm. In Part II (Sections 10 and 11), we give additional experimental results and omitted details for
the empirical evaluation of our outlier detection method based on QUE scoring.

Part I: Nearly-linear time robust mean estimation

4 Preliminaries

For two functions f, g, we say f = Õ(g) if f = O(g logc g) for some universal constant c > 0. We similarly

define Ω̃ and Θ̃. For vectors v ∈ Rd, we let ‖·‖2 denote the usual `2 norm, and 〈·, ·〉 denote the usual inner
product between vectors. Let 1m ∈ Rm denote the m-dimensional all-ones vector.

For matrices A,M ∈ Rd×d we let ‖M‖2 denote its spectral norm, we let ‖M‖F denote its Frobenius
norm, and we let 〈M,A〉 = tr(M>A) denote the trace inner product between matrices. For any symmetric
matrix A ∈ Rd×d, let exp(A) denote the usual matrix exponential of A. Finally, for scalars x, y ∈ R, and
any α > 0, we say that x ≈α y if 1

1+αx ≤ y ≤ (1 + α)x.

We say a distribution D over Rd is isotropic if CovX∼D[X] = Id. We say a univariate distribution D
with mean µ is sub-gaussian with variance proxy s2 if

E
X∼D

[
(X − µ)

k
]
≤ E
X∼N (0,s2)

[
Xk
]

for all k even. We say a distribution D over Rd and mean µ is sub-gaussian with variance proxy Σ � I, if
for all unit vectors v, the distribution of 〈v,X − µ〉 is sub-Gaussian with variance proxy v>Σv. Intuitively,
a sub-Gaussian distribution is simply any distribution which concentrates as well as a Gaussian.

4.1 Our results

With this terminology in place, we are now ready to state our main results on robust mean estimation. Our
first result is for robust mean estimation under the assumption of bounded covariance:

Theorem 4.1. Let D be a distribution with mean µ and covariance Σ � I. Let ε > 0 be sufficiently
small, and let δ > 0. Let S be an ε-corrupted set of samples from D of size n. There is an algorithm
QUEScoreFilter(S, δ) which takes S and δ, and outputs µ̂ so that with probability 1− δ − exp(−εn), we
have

‖µ− µ̂‖2 ≤ O

(
√
ε+

√
d

nδ
+

√
d(log d+ log 1/δ)

n

)
.

Moreover, the algorithm runs in time Õ(nd log 1/δ).

We make two observations about this problem. First, it is well-understood (see e.g. [12, 11]) that Ω(
√
ε) is

unavoidable for this problem, no matter how many samples are given. Second, observe that the rate O(
√
d/n)

is necessary for this problem even without corruptions. Thus, up to log factors, and the dependence on δ,
this guarantee is information-theoretically optimal.

We also prove a strong statement for the case of robust mean estimation for sub-gaussian distributions:

Theorem 4.2. Let D be an isotropic sub-gaussian distribution with variance proxy I and mean µ. Let ε > 0
be sufficiently small, and let δ > 0. Let S be an ε-corrupted set of samples from D of size n. There is
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an algorithm s.g.-QUEScoreFilter(S, δ, ε) which takes S, δ, and ε, and outputs µ̂ so that with probability
1− δ, we have

‖µ− µ̂‖2 ≤ O

(
ε
√

log 1/ε+

√
d+ log 1/δ

n

)
.

Moreover, the algorithm runs in time Õ(nd log 1/δ).

It is suspected, based on statistical-query lower bounds, that Ω(ε
√

log 1/ε) error is incurred by any computationally-
efficient algorithm in this setting, although Θ(ε) is the minimax optimal dependence of the error rate on ε

[17, 10]. Moreover, Ω
(√

(d+ log 1/δ)/n
)

is the minimax rate for mean estimation for Gaussians without

noise. Thus, the error guarantees of this algorithm are minimax optimal up to constants and the factor√
log(1/ε).
This algorithm assumes that the distribution is isotropic. There is evidence that such an assumption is

necessary to get error beyond
√
ε using computationally efficient (i.e. poly-time) algorithms [26]. In our

theorem statement above we also assume that the variance proxy is at most I. This is done for simplicity:
it is easily verifiable that our algorithm works (with an appropriate scaling in front of the error guarantee)
if the variance proxy is PSD upper bounded by σ2I for any σ2.

5 Additional technical preliminaries

Before we describe our techniques, we require a few additional algorithmic tools, which we describe here.

5.1 Soft selection of subsets of points

In our presentation of our filtering algorithm for robust mean estimation, it will be convenient for us to
work with a “soft” version of the filter. Instead of wholly removing points that we deem suspicious, we will
maintain a set of weights for each point, and downweight those that we find suspicious. In this section, we
establish notation for dealing with such operations. However, we briefly remark that, as we will explain later
in Appendix A.3, the same results (up to log factors) can be established using “hard” filtering more akin to
the algorithms presented in prior work, e.g. [4].

Throughout this paper, we will let ∆n denote the simplex in n dimensions, and we let

Γn = {w ∈ Rn : wi ≥ 0,
∑

wi ≤ 1} .

For w ∈ Γn, let |w| =
∑
wi be its `1 norm. For w,w′ ∈ Γn, we say w′ ≤ w if w′i ≤ wi for all i = 1, . . . , n. Let

S = {X1, . . . , Xn} be a (multi)-set of n points. For any w ∈ Γn, we let µ(w) = µ(S,w) = 1
|w|
∑n
i=1 wiXi,

and we let

M(w) = M(S,w) =

n∑
i=1

wi(Xi − µ(w))(Xi − µ(w))> .

Typically when the set S is understood, we will omit the dependence on S in the notation. For any set
T ⊆ S, we let µ(T ) = µ(w) where w ∈ Γn is the vector wi = 1/n for i ∈ T and wi = 0 otherwise, and
similarly we let M(T ) = M(w).

5.2 Naive pruning

One primitive we will require will be the ability to removes points which are “obviously” outliers. It is
well-known that there exist randomized nearly-linear time algorithms for achieving this. For completeness
we prove this lemma in Appendix A.
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Lemma 5.1 (folklore). Let ε > 1/2, and let δ > 0. Let S ⊂ Rd be a set of n points so that there exists a
ball B of radius r and a subset S′ ⊆ S so that |S′| ≥ (1 − ε)n, and S′ ⊂ B. Then there is an algorithm
NaivePrune(S, r, δ) which runs in time O(nd log 1/δ) and with probability 1 − δ outputs a set of points
T ⊆ S so that S′ ⊆ T , and T is contained in a ball of radius 4r.

In the case where the output of NaivePrune satisfies the conditions of the lemma, we say that NaivePrune
succeeds.

5.3 The one-dimensional filter

An important algorithmic primitive for us will be an univariate soft outlier removal step. The sub-problem
considered here is as follows: we are given a set of nonegative scores τ1, . . . , τm, with the guarantee that
there is a small subset S ⊆ [m] so that

∑
i∈S τi >

1
2

∑m
i=1 τi, that is, they contribute a majority of the mass

of the points. The goal is to then either downweight (or remove) the overall set of scores scores in such a
way so that more mass from S is removed than from outside of S, or alternatively, more points are removed
from S than from outside S. An algorithm for achieving this via downweighting has already been described
in [12], and a randomized algorithm that achieves the same sorts of guarantees with high probability by
removing points is implicit in the filtering algorithm of [1, 4] (e.g. in Algorithm 3 in Appendix A of [4]). In
this paper, we will require a slight strengthening of these algorithms. We require that not only do we remove
more weight from the bad points than the good points, but we also decrease the overall sum by a constant
factor. We observe that while we will present a method for acheving this via downweighting, one can achieve
the same guarantee (with high probability) by removing points. In the main text, we choose to present the
soft downweighting method for robust mean estimation for simplicity. See Appendix A.3 for details.

Formally, we describe an algorithm 1DFilter and prove the following guarantee for the algorithm.
The algorithm and its analysis are fairly straightforward so we defer the formal descriptions and proofs to
Appendix A.2.

Theorem 5.2. Let η ∈ (0, 1/2), let b ≥ 2η, and let w1, . . . , wm and τ1, . . . , τm be non-negative numbers so
that

∑m
i=1 wi ≤ 1. Let τmax = maxi∈[m] τi. Suppose there exist two disjoint sets Sg, Sb so that Sg ∪Sb = [m],

and moreover,

∑
i∈Sg

wiτi ≤ ησ , where σ =

n∑
i=1

wiτi .

Then 1DFilter(w, τ, b) runs in time O
((

1 + log τmax

bσ

)
m
)

and outputs 0 ≤ w′ ≤ w so that:

• more weight is removed from Sb than Sg, i.e.
∑
i∈Sg

wi − w′i ≤
∑
i∈Sb

wi − w′i, and

• the weighted sum of the τ has decreased, i.e. w′ satisfies

m∑
i=1

w′iτi ≤ bσ . (5)

In particular, note that if b = Ω(1) and τmax/σ ≤ (nd)O(1), then this algorithm runs in nearly linear time.

Randomized outlier removal As mentioned previously, there is also a randomized strategy that avoids
downweighting and achieves the same guarantee with high probability (up to logarithmic factors in runtime).
Our overall robust mean estimation algorithm (for both settings presented in the paper) can be instantiated
using this algorithm rather than 1DFilter. While as far as we know this yields no theoretical improvements
for robust mean estimation (indeed, our analysis of it proves bound which are worse by logarithmic factors
than our analysis of soft downweighting), it is much closer to the practical outlier detection method used in
the experiments in Section 3 and also to prior algorithms presented in [4], and may be of instructive value.
For this reason we describe this algorithm in Appendix A.3.
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5.4 Matrix Multiplicative weights

We will use the following form of the MMW update, which is essentially the same as presented in [18]. In
each iteration t = 0, . . . , T , the player chooses an action Uk ∈ ∆d×d, receives a gain matrix Ft ∈ Rd×d,
and receives reward 〈Fk, Uk〉. Then the player sees Fk. In [18], they demonstrate that if the player plays
according to the entropy regularizer (or equivalently, matrix multiplicative weights), namely,

Uk = exp

(
cI + α

k−1∑
t=0

Ft

)
, (6)

where c is a constant ensuring that tr(Xk) = 1, and α satisfies αFt � I for all 0 = 1, . . . , T − 1, then we have
that for any U ∈ ∆n×n,

T−1∑
t=0

〈Ft, U − Ut〉 ≤ α
T−1∑
t=0

〈Ut, |Ft|〉 · ‖Ft‖2 +
log n

α
. (7)

Here, for any symmetric matrix A =
∑d
i=1 λiviv

>
i , we let |A| denote |A| =

∑d
i=1 |λi|viv>i . Equivalently, by

rearranging terms, and taking a supremum over U of (8), we obtain that the update satisfies∥∥∥∥∥
T−1∑
t=0

Ft

∥∥∥∥∥
2

≤
T−1∑
t=0

〈Ut, Ft〉+ α

T−1∑
t=0

〈Ut, |Ft|〉 · ‖Ft‖2 +
log n

α
. (8)

6 An MMW algorithm for robust mean estimation with bounded
covariance

In this section we describe the algorithm which achieves Theorem 4.1. We first identify a deterministic
condition on the set of inliers under which our algorithm is guaranteed to be correct. It is a very mild
condition: at a high level, it simply states that the empirical mean of the samples is converging to the true
mean, and the empirical covariance is bounded.

Definition 6.1. We say a set of points S is (γ1, γ2)-good with respect to a distribution D with mean µ and
covariance Σ � Id if the following two properties hold:

• ‖µ(S)− µ‖2 ≤ γ1, and

• ‖Cov(S)‖2 ≤ γ2.

The following is a generalization of Lemma A.18 in [4], which states that, with high probability, any set of
i.i.d. points from a distribution with bounded covariance will contain a large set which is good with respect
to that distribution. For completeness we prove this lemma in Appendix B.

Lemma 6.1. Let ε ∈ [0, 1/2), and let n be a positive integer. Let D be a distribution with mean µ and
covariance Σ � Id, and let X1, . . . , Xn be independent draws from D. Then, with probability 1−δ−exp(−εn),
there exists a set S ⊆ {X1, . . . , Xn} so that the following two conditions are simultaneously satisfied:

• |S| ≥ (1− ε)n, and

• S is (γ1, γ2)-good with respect to D, where

γ1 =
1

1− ε
·

(√
2d

nδ
+
√
cε

)
, and γ2 =

1

1− ε
· d(log d+ log 2/δ)

c′εn
, (9)

for some universal constants c, c′ > 0.

In particular, observe that for constant δ and for n = Ω(d log d/ε), we have that γ1 = O(ε) and γ2 = O(1).
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6.1 The good set

Throughout we will let S = Sg ∪ Sb \ Sr, where Sg is (γ1, γ2)-good with respect to D, and |Sb|, |Sr| ≤ ε|S|.
For any w ∈ Γn, we let wg ∈ Γ|Sg| denote the restriction of w to the indices in Sg, and similarly define
wb ∈ Γ|Sb|.

Our set of weights of interest will be slightly different than those considered in prior papers, but morally
captures the same concept, up to issues of reweighting. We will always guarantee that the weights we consider
lie within the following set:

Sn,ε =

{
w ∈ Γn : w ≤ 1

n
1n and

∣∣∣∣ 1n1|Sg| − wg
∣∣∣∣ ≤ ∣∣∣∣ 1n1|Sb| − wb

∣∣∣∣} .

Intuitively, weights in the set Sn,ε are what happens when we remove points from our data set, but ensure
that we always remove at least as much mass from the bad set as we do from the good set.

6.2 Geometric lemmata

We first prove the following sequence of structural lemmata. The first, which is implicit in the earlier work,
and which is in some sense the fundamental geometric fact which guides our algorithmic design, gives an
upper bound on the deviation between the weighted empirical mean of the data set and the true mean of
the distribution in terms of the spectral norm of the weighted covariance of the dataset.

Lemma 6.2. Let S, γ1, γ2 be as above, and let w ∈ Sn,ε. Then

‖µ(w)− µ‖2 ≤
1

1− 2ε
·
(
√
εγ2 + (1 + ε)γ1 + 2

√
ε ‖Σ(w)‖2

)
.

Proof. Let ρ = µ(w)− µ. We have the following sequence of identities:

‖µ(w)− µ‖22 = 〈µ(w)− µ, µ(w)− µ〉

=
1

|w|

n∑
i=1

wi 〈Xi − µ, ρ〉

=
1

|w|

∑
i∈Sg

wi 〈Xi − µ, ρ〉+
∑
i∈Sb

wi 〈Xi − µ, ρ〉



=
1

|w|


∑
i∈Sg

1

n
〈Xi − µ, ρ〉︸ ︷︷ ︸
W1

−
∑
i∈Sg

(
1

n
− wi

)
〈Xi − µ, ρ〉︸ ︷︷ ︸

W2

+
∑
i∈Sb

wi 〈Xi − µ, ρ〉︸ ︷︷ ︸
W3

 .

We now upper bound each term separately. By Cauchy-Schwarz, we have

|W1| ≤ (1− ε)

∥∥∥∥∥∥ 1

(1− ε)n
∑
i∈Sg

Xi − µ

∥∥∥∥∥∥
2

‖ρ‖2

≤ γ1‖ρ‖2 ,

by the goodness of Sg.
We now turn our attention to W2 and W3. Both bounds will follow from the following claim:

Claim 6.3. Let w′, α ∈ Γn be so that |w′| ≤ ε, w′i ≤ 1
n for all i ∈ [n], and w′ ≤ α. Then, for any v ∈ Rd,

we have ∣∣∣∣∣
n∑
i=1

w′i 〈Xi − µ, v〉

∣∣∣∣∣ ≤√ε‖Σ(α)‖2‖v‖2 + ε ‖µ(α)− µ‖2 ‖v‖2 .
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Proof. We have ∣∣∣∣∣
n∑
i=1

w′i 〈Xi − µ, v〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

w′i 〈Xi − µ(α), v〉+ |w′|〈µ(α)− µ, v〉

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

w′i 〈Xi − µ(α), v〉

∣∣∣∣∣+ ε |〈µ(α)− µ, v〉|

≤

∣∣∣∣∣
n∑
i=1

w′i 〈Xi − µ(α), v〉

∣∣∣∣∣+ ε ‖µ(α)− µ‖2 ‖v‖2 .

By Hölder’s inequality, we have(
n∑
i=1

w′i 〈Xi − µ(α), v〉

)2

≤

(
n∑
i=1

(w′i)
2

αi

)
·

(
n∑
i=1

αi 〈Xi − µ(α), v〉2
)

(a)

≤ |w′| ·
n∑
i=1

αi 〈Xi − µ(α), v〉2

(b)

≤ ε‖Σ(α)‖2‖v‖22 .

Here (a) follows since w′i ≤ αi, and (b) follows from the definition of spectral norm, and the assumption on
|w′|. Thus, by taking square roots and combining terms, we have∣∣∣∣∣

n∑
i=1

w′i 〈Xi − µ, v〉

∣∣∣∣∣ ≤√ε‖Σ(α)‖2‖v‖2 + ε ‖µ(α)− µ‖2 ‖v‖2 ,

as claimed.

With this claim, we can now bound W2 and W3. To bound W2, let w′i = 1
n − wi for i ∈ Sg and wi = 0

otherwise, and let αi = 1
n if i ∈ Sg, and 0 otherwise. Then, applying the claim with v = ρ yields that

|W2| ≤
√
ε‖Σ(α)‖2‖ρ‖2 + ε ‖µ(Sg)− µ‖2 ‖ρ‖2 ≤

√
εγ2 · ‖ρ‖2 + εγ1 ‖ρ‖2 .

Similarly, to bound W3, let w′i = wi if i ∈ Sb and w′i = 0 otherwise, and let αi = wi for all i ∈ S. Again,
letting v = ρ, we get that

|W3| ≤
√
ε‖Σ(w)‖2‖ρ‖2 + ε‖ρ‖22 ,

as well. Combining these three bounds, and using the fact that |w| ≤ 1, yields that

‖ρ‖22 ≤
√
εγ2‖ρ‖2 + (1 + ε)γ1‖ρ‖2 + 2

√
ε‖Σ(w)‖2‖ρ‖2 + 2ε‖ρ‖22 .

Simplifying this expression then yields the desired bound on ‖ρ‖2.

We also require the following linear algebraic fact:

Lemma 6.4. Let w′, w ∈ Γn so that w′ ≤ w. Then Σ(w′) � Σ(w).

Proof. We first observe that if w′ ≤ w, then

n∑
i=1

w′i(Xi − µ(w))(Xi − µ(w))> �
n∑
i=1

wi(Xi − µ(w))(Xi − µ(w))> = Σ(w) .
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To complete the argument, observe that

n∑
i=1

w′i(Xi − µ(w))(Xi − µ(w))> =

n∑
i=1

w′i(Xi − µ(w′))(Xi − µ(w′))> + |w′|(µ(w′)− µ(w))(µ(w′)− µ(w))>

�
n∑
i=1

w′i(Xi − µ(w′))(Xi − µ(w′))> = Σ(w′) ,

and so Σ(w′) � Σ(w), as claimed.

6.3 General algorithm description, bounded second moment

In this section we describe the algorithm we would like to run via matrix multiplicative weights, and demon-
strate that it will terminate in a small number of iterations, when given good approximations to the entropic
scores.

The algorithm, which we call QUEScoreFilter , proceeds in epochs, and takes as input a corrupted
dataset S, and a score oracle O. Initially, in epoch s = 0, we let w(0) = 1

n1n. Then, in epoch s, the algorithm

proceeds iteratively as follows. First, approximately compute λ(s) ≈0.1 ‖M(w(s))‖2, and if λ(s) ≤ 100γ2,
then we terminate and output µ(w(s)).

Otherwise, we let w
(s)
0 = w(s). Then, in iteration t = 0, . . . , Ts, we first approximately compute λ

(s)
t ≈0.1

‖M(w
(s)
t )‖2. If λ

(s)
t ≤ 2

3λ
(s)
0 , we terminate the epoch and let w(s+1) = w

(s)
t . Otherwise, we let U

(s)
t be

prescribed by the MMW update with parameter α(s) = 1

1.1·λ(s)
0

, where the loss is given as follows. At time t,

and for all i ∈ [n], we let τ̃
(s)
t,i = O(S,w

(s)
0 , . . . , w

(s)
n ) be the set of scores that the oracle produces. We then

compute
∑
i τ̃

(s)
t,i . If

∑
i τ̃

(s)
t,i ≤ 1

5λ
(s)
0 , then let w

(s)
t+1 = w

(s)
t . Otherwise, let w

(s)
t+1 = 1DFilter(w

(s)
t , τ̃

(s)
t , 1/4).

In either case, the algorithm receives the gain matrix Ft = M(w
(s)
t+1). The formal pseudocode for this

algorithm is given in Algorithm 3.

The score oracles There are two important score oracles for our purposes. The first is the exact score
oracle Oexact, whose output is

τ
(s)
t,i =

(
Xi − µ

(
w

(s)
t,i

))>
U

(s)
t

(
Xi − µ

(
w

(s)
t,i

))
, (10)

where U
(s)
t is as in Algorithm 3, namely,

U
(s)
t = exp

(
c Id−α

t−1∑
i=0

M(w
(s)
i )

)
, (11)

where c is chosen so that tr(U
(s)
t ) = 1.

Filtering using these scores corresponds to the intuition that we are using U
(s)
t as a high entropy certificate.

Ignoring runtime, this set of scores would be the most natural set of scores for the algorithm. However,
computing this score is quite inefficient (polynomial but super-linear). Thus, we also require an approximate

score oracle, which is an oracle Oapprox whose output τ̃
(s)
t,i satisfies that

τ̃
(s)
t,i ≈0.1 τ

(s)
t,i (12)

for all t, i, s, where τ
(s)
t,i is defined in (10) (the choice of 0.1 in the approximation here as well as for λ

(s)
t is

arbitrary; any constant sufficiently small will suffice). In Section 8 we will demonstrate how to construct
such an approximate score oracle in nearly-linear time.
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Algorithm 3 MMW-based filtering method for robust mean estimation with bounded second moments

1: Input: dataset S ⊂ Rd of size n, parameters γ1, γ2, score oracle O
2: Let w(0) = 1

n1n.
3: for epoch s = 0, . . . , O(log κ) do
4: Let λ(s) ≈0.1

∥∥M(w(s))
∥∥
2

5: if λ(s) ≤ 100γ2 then
6: return µ(w(s))
7: end if
8: Let w

(s)
0 = w(s)

9: Let α(s) = 1

1.1·λ(s)
0

10: for iteration t = 0, . . . , O(log d) do

11: Compute λ
(s)
t ≈0.1 ‖M(w

(s)
t )‖2.

12: if λ
(s)
t ≤ 2

3λ
(s)
0 then

13: terminate epoch
14: end if
15: Let U

(s)
t be given by MMW update with parameter α(s)

16: For i = 1, . . . , n, let τ̃
(s)
t,i = O(S,w

(s)
0 , . . . , w

(s)
n )

17: if
∑
i τ̃

(s)
t,i ≤ 1

5λ
(s)
0 then

18: Let w
(s)
t+1 = w

(s)
t .

19: else
20: Let w

(s)
t+1 = 1DFilter(w

(s)
t , τ̃

(s)
t , 1/4).

21: end if
22: Let feedback matrix to MMW update be Ft = M(w

(s)
t+1)

23: end for
24: Let w(s+1) = w

(s)
t

25: end for

6.4 Correctness of QUEScoreFilter

The remainder of this section is dedicated to a proof of correctness of QUEScoreFilter when instantiated
with Oapprox. Formally, we show:

Theorem 6.5. Let D be a distribution with covariance Σ � I and mean µ. Let ε < c, where c is a
universal constant, and let γ1, γ2 > 0. Let S be a dataset so that S = Sg ∪ Sb \ Sr so that Sg is (γ1, γ2)-
good with respect to D, and |Sb|, |Sr| ≤ ε|S|. Suppose moreover that ‖Xi‖2 ≤ κ for all i ∈ S. Then
QUEScoreFilter(S,Oapprox) terminates after at most S = O(log κ) epochs, and outputs a w ∈ Sn,ε so
that

‖µ(w)− µ‖2 ≤ O(
√
εγ2 + γ1) .

Moreover, each epoch runs for at most O(log d) iterations, requires O(log d) calls to Oapprox, and requires

Õ(nd+ n log κ) additional computation.

We first prove correctness. The main lemma is the following per-epoch guarantee:

Lemma 6.6. The following invariants always hold. For all epochs s, we have:

• ws ∈ Sn,ε, and

• If ‖M
(
w(s)

)
‖2 > 100

1.1 γ2, then epoch s finishes after O(log d) iterations, and outputs w(s+1) so that

‖M
(
w(s+1)

)
‖2 ≤ 2

3‖M
(
w(s)

)
‖2.
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We first show how the lemma implies the theorem.

Proof of Theorem 6.5 given Lemma 6.6. We first prove correctness. The bound on the `2 norm of Xi for all
i ∈ S immediately also implies that ‖M(w)‖2 ≤ O(κ2) for all w ∈ Γn, and in particular for w = 1

n1n. By
Lemma 6.6, after S = O(log κ) epochs the algorithm must terminate, and moreover every epoch can run for at
most O(log d) iterations. Lemma 6.6 additionally implies that if w is the output of QUEScoreFilter(S),
then w ∈ Sn,ε, and moreover, ‖Σ(w)‖2 ≤ 110γ2. Therefore, by Lemma 6.2, we have ‖µ(w) − µ‖2 ≤
O(
√
εγ2 + γ1), from which the desired conclusion immediately follows.

We now prove the runtime bound. In every iteration, besides the call the the oracle, the only costly oper-
ations are the approximate top eigenvalue computations and running 1DFilter. However, the approximate
top eigenvalue computations can be done in time Õ(nd) via power method since we only ask for a constant
multiplicative approximation, and the bound on ‖Xi‖2 implies that 1DFilter runs in O(n log κ) time.

We now prove Lemma 6.6.

Proof. Clearly these invariants hold at the beginning of the algorithm. Since in the remainder of the proof
we will only deal with a single epoch s, for conciseness we will omit the superscript. We will require the
following claim:

Claim 6.7. Suppose w ∈ Sn,ε so that ‖M(w)‖2 ≥ 100γ2, and let U ∈ ∆d×d. Let τi = (Xi − µ(w))>U(Xi −
µ(w)), and τ̃i be so that τ̃i ≈0.1 τi for all i. Suppose that λ ≈0.1 ‖M(w)‖2, and

∑n
i=1 τ̃i ≥

1
5λ. Then, if

w′ = 1DFilter(w, τ̃ , 1/4), then w ∈ Sn,ε, and 〈M(w′), U〉 ≤ 0.31 〈M(w), U〉.

Proof. We first show that
∑
i∈Sg

wiτi ≤ c
∑n
i=1 wiτi for some universal constant c ≤ 0.11. Let w̃i = 1

n if

i ∈ Sg and w̃i = 0 otherwise. Then, we have

∑
i∈Sg

wiτi =

〈∑
i∈Sg

wi(Xi − µ(w))(Xi − µ(w))>, U

〉
(a)

≤

〈
n∑
i=1

w̃i(Xi − µ(w))(Xi − µ(w))>, U

〉

=

〈
n∑
i=1

w̃i(Xi − µ(w̃))(Xi − µ(w̃))>, U

〉
+ |w̃| · (µ(w̃)− µ(w))>U(µ(w̃)− µ(w))

(b)

≤ (1− ε) 〈M(w̃), U〉+ ‖µ(w̃)− µ(w)‖22
(c)

≤ 2γ2 + ‖µ(w̃)− µ(w)‖22
≤ 2γ2 + 2‖µ(w̃)− µ‖22 + 2‖µ(w)− µ‖22
(d)

≤ 2γ2 + 2γ21 + 9(γ22 + ε ‖M(w)‖2) <
1

60
‖M(w)‖2

≤ 1.1

12
λ ≤ 1.12

12

n∑
i=1

wiτ̃i , (13)

for ε sufficiently small and ‖M(w)‖2 > 100
1.1 γ2. Here (a) follows since wi ≤ w̃i for i ∈ Sg, (b) follows since

‖U‖2 ≤ 1, (c) follows from ε-goodness of Sg, and (d) follows from ε-goodness of Sg and Lemma 6.2. Therefore

overall we have
∑
i∈Sg

wiτ̃i ≤ 1.13

12

∑n
i=1 wiτ̃i. Thus Theorem 5.2 applies, and w′ satisfies

∑n
i=1 w

′
iτ̃i ≤

1
4

∑n
i=1 wiτ̃i as well as w ∈ Sn,ε. Applying the guarantee that τ̃i = (1± 0.1)τi again yields that

〈M(w′), U〉 =

n∑
i=1

w′iτi ≤ 1.1

n∑
i=1

w′iτ̃i ≤
1.1

4

n∑
i=1

wiτ̃i ≤
1.12

4

n∑
i=1

wiτi =
1.12

4
〈M(w), U〉 ≤ 0.31 〈M(w), U〉 .

This completes the proof of the claim.
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Notice that Claim 6.7 immediately implies that the first invariant w ∈ Sn,ε always holds. We now turn to
proving the second invariant. Let T be the number of iterations that the epoch runs for. Observe that for
all t = 0, . . . , T , we have that M(wt) � M(w0) � 1

αI, and so we are indeed in the setting of the guarantee
in Section 5.4. Thus, by (8), since Ft = M(wt+1), we obtain the following regret bound:∥∥∥∥∥

T−1∑
t=0

M(wt+1)

∥∥∥∥∥
2

≤
T−1∑
t=0

〈M(wt+1), Ut〉+ α

T−1∑
t=0

〈Ut,M(wt+1)〉 ‖M(wt+1)‖2 +
log d

α

≤ 2

T−1∑
t=0

〈M(wt+1), Ut〉+ ‖M(w0)‖2 · log d , (14)

where the second inequality follows by our choice of α. We claim that for all t > 0, we must have
〈M(wt), Ut〉 ≤ 0.31‖M(w0)‖2. There are two cases. If we enter the if statement in Line 18, then

〈Mt, Ut〉 =

n∑
i=1

wiτi ≤ 1.1

n∑
i=1

wiτ̃i ≤
1.1

5
λ ≤ 0.31‖M(w0)‖2 ,

and M(wt+1) = M(wt), so this is clearly satisfied. Otherwise, the desired bound follows by Claim 6.7. Thus
overall, by (14) we have that∥∥∥∥∥

T−1∑
t=0

M(wt)

∥∥∥∥∥
2

≤ T · 0.62‖M(w0)‖2 + ‖M(w0)‖2 · log d . (15)

By Lemma 6.4, we further have that M(wt+1) �M(wt) for all t = 0, . . . , T − 1, and so this implies that

T‖M(wT )‖2 ≤ 0.62‖M(w0)‖2 + ‖M(w0)‖2 · log d .

Simplifying both sides yields that if T = C log n for some sufficiently large constant C, then ‖M(wT )‖2 ≤
2
3‖M(w0)‖2. Thus after O(log d) iterations, we must terminate.

7 An MMW algorithm for robust mean estimation for sub-gaussian
distributions

In this section we give an analog of the result in Section 6 but but in the setting where the distribution D
is subgaussian, and has identity covariance. We again first identify a deterministic condition for the inlers
under which our algorithms will succeed. In this case, we need a stricter analog of ε-goodness. Specifically,
we will require:

Definition 7.1 (Subgaussian goodness). Let D be a distribution with covariance Id and mean µ. We say
a set of points S is (ε, γ1, γ2)-subgaussian good (or (ε, γ1, γ2)-s.g. good for short) with respect to D if there
exist universal constants C1, C2 so that the following inequalities are satisfied:

• ‖µ(S)− µ‖ ≤ γ1 and
∥∥∥ 1
|S|
∑
i∈S (Xi − µ(S)) (Xi − µ(S))

> − Id
∥∥∥
2
≤ γ2, and

• For any subset T ⊂ S so that |T | = 2ε|S|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

Xi − µ

∥∥∥∥∥ ≤ C1 ·
√

log 1/ε , and

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ(S)) (Xi − µ(S))
> − Id

∥∥∥∥∥
2

≤ C2 · log 1/ε .

We have the following concentration inequality:
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Lemma 7.1 (see Lemmata 2.1.8 and 2.1.9 in [11]). Let X1, . . . , Xn ∼ D, where D is subgaussian with
variance proxy 1. Then, for any ε > 0 sufficiently small, we have that S = {X1, . . . , Xn} is (ε, γ1, γ2)-s.g.
good with probability 1− δ, where

γ1 = O

(√
d+ log 1/δ

n

)
, and γ2 = O

(
min

√
d+ log 1/δ

n
,
d+ log 1/δ

n

)
. (16)

In particular, note that when n = Ω(d+log 1/δ
ε2 log 1/ε ), then Lemma 7.1 implies that n i.i.d. samples from an

isotropic sub-gaussian distribution is (ε,O(ε
√

log 1/ε), O(ε
√

log 1/ε))-s.g. good with probability 1− δ. We
will also require the following simple consequences of subgaussian goodness.

Fact 7.2. Let D be an isotropic distribution. Let S be (ε, γ1, γ2)-s.g. good w.r.t. D. Then:

• for all w′ ∈ Γn with w′ ≤ 1
n1n and |w′| ≤ 2ε, and for all unit vectors v ∈ Rd, we have

n∑
i=1

w′i〈Xi − µ, v〉2 ≤ O (ε log 1/ε) .

• if w ∈ Γn satisfies w ≤ 1
n1n and

∣∣ 1
n1n − w

∣∣ ≤ 2ε, then∥∥∥∥∥
n∑
i=1

wi (Xi − µ) (Xi − µ)> − Id

∥∥∥∥∥
2

≤ γ2 + γ21 +O(ε log 1/ε) , and (17)∥∥∥∥∥
n∑
i=1

wi (Xi − µ(w)) (Xi − µ(w))> − Id

∥∥∥∥∥
2

≤ γ2 + 4γ21 +O(ε log 1/ε) . (18)

Proof. We first prove the first claim. Let w′′ ∈ Γn be anything so that w′ ≤ w′′ ≤ 1
n1n and |w′′| = ε. Then

since all quantities on the LHS of the expression are nonnegative, we have that

n∑
i=1

w′i〈Xi − µ, v〉2 ≤
n∑
i=1

w′′i 〈Xi − µ, v〉2 . (19)

Now let A = {w′′ ∈ Γn : |w′′| = ε}. This set is clearly convex, and moreover, by inspection, the vertices of
A are exactly given by 1

n1T where |T | = 2εn. Thus, by convexity, the maximum of the RHS of (19) over
w′′ ∈ A is obtained by w′′ = 1

n1T for some T with |T | = 2εn. But then we have

1

n

∑
i∈T
〈Xi − µ, v〉2 = 2ε · 1

|T |
∑
i∈T

(
〈Xi − µ, v〉2 − 1

)
+ ε

≤ 2ε

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ) (Xi − µ)
> − Id

∥∥∥∥∥
2

+ ε

≤ O(ε log 1/ε) ,

by the s.g.-goodness of S. This completes the proof of the first bullet point.
We now turn our attention to the second claim. We have that∥∥∥∥∥
n∑
i=1

wi (Xi − µ) (Xi − µ)> − Id

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

1

n
(Xi − µ) (Xi − µ)> − Id +

n∑
i=1

(
1

n
− wi

)
(Xi − µ) (Xi − µ)>

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑
i=1

1

n
(Xi − µ) (Xi − µ)> − Id

∥∥∥∥∥
2

+O(ε log 1/ε) ,
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by the first claim. Further expanding, we have∥∥∥∥∥
n∑
i=1

1

n
(Xi − µ) (Xi − µ)> − Id

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

1

n
(Xi − µ(S)) (Xi − µ(S))> − Id +|w| (µ(S)− µ) (µ(S)− µ)

>

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑
i=1

1

n
(Xi − µ(S)) (Xi − µ(S))> − Id

∥∥∥∥∥
2

+ ‖µ(S)− µ‖22

≤ γ2 + γ21 .

Putting it all together yields (17). To prove (18), simply observe that∥∥∥∥∥
n∑
i=1

wi (Xi − µ) (Xi − µ)> −
n∑
i=1

wi (Xi − µ(w)) (Xi − µ(w))>

∥∥∥∥∥
2

= |w|
∥∥∥(µ(w)− µ) (µ(w)− µ)

>
∥∥∥
2

≤ O(γ21) +O(ε log(1/ε)) .

In the last step we have used the definition of (ε, γ1, γ2)-s.g. goodness and convexity.

As a result, we also have the following tail bound on mean shifts caused by small subsets of points:

Corollary 7.3. Let D be an isotropic distribution, and let Let S be (ε, γ1, γ2)-s.g. good w.r.t. D. Then:

• for all w′ ∈ Γn with w′ ≤ 1
n1n and |w′| ≤ 2ε, we have∥∥∥∥∥

n∑
i=1

w′i (Xi − µ)

∥∥∥∥∥
2

≤ O
(
ε
√

log 1/ε
)
, and

• if w ∈ Γn satisfies w ≤ 1
n1n and

∣∣ 1
n1n − w

∣∣ ≤ 2ε, then

‖µ(w)− µ‖2 ≤
1

1− ε

(
γ1 +O

(
ε
√

log 1/ε
))

.

Proof. We first prove the first claim. Fix any unit vector v ∈ Rd. Then we have(
n∑
i=1

w′i〈Xi − µ, v〉

)2
(a)

≤ |w′|
n∑
i=1

w′i〈Xi − µ, v〉2

(b)

≤ O(ε2 log 1/ε) ,

where (a) follows from Cauchy-Schwarz, and (b) follows from Fact 7.2. By taking square roots and a
supremum over all unit vectors v, we obtain the desired conclusion.

We now prove the second claim. We expand

|w| ‖µ(w)− µ‖2 =

∥∥∥∥∥
n∑
i=1

wi (Xi − µ)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

1

n
(Xi − µ) +

n∑
i=1

(
1

n
− wi

)
(Xi − µ)

∥∥∥∥∥
2

≤ γ1 +O(ε
√

log 1/ε) ,

where the last line follows from subgaussian goodness, and applying the first claim with w′i = 1
n − wi.
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7.1 Mean deviations to moment bounds

As before, we will require a lemma which relates the mean shift caused by a small fraction of points to
spectral deviations. However, because in this case we will assume that our data is subgaussian, we will be
able to prove stronger statements, which will in turn allow us to achieve much better error. We first record
the following simple fact, which states that if we have a set of weights that puts almost all of its mass on a
good set, then the restriction of that set of weights to the good set satisfies the conditions of the lemmata
proved in the above section.

Fact 7.4. Let ε < 1/2, and suppose S = Sg ∪ Sb \ Sr, where Sg is (ε, γ1, γ2)-s.g. good, and |Sb|, |Sr| ≤ ε|S|.
Let w ∈ Sn,ε. Then wg ≤ 1

|Sg|1Sg
and

∣∣∣ 1
|Sg|1Sg

− wg
∣∣∣ ≤ 2ε.

We first show that, no matter what, the smallest eigenvalue of the empirical covariance we choose cannot be
too small. Formally:

Lemma 7.5. Let γ1, γ2 > 0. Suppose S = Sg∪Sb \Sr, where Sg is (ε, γ1, γ2)-s.g. good, and |Sb|, |Sr| ≤ ε|S|.
Let w ∈ Sn,ε. Then ∑

i∈Sg∩S
wi (Xi − µ(w)) (Xi − µ(w))

> � (1− ξ) Id ,

where ξ = γ2 + 2γ21 +O(ε log 1/ε)).

Proof. Let w′ ∈ Sn,ε be defined by w′i = wi if i ∈ Sg ∩ S and w′i = 0 otherwise. By Lemma 6.4, we know
that ∑

i∈Sg∩S
wi (Xi − µ(w)) (Xi − µ(w))

> �
∑

i∈Sg∩S
wi (Xi − µ(w′)) (Xi − µ(w′))

>

�
(
1−

(
γ2 + 2γ21 +O(ε log 1/ε)

))
Id ,

by 18 of Fact 7.2.

We now show the following:

Lemma 7.6. Let γ1, γ2 > 0. Suppose S = Sg∪Sb \Sr, where Sg is (ε, γ1, γ2)-s.g. good, and |Sb|, |Sr| ≤ ε|S|.
Let w ∈ Sn,ε, and let λ = ‖M(wt)− Id‖2. Then

‖µ(w)− µ‖2 ≤
1

1− ε
·
(

2γ1 +
√
ε(λ+ γ2) +O(ε

√
log 1/ε)

)
.

Before we prove this lemma, observe that if γ = O(ε
√

log 1/ε) and γ2 = O(ε log 1/ε) and ε ≤ 1/2 then the

RHS of the lemma simplifies to O(ε
√

log 1/ε).

Proof of Lemma 7.6. Let ρ = µ(w)− µ. As before, we have the following sequence of identities:

|w| · ‖µ(w)− µ‖22 = |w| · 〈µ(w)− µ, ρ〉

=

n∑
i=1

wi 〈Xi − µ, ρ〉

=
∑

i∈Sg∩S
wi 〈Xi − µ, ρ〉︸ ︷︷ ︸
W0

+
∑
i∈Sb

wi 〈Xi − µ, ρ〉︸ ︷︷ ︸
W1

.
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We treat the two terms on the RHS separately. We first consider W0. We continue expanding, and observe:∣∣∣∣∣∣
∑

i∈Sg∩S
wi 〈Xi − µ, ρ〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i∈Sg∩S

1

n
〈Xi − µ, ρ〉+

∑
i∈Sg∩S

(
1

n
− wi

)
〈Xi − µ, ρ〉

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈Sg

1

n
〈Xi − µ, ρ〉

∣∣∣∣∣∣+

∣∣∣∣∣∑
i∈Sr

1

n
〈Xi − µ, ρ〉

∣∣∣∣∣+

∣∣∣∣∣∣
∑

i∈Sg∩S

(
1

n
− wi

)
〈Xi − µ, ρ〉

∣∣∣∣∣∣
(a)

≤

∣∣∣∣∣∣
∑
i∈Sg

1

n
〈Xi − µ, ρ〉

∣∣∣∣∣∣+O
(
ε
√

log 1/ε
)
‖ρ‖2

(b)

≤
(
γ1 +O

(
ε
√

log 1/ε
))
‖ρ‖2 , (20)

where (a) follows from two applications of Corollary 7.3, and (b) follows from Cauchy-Schwarz and subgaus-
sian goodness.

We now turn our attention to bounding W1. We have

|W1| ≤

∣∣∣∣∣∑
i∈Sb

wi〈Xi − µ(w), ρ〉

∣∣∣∣∣+
∑
i∈Sb

wi‖ρ‖22

≤

∣∣∣∣∣∑
i∈Sb

wi〈Xi − µ(w), ρ〉

∣∣∣∣∣+ ε ‖ρ‖22 .

Focusing in on the first term in the RHS, we have(∑
i∈Sb

wi〈Xi − µ(w), ρ〉

)2
(a)

≤

(∑
i∈Sb

wi

)∑
i∈Sb

wi〈Xi − µ(w), ρ〉2

=

(∑
i∈Sb

wi

)∑
i∈Sb

wi

(
〈Xi − µ(w), ρ〉2 − ‖ρ‖22

)
+

(∑
i∈Sb

wi

)2

‖ρ‖22

(b)

≤ ε
∑
i∈Sb

wi
(
〈Xi − µ(w), ρ〉2 − 1

)
+ ε2 ‖ρ‖22 , (21)

where (a) follows from Cauchy-Schwarz, and (b) follows since w places at most ε mass on Sb. Now observe
that∣∣∣∣∣∑

i∈Sb

wi
(
〈Xi − µ(w), ρ〉2

)∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
i=1

wi
(
〈Xi − µ(w), ρ〉2

)
−

∑
i∈Sg∩S

wi
(
〈Xi − µ(w), ρ〉2

)∣∣∣∣∣∣
≤ ‖M(wt)− Id‖2 ‖ρ‖

2
2 +

∣∣∣∣∣∣
∑

i∈Sg∩S
wi

(
〈Xi − µ(w), ρ〉2 − ‖ρ‖22

)∣∣∣∣∣∣
≤ ‖M(wt)− Id‖2 ‖ρ‖

2
2 +

∥∥∥∥∥∥
∑

i∈Sg\Sr

wi (Xi − µ(w)) (Xi − µ(w))
> − Id

∥∥∥∥∥∥
2

‖ρ‖22

≤
(
‖M(wt)− Id‖2 + γ2 + 2γ21 +O(ε log 1/ε)

)
‖ρ‖22 ,

by Fact 7.2, where we take the convention that wi = 0 for i ∈ Sr. Hence, combining terms, recalling the
definition of λ = ‖M(wt)− Id‖2, and taking square roots, we have

|W1| ≤
(√

ε(λ+ γ2) + γ1
√

2ε+O
(
ε
√

log 1/ε
))
· ‖ρ‖2 + ε ‖ρ‖22 .
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Combining this with (20) yields

‖ρ‖22 ≤ |W0|+ |W1|

≤
(

2γ1 +
√
ε(λ+ γ2) +O(ε

√
log 1/ε)

)
‖ρ‖2 + ε ‖ρ‖22 .

Solving for ‖ρ‖2 yields the desired claim.

7.2 Algorithm description

The algorithm is quite similar to the algorithm presented in Section 6 for the bounded covariance case. The
formal pseudocode is presented in Algorithm 4. For any w ∈ Γn, let µ(w) and M(w) be as in Section 6.
However, we will require a slightly stronger notion of score oracle than before.

Recall that before, given a dataset S, and a sequence of weights w0, . . . , wt−1, the score oracle is asked to
produce multiplicative approximations to τt,i where τt,i is defined as (10). One consequence of this is that

this allows us to produce multiplicative approximations to
〈
M(w

(s)
t ), U

(s)
t

〉
=
∑n
i=1 wt,iτt,i. However, we

will require multiplicative approximations to
〈
M(w

(s)
t )− Id, U

(s)
t

〉
, which cannot be obtained black-box via

multiplicative approximations to the original scores.
To rectify this, we say that an algorithm O∗ is an augumented score oracle if it takes a dataset S and a

sequence of weights w0, . . . , wt−1, and outputs τ̃t,i for all i = 1, . . . , n, but also an overall score qt which is

intended to approximate
〈
M(w

(s)
t )− Id, U

(s)
t

〉
.

Given S and such an oracle O∗, the algorithm again proceeds in epochs. Initially, we let w(0) = 1
n1n.

In epoch s = 0, . . . , L − 1, we proceed as follows. First, compute λ(s) ≈0.1

∥∥M(w(s))− Id
∥∥
2
. If λ(s) ≤

O
(
γ2 + γ1 + γ21 + ε log 1/ε

)
, we terminate and output µ(w(s)).

Otherwise, we let w
(s)
0 = ws. Then, in iteration t = 0, . . . , Ts − 1, we first (approximately) compute

λ
(s)
t ≈0.1 ‖M(w

(s)
t ) − Id ‖2. If λ

(s)
t ≤ 1

2λ
(s)
0 , we terminate and let w(s+1) = w

(s)
t . Otherwise, we let U

(s)
t be

prescribed by the MMW update with parameter α = 1/(1.1 ·λ(()s)). Then, produce the gain matrix is given
as follows.

At time t, run O∗ given S and the sequence of weights w
(s)
0 , . . . , w

(s)
t−1 to obtain scores τ̃

(s)
t,i as well as an

overall score q̃
(s)
t . Then, check if q̃

(s)
t ≤ 1

5λ
(s)
0 . If so, then we let w

(s)
t+1 = w

(s)
t .

Otherwise, sort the τ̃
(s)
t,i in descending order. WLOG assume that τ̃

(s)
t,1 ≥ τ̃

(s)
t,2 ≥ . . . ≥ τ̃

(s)
t,n . Let m be the

smallest integer so that
∑
i≤m w

(s)
t,i ≥ 2ε. Then, run 1DFilter on τ̃

(s)
t,1 , . . . , τ̃

(s)
t,m with corresponding weights

w
(s)
t,1 , . . . , w

(s)
t,m, to obtain a new set of weights w′1, . . . , w

′
m, and let w

(s)
t+1,i be defined by

w
(s)
t+1,i =

{
w

(s)
t,i if i > m;

w′i if i ≤ m.
(22)

That is, we find the largest 2ε-percentile of the scores weighted by the current weights, and run the univariate
filter on these set of weights, leaving the other weights unchanged. Finally, we output the gain matrix

F
(s)
t = M(w

(s)
t+1)− Id. Notice that this matrix may not be PSD.

The score oracles The exact score oracle O∗exact would, given S, and given w
(s)
0 , . . . , w

(s)
t−1, would output

scores τ
(s)
t,i given by (10) with U

(s)
t as given by Algorithm 4. The exact score oracle would also output

q
(s)
t =

〈
M(w

(s)
t )− Id, U

(s)
t

〉
. (23)

Observe that the fact that the F
(s)
t includes a negative identity term does not affect these scores at all, and

indeed we can take U
(s)
t to be as in (11), since the parameter c is chosen in any case to normalize U

(s)
t to

have trace 1.
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Algorithm 4 MMW-based filtering method for robust mean estimation for subgaussian distributions

1: Input: dataset S ⊂ Rd of size n, parameters γ1, γ2, augmented score oracle O
2: Let C > 0 be a sufficiently large universal constant.
3: Let w(0) = 1

n1n.
4: for epoch s = 0, . . . , O(log κ) do
5: Let λ(s) ≈0.1

∥∥M(w(s))− Id
∥∥
2

6: if λ(s) ≤ C ·
(
γ2 + γ1 + γ21 + ε log 1/ε

)
then

7: return µ(w(s))
8: end if
9: Let w

(s)
0 = w(s)

10: Let α(s) = 1

1.1·λ(s)
0

11: for iteration t = 0, . . . , O(log d) do

12: Compute λ
(s)
t ≈0.1 ‖M(w

(s)
t )− Id ‖2.

13: if λ
(s)
t ≤ 1

2λ
(s)
0 then

14: terminate epoch
15: end if
16: Let U

(s)
t be given by MMW update with parameter α(s)

17: For i = 1, . . . , n, let τ̃
(s)
t,i , q̃

(s)
t = O(S,w

(s)
0 , . . . , w

(s)
n )

18: if q̃
(s)
t ≤ 1

1.1·5λ
(s)
0 then

19: Let w
(s)
t+1 = w

(s)
t .

20: else
21: Sort the τ̃

(s)
t,i in descending order.

22: WLOG assume that τ̃
(s)
t,1 ≥ τ̃

(s)
t,2 ≥ . . . ≥ τ̃

(s)
t,n

23: Let m be the smallest integer so that
∑
i≤m w

(s)
t,i ≥ 2ε.

24: Let w′ = 1DFilter((w
(s)
t,1 , . . . , w

(s)
t,m), (τ̃

(s)
t,1 , . . . , τ̃

(s)
t,m), 1/4).

25: Let w
(s)
t+1 be as defined in (22).

26: end if
27: Let feedback matrix to MMW update be Ft = M(w

(s)
t+1)

28: end for
29: Let w(s+1) = w

(s)
t

30: end for

As before, we cannot access these exact scores in nearly-linear time, so instead we ask for approximations.

Specifically, we will assume an approximate augmented score oracle O∗approx, which given S and w
(s)
0 , . . . , w

(s)
t−1,

output scores τ̃
(s)
t,i so that τ̃

(s)
t,i ≈0.1 τ

(s)
t,i for all i = 1, . . . , n, as well as q̃

(s)
t satisfying∣∣∣q̃(s)t − qt∣∣∣ ≤ 0.1 · qt + 0.05 · ‖M(wt)− Id‖2 .

As before, the choice of constants here is arbitrary, and any constants sufficiently small will work. In Section 8
we construct such an approximate augmented score oracle in nearly-linear time.

7.3 Correctness of s.g.-QUEScoreFilter

The rest of this section is dedicated to the proof of the following theorem:

Theorem 7.7. Let D be a subgaussian isotropic distribution on Rd with mean µ. Let ε < c, where c is a
universal constant, and let γ1, γ2 > 0. Let S be a dataset, |S| = n, so that S = Sg ∪ Sb \ Sr so that Sg is
(ε, γ1, γ2)-s.g. good with respect to D, and |Sb|, |Sr| ≤ ε|S|. Suppose that ‖Xi‖2 ≤ κ1 for all i = 1, . . . , n,
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and moreover
∥∥M( 1

n1n)− Id
∥∥ ≤ O(ε log 1/ε+εκ2). Then s.g.-QUEScoreFilter(S, ε,Oapprox) terminates

after at most O(log κ2) epochs, and outputs a w ∈ Sn,ε so that

‖µ(w)− µ‖2 ≤ O
(
γ1 + ε

√
log 1/ε+

√
ε(γ1 + γ2)

)
.

Moreover, each epoch runs for at most O(log d) iterations, requires O(log d) calls to Oapprox, and requires

Õ(nd+ n log κ1) additional computation.

Our main lemma is the following:

Lemma 7.8. The following invariants always hold. There exists some universal constant C > 0 so that for
all epochs s, we have:

• w(s) ∈ Sn,ε, and

• If ∥∥∥M(w(s))− Id
∥∥∥
2
> C ·

(
γ2 + γ1 + γ21 + ε log 1/ε

)
,

then epoch s terminates after O(log d) iterations, and outputs w(s+1) so that
∥∥M(w(s))− Id

∥∥
2
≤

3
4

∥∥M(w(s))− Id
∥∥
2
.

We first demonstrate how this lemma proves Theorem 7.7.

Proof of Theorem 7.7 given Lemma 7.8. By our condition on M( 1
n1n), after at most s = O(log κ2) itera-

tions, we must have that ∥∥∥M(w(s))− Id
∥∥∥
2
≤ C ·

(
γ2 + γ1 + γ21 + ε log 1/ε

)
.

Since w(s) ∈ Sn,ε, Lemma 7.6 implies that for ε < c sufficiently small, we have

‖µ(w)− µ‖2 ≤ O
(
γ1 + ε

√
log 1/ε+

√
ε(γ1 + γ2)

)
,

as claimed.
We now turn to bounding the runtime. As in Theorem 6.5, it is clear that we make at most log d calls

to the oracle every epoch, and 1DFilter runs in time O(n log κ1). Moreover, the approximate eigenvalue

computations can still be done in Õ(nd) time since we may run power method on M(w
(t)
s ) − Id, as we can

evaluate matrix-vector multiplications against this matrix in O(nd) time. This completes the proof.

The remainder of the section is dedicated to the proof of this lemma. As in the previous section, for
simplicity of notation, as we will only consider a fixed epoch s, we will drop the superscripts.

The proof of Lemma 7.8 breaks down into two parts. First, we will show that assuming we have not yet
made sufficient progress, we remain in the regime where the filter is guaranteed to make progress, i.e., the
majority of the mass of the τi are from bad points. This is captured in the following lemma:

Lemma 7.9. At time t, suppose that 〈Mt − Id, Ut〉 > 1
1.1·5λ0. Then wt+1 ∈ Sn,ε and 〈Ft, Ut〉 ≤ 1

4 〈Ft−1, Ut〉.

Then, we will show that this implies that the regret bounds of MMW guarantee that we make constant
progress in logarithmically many iterations:

Lemma 7.10. Suppose for all t = 0, . . . , T−1, Lemma 7.9 holds, where T = O(log d). Then, ‖M(wT )− Id‖2 ≤
0.63 · ‖M(w0)− Id‖.
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Proof of Lemma 7.9. Recall that m was chosen to be the 2ε-percentile of the scores under the weighting
given by w, and as before, for simplicity assume that the τ̃t,i are in decending order. The main work in
this proof will be to show that the scores τ̃t,1, . . . , τ̃t,m and weights wt,1, . . . , wt,m satisfy the conditions of
Theorem 5.2.

The condition that 〈Mt − Id, Ut〉 > 1
1.1·5λ0 implies that in this case, we will run the univariate filter. Let

S′g = Sg ∩ [m] and let S′b = Sb ∩ [m], and let w′g and w′b the restriction of wt to S′g and S′b, respectively.
Observe that

∑
i∈S′b

wi ≤
∑
i∈Sb

wi ≤ ε, and therefore
∑
i∈S′g

wi ∈ [ε, 2ε]. We then have

∑
i∈S′g

wt,iτt,i =
∑
i∈S′g

wt,i

〈
(Xi − µ(wt)) (Xi − µ(wt))

>
, Ut

〉
(a)

≤ 2
∑
i∈S′g

wt,i

〈
(Xi − µ) (Xi − µ)

>
, Ut

〉
+ 2|w′g|

〈
(µ− µ(wt))(µ− µ(wt))

>, Ut
〉

(b)

≤ O(ε log 1/ε) + 2|w′g|
〈
(µ− µ(wt))(µ− µ(wt))

>, Ut
〉

≤ O(ε log 1/ε) + 4ε ‖µ− µ(wt)‖22
(c)

≤ O(ε log 1/ε) + 4ε
(
γ1 +O(ε

√
log 1/ε) +

√
ε(λt + γ2)

)2
≤ O(ε log 1/ε) + 8εγ1 + 8ε2(λt + γ2)

≤ 1

30
〈M(wt)− Id, Ut〉 . (24)

where (a) follows since for any vectors x, y, z, we have (x− y)(x− y)> � 2(x− z)(x− z)>+ 2(y− z)(y− z)>,
(b) follows from Fact 7.2, (c) follows from Lemma 7.6, and the last line follows from our assumption on
〈M(wt)− Id, Ut〉. From this we conclude that

∑
i∈S′g

wt,iτ̃t,i ≤ 1
29 〈M(wt)− Id, Ut〉.

Note that as a consequence of this, we have that τ̃t,m ≤ O(log 1/ε) + 8εγ1 + 8ε(λt + γ2), since that is an
upper bound on the average value of the τ̃t,i for i ∈ S′g, as |w′g| ≥ ε.

We now turn to lower bound the contribution from S′b. First observe that∑
i∈Sb

wiτt,i =
∑
i∈Sb

wt,i

〈
(Xi − µ(wt)) (Xi − µ(wt))

>
, Ut

〉
=
∑
i∈Sb

wt,i

〈
(Xi − µ(wt)) (Xi − µ(wt))

> − Id, Ut

〉
− |wb|

= 〈M(wt)− Id, Ut〉 −
∑

i∈Sg∩S
wt,i

〈
(Xi − µ(wt)) (Xi − µ(wt))

> − Id, Ut

〉
− |wb|

(a)

≥ 〈M(wt)− Id, Ut〉 −
(
γ2 + 2γ21 +O(ε log 1/ε)

)
≥ 99

100
〈M(wt)− Id, Ut〉 ,

where (a) follows from Fact 7.2 and since |wb| ≤ ε, and the last inequality follows by our assumption on
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〈M(wt)− Id, Ut〉. Therefore∑
i∈S′b

wiτt,i =
∑
i∈Sb

wiτt,i −
∑

i∈Sb\S′b

wiτt,i

≥ 99

100
〈M(wt)− Id, Ut〉 −

∑
i∈Sb\S′b

wiτt,i

(a)

≥ 99

100
〈M(wt)− Id, Ut〉 − 1.21 · |wb| (O(log 1/ε) + 8εγ1 + 8ε(λt + γ2))

(b)

≥ 49

50
〈M(wt)− Id, Ut〉 , (25)

where (a) follows since τt,i ≤ 1.1τ̃t,i ≤ ·1.12 · τt,m for all i ∈ Sb \ S′b, and (b) follows from our assumption on
〈M(wt)− Id, Ut〉.

Equations (24) and (25) together imply that our set of scores in this instance will be in the setting of
Theorem 5.2. Thus Theorem 5.2 guarantees that the univariate filter outputs a set of weights w′1, . . . , w

′
m

so that
∑m
i=1 w

′
iτ̃t,i ≤ 1

5

∑m
i=1 wt,iτ̃t,i. Notice that in particular this implies that wt+1 ∈ Sn,ε, which proves

one of the claims in the Lemma. To complete the proof of the lemma, observe that

〈M(wt)− Id, Ut〉 − 〈Ft, Ut〉 =

m∑
i=1

(wt,i − w′t) (τt,i − 1)

(a)

≥
m∑
i=1

(wt,i − w′t)τt,i − 2ε

(b)

≥ 4

1.21 · 5

m∑
i=1

wt,iτt,i − 2ε

(c)

≥ 4

1.21 · 5
49

50
〈M(wt)− Id, Ut〉 − 2ε

(d)

≥ 0.63 〈M(wt)− Id, Ut〉 ,

where (a) follows since m is the 2ε-percentile, (b) follows from the guarantee of Theorem 5.2, (c) follows
from (25), and (d) follows from our assumption on λt. Rearranging terms completes the proof.

We now show that this is enough to guarantee Lemma 7.10, which guarantees we make constant multiplicative
progress in every epoch.

Proof of Lemma 7.10. Observe that if we terminate prematurely we clearly satisfy the lemma. Thus we may
assume we do not terminate until timestep T − 1. Lemma 7.9 then implies that no matter which update we
do at time t for t = 0, . . . , T − 1, we have the guarantee that

〈Ft, Ut〉 ≤ 0.63 〈Ft−1, Ut〉 ≤ 0.63 〈F0, Ut〉 ≤ 0.63 ‖M(w0)− Id‖2 . (26)

Moreover, by Lemma 6.4, we have that M(wt) − Id � M(w0) − Id, and hence 1
α (M(wt)− Id) � I by our

choice of α. Therefore by our regret bound, we have∥∥∥∥∥
T−1∑
i=0

(M(wt)− Id)

∥∥∥∥∥
2

≤
T−1∑
t=0

〈Ut,M(wt)− Id〉+
T−1∑
u=0

〈Ut, |M(wt)− Id|〉
‖M(wt)− Id‖2
‖M(w0)− Id‖2

+log(n)·‖M(w0)− Id‖2 .

(27)
By Lemma 7.5, we know that for all t = 0, . . . , T − 1, we must have

M(wt)− Id � −
(
γ2 + 2γ21 +O(ε log 1/ε)

)
Id . (28)
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This will allow us to simplify a number of expressions. In particular, since M(wt)− Id � M(w0)− Id, this
implies that all positive eigenvalues of M(wt) − Id are smaller than λ0, and (28) implies that all negative
eigenvalues are bounded in absolute value by λ0, by our assumption on λ0. Hence

‖M(wt)− Id‖2
‖M(w0)− Id‖2

≤ 1 . (29)

Another implication is that

|M(wt)− Id| �M(wt)− Id +2
(
γ2 + 2γ21 +O(ε log 1/ε)

)
Id ,

and hence
〈Ut, |M(wt)− Id|〉 ≤ 〈Ut,M(wt)− Id〉+ 2

(
γ2 + 2γ21 +O(ε log 1/ε)

)
. (30)

Finally, we observe that (28) and Lemma 6.4 together imply that either

‖M(wT )− Id‖2 ≤ γ2 + 2γ21 +O(ε log 1/ε) or (31)∥∥∥∥∥
T−1∑
i=0

(M(wt)− Id)

∥∥∥∥∥
2

≥ T · ‖M(wT−1)− Id‖2 . (32)

In the case of (31), we are clearly done, so we may assume that we are in the case of (32). Thus, plugging
in (29), (30), and (32) into (27), and dividing by T , we obtain

‖M(wT−1)− Id‖2 ≤
2

T

T−1∑
i=0

(〈Ut,M(wt)− Id〉) + 2
(
γ2 + 2γ21 +O(ε log 1/ε)

)
+

log n

T
‖M(w0)− Id‖2

(a)

≤
(

1

2
+

log n

T

)
‖M(w0)− Id‖+ 2 + 2

(
γ2 + 2γ21 +O(ε log 1/ε)

)
(b)

≤ 3

4
‖M(w0)− Id‖2 ,

where (a) follows from (26), and (b) follows since T = Θ(log d), and since ‖M(w0)− Id‖2 is a large constant
factor larger than γ2 + 2γ21 +O(ε log 1/ε), by assumption. This completes the proof.

8 Fast approximate score oracles

In this section we describe how to implement the approximate score oracles and approximate augmented
score oracles in nearly-linear time. Recall that an approximate score oracle takes as input a set of points
S ⊂ Rd of size n, and a sequence of weights w0, . . . , wt−1, wt, and computes τ̃t ∈ Rn, where for all i = 1, . . . , n
we have τ̃t,i ≈0.1 τt,i, where

τt,i = (Xi − µ(wt))
>
Ut (Xi − µ(wt))

>
, (33)

where

Ut = exp

(
c Id−α

t−1∑
i=0

M(wi)

)
=

exp
(
−α

∑t−1
i=0M(wi)

)
tr exp

(
−α

∑t−1
i=0M(wi)

) ,
and α > 0 is a parameter. Additionally, recall that in Section 7 we additionally require that the score oracle
be able to produce q̃t so that

|q̃t − qt| ≤ 0.1 · qt + 0.05 · ‖M(wt)− Id‖2 ,where qt = 〈M(wt)− Id, Ut〉 . (34)

Our main result in this section is the following, which says that it is possible to achieve such approximations
with high probability in nearly linear time:
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Lemma 8.1. Let S = {X1, . . . , Xn} ⊆ Rd, let δ > 0, and let w0, . . . , wt be as above. Then there is
an algorithm ApproxScores(S,w0, . . . , wt, δ) which outputs τ̃t,i and q̃t so that with probability 1 − δ, we
have τ̃t,i ≈0.1 τt,i for all i = 1, . . . , n, where τt, q̃t are defined in (33) and (34), respectively. Moreover,

ApproxScores runs in time Õ(tnd log 1/δ).

If the output of ApproxScores satisfies the conditions of Lemma 8.1, we say that ApproxScores succeeds.

8.1 Tools from randomized numerical linear algebra

We need a few tools which are standard in the design of fast algorithms based on matrix multiplicative
weights. The first is the standard Johnson-Lindenstrauss dimension reduction lemma:

Lemma 8.2 (Johnson-Lindenstrauss lemma [27]). Let Φ ∈ Rr×d be a matrix whose entries are i.i.d. samples
from N (0, 1/r). For every vector u ∈ Rd and every ε ∈ (0, 1),

Pr [(1− ε)‖u‖2 ≤ ‖Φu‖2 ≤ (1 + ε)‖u‖2] ≥ 1− exp(−Ω(ε2r)) .

We also require the following, slightly stronger version of the JL guarantee, which states that it preserves
matrix inner products:

Lemma 8.3. Let A,U ∈ Rd×d. Suppose U = BB> for some symmetric B. Let S ∈ Rr×d have i.i.d. entries
from N (0, 1/r). There is a universal constant c such that for all ε > 0,

Pr
[
|〈A,BS>SB〉 − 〈A,U〉| > ε‖A‖2 · tr(U)

]
≤ 2 exp(−cr ·min(ε, ε2)) .

Proof. Notice that E
[
〈A,BS>SB〉 = 〈A,U〉

]
. By the Hanson-Wright inequality [28] together with standard

arguments about averages of i.i.d. sub-exponential random variables, for every t > 0,

Pr
[
|〈A,BS>SB〉 − 〈A,U〉| > t

]
≤ 2 exp(−` · Ω(min(t2/‖BAB‖2F , t/‖BAB‖2))) .

To finish the proof it will be enough to show that

‖BAB‖2F ≤ ‖A‖22 · tr(U)2 and ‖BAB‖2 ≤ ‖A‖2 · tr(U) .

For the first statement, note that

‖BAB‖2F = tr(AUAU) = 〈AUA,U〉 ≤ ‖AUA‖2 · tr(U) .

Since spectral norm is sub-multiplicative, ‖AUA‖2 ≤ ‖A‖22‖U‖2 ≤ ‖A‖22 · tr(U).
It remains to prove ‖BAB‖2 ≤ ‖A‖2 · tr(U). Again we have

‖BAB‖2 ≤ ‖B‖22‖A‖2 = ‖U‖2‖A‖2 ≤ tr(U) · ‖A‖2 .

which finishes the proof.

We will also make use of Taylor series approximations to the matrix exponential function. The next lemma
helps to control the errors incurred by such approximations.

Lemma 8.4 (folklore, see e.g. [29]). For ` ∈ N, let P`(Y ) =
∑`
j=0

1
j! (Y )j be the degree-` Taylor series

approximation to exp(Y ). For every n× n symmetric real matrix Y ,

‖P`(Y )− exp(Y )‖2 ≤ exp(‖Y ‖2) · exp(−`) .
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8.2 Efficient approximate score oracles

With these tools in hand, we are now ready to describe ApproxScores. For some sufficiently large constant
C > 0, let δ′ = δ/3, let r = C log n/δ′, let ` = C log d, and let S ∈ Rr×d be a matrix with i.i.d. entries from
N (0, 1/r). The algorithm will form the r × d matrix

Ar,` = S · P`

(
−α

2

t−1∑
t=0

M(wt)

)
. (35)

The estimate for the scores will then be given by

τ̃t,i =
1

tr(Ar,`A>r,`)
‖Ar,`(Xi − µ(wt))‖22 , (36)

and the estimate for qt,i will be given by

q̃t,i =

n∑
i=1

(τ̃t,i − 1) . (37)

The formal pseudocode is given in Algorithm 5. We first demonstrate that ApproxScores indeed runs in

Algorithm 5 Randomized nearly-linear time approximate score computation

1: Input: dataset S ⊂ Rd of size n, weight vectors w0, . . . , wt, failure probability δ > 0
2: Let C > 0 be a universal constant sufficiently large
3: Let δ′ = δ/3, let r = C log n/δ′, and let ` = C log d.
4: Let S ∈ Rr×d have entries drawn i.i.d. from N (0, 1/r).
5: Compute Ar,` as defined as in (35).
6: For all i = 1, . . . , n, let τ̃t,i be as in (36), and let q̃t be as in (37).
7: return τ̃t, q̃t

the claimed runtime:

Lemma 8.5. ApproxScores(S,w0, . . . , wt, δ) runs in time Õ(tnd log 1/δ).

Proof. The main algorithmic work being done in ApproxScores is to form the matrix Ar,`. We claim that

this matrix can be formed in time Õ(tnd log 1/δ). Afterwards, notice that tr(Ar,`A
>
r,`) can be computed in

time O(dr2), and given that, each τ̃t,i can be computed in time O(nr). Given the τ̃t,i, we then observe that
q̃t can be computed in time O(n). Since r = O(log n/δ) and ` = O(log d), we conclude that the overall

runtime of ApproxScores is dominated by the time to form Ar,`, and so it runs in time Õ(tnd log 1/δ).

We now demonstrate how to form Ar,` efficiently. Observe that for any vector v ∈ Rd, we can evaluate

v>
∑t−1
i=0M(wi) in time O(tnd). By iterating this process, we can compute v>

(∑t−1
i=0M(wi)

)j
in time

O(jtnd), and thus we can compute v>P`

(
−α2

∑t−1
i=0M(wi)

)
in time O(`2tnd). Since S has r = O(log n/δ)

rows, and ` = O(log d), we can therefore form Ar,` in time Õ (tnd log 1/δ) by forming each row of Ar,`.

Note that ApproxScores is an approximate augmented score oracle, and so it is also clearly an approximate
score oracle. In the remainder of this section, we show:

Lemma 8.6. With probability ≥ 1 − δ, the output of ApproxScores satisfies τ̃t,i ≈0.1 τt,i for all i =
1, . . . , n, and q̃t ≈0.1 qt.
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Proof. Let M =
∑t−1
i=0M(wt), and let Yt = exp (M), so that Ut = Yt

tr(Yt)
, and so that Ar,` = S · P`(M).

Then, by Lemma 8.4 and our choice of `, we have
∥∥∥Y 1/2

t − P`(M)
∥∥∥
2
≤ 0.01

d ·
∥∥∥Y 1/2

t

∥∥∥
2
, which immediately

implies that
∥∥Yt − P`(M)2

∥∥
2
≤ 0.03

d · ‖Yt‖2. Notice that this implies that tr(P`(M)2) ≈0.03 tr(Yt).
We now condition on the event that the following three events hold simultaneously:

‖SP`(M)(Xi − µ(wt))‖22 ≈0.01 ‖P`(M)(X − µ(wt))‖22 for all i = 1, . . . , n , (38)

tr(P`(M)S>SP`(M)) ≈0.01 tr(P`(M)2) , (39)∣∣〈M(wt)− Id, P`(M)S>SP`(M)
〉
−
〈
M(wt)− Id, P`(M)2

〉∣∣ ≤ 0.01 · tr(P`(M)2) ‖M(wt)− Id‖2 . (40)

By our choice of δ′, Lemma 8.2, and a union bound, we know that (38) holds with probability at least 1−δ/3.
By instantiating Lemma 8.3 with A = I and A = M(wt)− Id respectively, we also know that (39) and (40)
each hold with probability at least 1−δ/3. Thus, by a union bound, all three conditions hold simultaneously
with probability at least 1−δ. We claim that conditioned on these three events, the conditions of the lemma
are satisfied. Indeed, we have

τ̃t,i =
1

tr(P`(M)S>SP`(M))
‖S · P`(M)(Xi − µ(wt))‖22

≈0.0121
1

tr(P`(M)2)
‖P`(M)(Xi − µ(wt))‖22

≈0.0363
1

tr(Yt)
‖P`(M)(Xi − µ(wt))‖22

≈0.01
1

tr(Yt)
(Xi − µ(w)t)

>Yt(Xi − µ(w)t)

= τt,i .

Here the second line follows from (38) and (39), the third line follows from our condition on the trace, and
the final approximation follows since P`(M) approximates Yt in spectral norm. This proves the claim about
the τ̃t,i.

To conclude, we observe that

q̃t,i =
1

tr(P`(M)S>SP`(M))

n∑
i=1

(
‖S · P`(M)(Xi − µ(wt))‖22 − tr(P`(M)S>SP`(M))

)
=

1

tr(P`(M)S>SP`(M))

〈
M(wt)− Id, P`(M)S>SP`(M)

〉
=

1

tr(P`(M)S>SP`(M))

(〈
M(wt)− Id, P`(M)2

〉
+ η
)
,

where |η| ≤ 0.01 · tr(P`(M)) · ‖M(wt)− Id‖2 by (40). We further have

1

tr(P`(M)S>SP`(M))

〈
M(wt)− Id, P`(M)2

〉
≈0.01

1

tr(P`(M)2)

〈
M(wt)− Id, P`(M)2

〉
≈0.1 〈M(wt)− Id, Ut〉
= qt .

Therefore

|q̃t − qt| ≤ 0.1qt +
|η|

tr(P`(M)S>SP`(M))
≤ 0.1 · qt + 0.05

|η|
tr(Yt)

≤ 0.1 · qt + 0.05 ‖M(wt)− Id‖2 ,

which was the desired bound for q̃t.

Lemmata 8.5 and 8.6 together immediately imply Lemma 8.1.
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9 Putting it all together

In this section, we formally combine the guarantees derived in the previous sections to prove Theorems 4.1
and 4.2.

9.1 Proof of Theorem 4.1

Given the machinery we’ve developed, the algorithm is straightforward to describe. Given a corrupted
dataset S and δ > 0, run NaivePrune(S,

√
4dn/δ, δ/4) to obtain a pruned dataset S′. Center all points in

S′ with the empirical mean of S′. Then, run QUEScoreFilter(S′,ApproxScores), with κ =
√

4dn/δ,
and the δ parameter in ApproxScores set to O(δ/(log κ log d)). The formal pseudocode is presented in
Algorithm 6.

Algorithm 6 Nearly-linear time robust mean estimation under bounded second moments

1: Input: dataset S ⊂ Rd of size n, failure probability δ > 0
2: Let S′ = NaivePrune(S,

√
4dn/δ, δ/4).

3: Let κ =
√

4dn/δ.
4: Center all points in S′ at the empirical mean of S′.
5: Let O be ApproxScores with failure probability O(δ/(log κ log d)).
6: Let µ̂ = QUEScoreFilter(S′,O).
7: return µ̂.

We now prove correctness.

Proof of Theorem 4.1. Recall that by definition, we may assume that S = T ∪ Sb \ Sr, where T is a set of n
i.i.d. samples from D, and |Sb|, |Sr| ≤ εn. Let γ1, γ2 be as in (9). We condition on four events:

• ‖Xi − µ‖2 ≤
√

4dn
δ for all i ∈ T ,

• NaivePrune(S′,
√

4dn/δ, δ/4) succeeds,

• T = Sg ∪ Tb, where Sg is (γ1, γ2)-good with respect to D, and |Tb| ≤ εn, and

• every time it is called, ApproxScores suceeds.

By Chebyshev’s inequality, and an union bound over all n points in T , the first bullet point holds with
probability at least δ/4. By a further union bound and by adjusting constants in our choices of δ, all four
of these conditions hold simultaneously with probability at least 1 − δ − exp(−εn). We now claim that,

conditional on these four events, we output a µ(w) so that ‖µ− µ(w)‖2 = O(
√
ε) + Õ(

√
d/(nδ)). Indeed,

the first two conditions imply that NaivePrune does not throw away any points in T , and moreover,
all points X in the set S′ satisfy ‖Xi‖2 ≤

√
4dn/δ after centering. Thus, since the scores output by

ApproxScores satisfy the necessary conditions for Theorem 6.5, it follows that the final output satisfies
‖µ− µ(w)‖2 = O(

√
ε) + Õ(

√
d/(nδ)), as claimed.

We now turn to runtime. Since each epoch runs for at most O(log d) iterations, and so we run for at

most O(log κ log d) iterations, the total time spent running ApproxScores is at most Õ(nd log 1/δ). Thus

overall the algorithm runs in time Õ(nd log 1/δ), as claimed.

9.2 Proof of Theorem 4.2

Again, the algorithm is straightforward. Given a corrupted dataset S, parameters ε > 0 and δ > 0, run
NaivePrune(S,

√
4d log(n/δ), δ/4) to obtain a pruned dataset S′. Center all points in S′ with the empirical

mean of S′. Then, as above, run s.g.-QUEScoreFilter(S′, ε,ApproxScores), with κ =
√

4d log(n/δ),
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and the δ parameter in ApproxScores set to O(δ/(log κ/ε log d)). The formal pseudocode is presented in
Algorithm 7.

Algorithm 7 Nearly-linear time robust mean estimation for isostropic subgaussian distributions

1: Input: dataset S ⊂ Rd of size n, failure probability δ > 0, fraction of error ε
2: Let S′ = NaivePrune(S,

√
4d log(n/δ), δ/4).

3: Let κ =
√

4d log(n/δ).
4: Center all points in S′ at the empirical mean of S′.
5: Let O be ApproxScores with failure probability O(δ/(log κ/ε log d)).
6: Let µ̂ = s.g.-QUEScoreFilter(S′,O, ε).
7: return µ̂.

We now prove correctness. The proof is very similar to the proof presented above.

Proof of Theorem 4.2. Recall that by definition, we may assume that S = Sg ∪ Sb \ Sr, where T is a set of
n i.i.d. samples from D, and |Sb|, |Sr| ≤ εn. Let γ1, γ2 be as in (16). We condition on four events:

• ‖Xi − µ‖2 ≤
√

4d log(n/δ) for all i ∈ Sg,

• NaivePrune(S′,
√

4d log(n/δ), δ/4) succeeds,

• Sg is (ε, γ1, γ2)-s.g. good with respect to D,

• every time it is called, ApproxScores suceeds.

By standard concentration inequalities for chi-squared random variables, and an union bound over all n
points in T , the first bullet point holds with probability at least δ/4. By a further union bound and by
adjusting constants in our choices of δ, all four of these conditions hold simultaneously with probability at
least 1 − δ. We now claim that, conditional on these four events, we output a µ(w) so that ‖µ− µ(w)‖2 =

O(γ1 + ε
√

log 1/ε +
√
ε(γ1 + γ2). The first two conditions imply that NaivePrune does not throw away

any points in Sg, and moreover, all points X in the set S′ satisfy ‖Xi‖2 ≤
√

4d log(n/δ) after centering.

By standard arguments, this implies that
∥∥M( 1

n1n)− Id
∥∥
2
≤ O(ε log 1/ε+ εκ), for κ =

√
d log(n/δ). Thus,

since the scores output by ApproxScores satisfy the necessary conditions for Theorem 6.5, it follows that
the final output satisfies ‖µ− µ(w)‖2 = O(γ1 + ε

√
log 1/ε+

√
ε(γ1 + γ2), as claimed.

We now turn to runtime. Since each epoch runs for at most O(log d) iterations, and so we run for at most

O(log κ/ε log d) iterations, the total time spent running ApproxScores is at most Õ(nd log 1/δ log 1/ε).

Thus overall the algorithm runs in time Õ(nd log 1/δ log 1/ε), as claimed.

Part II: Outlier detection in high-dimensional data sets

10 QUE scoring versus local methods

The work [5] compares a number of outlier detection methods (mainly those based on k-NN distances) on
several datasets, both low and high dimensional. We evaluate QUE scoring on the InternetAds dataset
from [5], with a 0.1-fraction of outliers. Unlike the experiments on our CIFAR-10 and text embedding data,
to replicate the experimental setting of prior work as closely as possible we perform no whitening or other
preprocessing.

We find that QUE scoring is outperformed by LOF/k-NN-based methods on the InternetAds dataset.
Choosing α = 4 for QUE, we find the ROCAUC scores in the below table.

To elucidate the difference between the InternetAds setting where k-NN methods perform well and
the other experimental settings in this paper, we offer the following histograms demonstrating that the
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method ROCAUC
naive spectral 0.539

QUE 0.626
`2 0.723

isolation forest 0.702
local outlier factor 0.853

k-NN 0.855

Figure 2: ROCAUC scores on InternetAds dataset from [5]. Note that QUE still improves on naive spectral
methods, but because outliers are individually identifiable in the InternetAds data set, local and `2 methods
improve on any spectral method. We use α = 4 in QUE. See [21, 22, 5] for definitions of local outlier factor
and k-NN methods.

(a) InternetAds, ε = 0.1 (b) synthetic, ε = 0.2,

Figure 3: We plot histograms of the following collection {dk(Xi, S) : Xi ∈} for S = InternetAds,synthetic,
where dk(Xi, S) is the average squared-`2 distance of Xi and its k nearest neighbors, with k = 10. Observe
that in the InternetAds dataset essentially only outliers have dk(Xi, S) > 15, while for the synthetic dataset
all inliers dk(Xi, S) is much greater than that of every outlier.

distribution of nearest-neighbor distances is markedly distinct for inliers and outliers in both data sets, but
only in the InternetAds dataset do inliers have smaller k-NN distances.
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11 Scaling up: a nearly-linear time implementation of QUE scor-
ing

Most of the experiments we present involving QUE scores employ the following approach to compute them.
Given X1, . . . , Xn ∈ Rd, explicitly form the empirical covariance Σ in memory. Use SciPy’s expm function to
compute the matrix exponential U = exp(αΣ), then compute τi = (Xi − µ)>U(Xi − µ). (This in turn uses
the scaling and squaring algorithm for the matrix exponential of Al-Mohy and Higham [30].)

While we are already able to run experiments in 1000 or more dimensions using this approach, it requires
at least d2 memory to store the covariance, and somewhat more time to form and exponentiate it. We also
implement an approximate method to compute QUE scores, whose running time is Õ(nd). We demonstrate
in this section that outlier detection from approximate QUE scores still improves over baseline methods on
several data sets. The technique here is very similar to the one used in Section 8 to approximate the scores
used in the fast robust mean estimation algorithm. At a high level, the idea is the same: approximate the
exponential with a low-degree polynomial, and sketch this using Johnson-Lindenstrauss matrices. However,
we make a couple of additional optimizations here.

QUE scores in nearly-linear time We use the following approximate method, inspired by our sketching
approach to compute QUE scores from our nearly linear time algorithm for robust mean estimation.

Given X1, . . . , Xn and α > 0, our goal is to compute approximations τ̃i to the QUE scores. At a high
level, our approach employs two main tricks:

1. Approximate the matrix exponential exp(M) by Chebyshev polynomials of degree O(log d).
2. For Σ the empirical covariance of X1, . . . , Xn, use fast versions of the Johnson-Lindenstrauss method

to approximate 〈Xi,Σ
j
Xi〉 for all i ≤ n and j ≤ O(log d).

Since for most applications only the order of the QUE scores matters, we will actually compute approx-
imations to non-normalized scores, involving the matrix U = exp(αΣ/‖Σ‖2), rather than normalizing by
tr(U). For notational simplicity, let us assume µ = 0.

We first rewrite τi ∝ ‖ exp(αΣ/2‖Σ‖2)Xi‖22 where ∝ hides the normalization tr exp(αΣ). If we ap-
proximate the matrix exponential by a degree O(log d) Chebyshev approximation P , the goal is now to
approximate ‖P (αΣ/2‖Σ‖2)Xi‖2 for all i. Suppose S is an O(log(d+ n))× d sketching matrix. Then it will

suffice to compute M = SP (αΣ/2‖Σ‖2), since then in Õ(nd) time we can compute all the matrix-vector
products MXi and their norms, and ‖SP (αΣ/2‖Σ‖2)Xi‖22 ≈ ‖P (αΣ/2‖Σ‖2)Xi‖22.

Note that using the expansion into powers Σ
j
, right or left matrix-vector multiplication by P (αΣ/2‖Σ‖2)

can be accomplished in O(nd log d) time. As in the fast JL transform [31], we take S = S′ ·D ·H where S′ is
a sparse random matrix, D is a diagonal matrix with random ±1 entries, and H is a Hadamard matrix. Fast
fourier transform methods may be used to compute matrix-vector multiplications SX in d(log d)O(1) time
[32], leading to nearly-linear running time of this approach in theory. In practice, we use standard matrix
multiplication; this still allows for experiments in thousands of dimensions.

Experiments show that the approximate QUE scores are consistent with the exact QUE scores, in that
higher k leads to larger maximum improvement over naive spectral scores; furthermore approximate QUE
consistently interpolates between `2 scores (when α = 0) and naive spectral scores (when α =∞).
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(a) synthetic 128-dimensions (b) synthetic 128-dimensions

Figure 4: We plot the improvement of ROCAUC scores of our approximate QUE scoring implementation,
over baseline methods `2 scoring as well as naive spectral scoring, on 128-dimensional synthetic data, for 3,
6, and 10 directions of corruption. We use the degree-5 Chebyshev approximation to the matrix exponential
function, along with scaling and squaring for approximating outside the interval [−1, 1].

(a) synthetic 8192-dimensions (b) synthetic 8192-dimensions

Figure 5: Similar to above, these show the improvement of ROCAUC scores of our approximate QUE
scoring implementation, over baseline methods `2 scoring and naive spectral scoring, on 8192-dimensional
synthetic data, for 12 and 15 directions of corruption. These approximate QUE scores run in nearly-linear
time and improve over the performance of naive spectral and `2-based scoring.
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Schubert, Ira Assent, and Michael E Houle. On the evaluation of unsupervised outlier detection: mea-
sures, datasets, and an empirical study. Data Mining and Knowledge Discovery, 30(4):891–927, 2016.

37



[6] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[7] Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.

[8] John W Tukey. A survey of sampling from contaminated distributions. Contributions to probability and
statistics, pages 448–485, 1960.

[9] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pages 492–518.
Springer, 1992.

[10] John W Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress
of Mathematicians, Vancouver, 1975, volume 2, pages 523–531, 1975.

[11] Jerry Zheng Li. Principled approaches to robust machine learning and beyond. PhD thesis, Massachusetts
Institute of Technology, 2018.

[12] Jacob Steinhardt. Robust Learning: Information Theory and Algorithms. PhD thesis, Stanford Univer-
sity, 2018.

[13] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David Woodruff. Faster algorithms for high-dimensional
robust covariance estimation. In Proceedings of the 32nd Annual Conference on Learning Theory (COLT
2019).

[14] Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.

[15] Edwin M Knorr and Raymond T Ng. A unified notion of outliers: Properties and computation. In
KDD, volume 97, pages 219–222, 1997.

[16] Edwin M Knox and Raymond T Ng. Algorithms for mining distancebased outliers in large datasets. In
Proceedings of the international conference on very large data bases, pages 392–403. Citeseer, 1998.

[17] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for robust
estimation of high-dimensional gaussians and gaussian mixtures. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pages 73–84. IEEE, 2017.

[18] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret minimization
beyond matrix multiplicative updates. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 237–245. ACM, 2015.

[19] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[20] https://en.wikipedia.org/wiki/Wikipedia:Today’s_featured_article/May_2019. May 2019.
Wikimedia Foundation.

[21] S Ramaswamy, R Rastogi, and K Shim. Efficient algorithms for mining outliers from large data sets.
Proceedings of the ACM international conference on management of data (SIGMOD), pages 427–438,
2000.

[22] MM Breunig, HP Kriegel, R Ng, and J Sander. Efficient algorithms for mining outliers from large
data sets. Proceedings of the ACM international conference on management of data (SIGMOD), pages
93–104, 2000.

[23] Peter J Rousseeuw and Katrien Van Driessen. A fast algorithm for the minimum covariance determinant
estimator. Technometrics, 41(3):212–223, 1999.

38



[24] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422. IEEE, 2008.
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A Deferred details from Section 4

A.1 Proof of Lemma 5.1

The algorithm is straightforward: choose a random point in S, and check if strictly more than n/2 points
lie within a ball of radius 2r around this point. If so, include all points with distance at most 4r from this
point. If not, repeat, and run for O(log 1/δ) iterations. We now prove correctness.

Proof of Lemma 5.1. By the triangle inequality, if we ever randomly select a point from S′, then we termi-
nate, and in this case it is easy to see that the output satisfies the desired property. Thus, it is easy to see
that the probability we have not terminated after t iterations is at most 2−t. Suppose we have terminated.
Then in that iteration, we selected a point X ∈ S that has distance at most 2r to more than n/2 other
points in S. This implies that it has distance at most 2r to some point in S′. By triangle inequality, this
implies that all points in S′ are at distance at most 4r from X, and so the output in this iteration must
satisfy the claims of the Lemma.

We note that if one wishes to obtain a deterministic linear-time algorithm for this problem, it is also possible
to do so, albeit using radius O(r

√
d). The algorithm is again simple: simply take the coordinate-wise median

of all the data points, and take all points with distance at most O(r
√
d) from this point. It is not hard to

see that the coordinate-wise median can differ in each coordinate from the points in S′ by at most r, and
so its distance to each point in S′ can be at most r

√
d. While this is worse by a polynomial factor than

the guarantee obtained above, since in the end our overall guarantees depend only logarithmically on r, this
does not change our runtime guarantees by more than a logarithmic factor.
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A.2 Omitted details from Section 5.3

The algorithm 1DFilter is quite simple. For i = 1, . . . ,m, and for any positive integer t, define

w
(t)
i =

(
1− τi

τmax

)t
wi , and Ft =

n∑
i=1

w
(t)
i τi . (41)

Observe that the Ft form a monotone decreasing sequence. The algorithm will simply find the smallest
t ∈ {1, . . . , τmax

ebσ } so that Ft ≤ bσ via binary search, and outputs w(t). The formal pseudocode for the
algorithm is given in Algorithm 8.

Algorithm 8 Improved univariate score downweighting

1: Input: nonnegative scores τ1, . . . , τm, weights w1, . . . , wm, parameters b, η
2: Let τmax = maxi∈[m] τi.
3: Let σ =

∑m
i=1 wiτi.

4: By binary search, find the smallest t ∈ {1, . . . , τmax

ebσ } satisfying Ft ≤ bσ, where Ft is defined in (41)

5: return The weights w
(t)
1 , . . . , w

(t)
m , where w

(t)
i is defined as in (41).

We now prove that this algorithm satisfies Theorem 5.2. We say any set of weights w′ satisfying
∑
i∈Sg

wi−
w′i ≤

∑
i∈Sb

wi−w′i is admissible. We first show that the sequence of weights we produce is always admissible,
under some mild conditions:

Lemma A.1. Let t be an integer so that w(t) is admissible, and Ft > 2ησ. Then w(t+1) is admissible.

Proof of Lemma A.1. Because w(t) ≤ w, we have that
∑
i∈Sg

w
(t)
i τi ≤ ησ. As a result, if Ft ≥ 2ησ, we must

have
∑
i∈Sb

w
(t)
i τi > σ/2. Therefore, we have the following two inequalities:∑

i∈Sg

w
(t)
i − w

(t+1)
i =

1

τmax

∑
i∈Sg

w(t)τi ≤
σ

2τmax∑
i∈Sb

w
(t)
i − w

(t+1)
i =

1

τmax

∑
i∈Sb

w(t)τi >
σ

2τmax
.

Consequently, we remove more mass from the weights in Sb than from Sg in going from w(t) to w(t+1). Since
by assumption w(t) is admissible, this immediately implies that w(t+1) is admissible as well.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. By induction, Lemma A.1 guarantees that the output weights remain admissible, and
the termination condition of the algorithm guarantees that the output satisfies (5). It suffices to bound the
runtime of the algorithm.

First, observe that there must exist a valid T in the range we are searching. We first observe that

w
(t)
i τi = wi

(
1− τi

τmax

)t
τi

≤ wi exp

(
− t · τi
τmax

)
τi .

For any constant A > 0, the maximizer of the function g(x) = x exp(−Ax) in the range x ∈ [0,∞) is achieved
by x = 1

A , so g(x) ≤ 1
eA for all x ∈ [0,∞). Setting A = t/τmax, and letting t = τmax

ebσ , we conclude that

m∑
i=1

w
(t)
i τi ≤

∑m
i=1 wi ·

τmax

et ≤ bσ .
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Thus, there exists some t within our specified range which satisfies the conclusion. Finally, to bound the
runtime, observe that every iteration runs in O(n) time,2 and we can run for at most O(log τmax/(bσ))
iterations, which completes the proof.

A.3 The randomized hard filter

In this section we show that a randomized outlier removal method, rather than soft downweighting, can
achieve the more or less the same guarantees as 1DFilter. Formally, we show:

Theorem A.2. Let η ∈ (0, 1/2), let b ≥ 2η, and let s, δ > 0. Let m satisfy

m = Ω̃

(
s log2(1/δ) log τmax

bσ

ε

)
.

Let τ1, . . . , τm be non-negative scalars, and let τmax = maxi∈[m] τi. Suppose there exist two disjoint sets
Sg, Sb so that Sg ∪ Sb = [m], and moreover,

∑
i∈Sg

τi ≤ ησ , where σ =

n∑
i=1

τi .

Then RandomFilter(w, τ) runs in time O
((

1 + log τmax

bσ

)
m
)

and outputs S′ ⊆ S so that with probability
1− δ, we have:

• not too many more points from Sg are removed than from Sb i.e.

|(S \ S′) ∩ Sg| ≤ |(S \ S′) ∩ Sb|+
εm

s
, and

• the sum of the τ has decreased, i.e. S′ satisfies∑
i∈S′

τi ≤ bσ . (42)

The algorithm itself is very easy to describe. First, let T = [m]. Then, while
∑
i∈T τi > bσ, throw away each

point from T with probability τi/τmax(T ), where τmax(T ) = maxi∈T τi, and let T be the set of remaining
points. At termination, we simply output the set S′ = T . The formal pseudocode of this algorithm is given
in Algorithm 9.

Algorithm 9 Improved randomized univariate filtering

1: Input: nonnegative scores τ1, . . . , τm, parameters b, η
2: Let T = [m]
3: Let σ =

∑n
i=1 τi.

4: while
∑
i∈T τi ≥ bσ do

5: Let τmax = maxi∈T τi
6: Remove each point i ∈ T from T with probability τi/τmax

7: end while
8: return The set T

As a brief aside, we note that this differs slightly from the algorithm presented in [4], as there the
algorithm randomly selects a threshold, and throws away all points above this threshold. However, the key

2This is true in the real RAM model; in practice we can run any iteration in O(m log(τmax/σ)) time by exponentiation via

repeated doubling to compute all the w
(t)
i , so we pay at most an additional log factor
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property which the previous algorithm used of this random threshold was that for all i ∈ T , we had that
Pr[i is thrown out] = τi/τmax(T ). Therefore a very similar analysis can be adapted for either case. However,
the algorithm in [4] only succeeds with constant probability, and a martingale-style argument (as in [4]) is
needed to ensure that it works.

The remainder of this section is dedicated to the proof of Theorem A.2. Our first lemma is similar to
Lemma A.1.

Lemma A.3. Suppose that
∑
i∈T τi > bσ. Then, if we let T ′ be the random set obtained by throwing away

each point from T with probability τi/τmax(T ), then:

E [|(T \ T ′) ∩ Sg|] < E [|(T \ T ′) ∩ Sb|] , (43)

and moreover, for any s > 0, we have

Pr
[
|(T \ T ′) ∩ Sg| > |(T \ T ′) ∩ Sb| and |T \ T ′| > εm

s

]
≤ exp

(
−Ω

(εm
s
·min

(
(b− 2η)2, 1

)))
. (44)

Proof. For i ∈ T , let Yi be the random variable which is 1 if we throw out i in T ′ and 0 otherwise. Then

E [|(T − T ′) ∩ Sg|] = E

 ∑
i∈Sg∩T

Yi

 =
∑

i∈Sg∩T

τi
τmax(T )

≤
∑
i∈Sg

τi
τmax(T )

≤ 1

τmax(T )
ησ ,

E [|(T − T ′) ∩ Sb|] = E

[ ∑
i∈Sb∩T

Yi

]
=

∑
i∈Sb∩T

τi
τmax(T )

≥ 1

τmax(T )
(β − η)σ ,

which proves (43), since β > 2η.
To prove (44), we break into two cases depending on σ/τmax. Suppose that σ/τmax ≥ εm/s. Then by

Bernstein’s inequality, we have

Pr

[
|(T \ T ′) ∩ Sg| > |(T \ T ′) ∩ Sb| and |T \ T ′| > 2εm

s

]
≤ Pr [|(T \ T ′) ∩ Sg| > |(T \ T ′) ∩ Sb|]

= Pr

 ∑
i∈Sg∩T

Yi −
∑

i∈Sb∩T
Yi > 0


≤ exp

(
−Ω

(
σ

τmax
·min

(
(b− 2η)2, b− 2η

)))
≤ exp

(
−Ω

(εm
s
·min

(
(b− 2η)2, b− 2η

)))
Otherwise, we observe that

Pr

[
|(T \ T ′) ∩ Sg| > |(T \ T ′) ∩ Sb| and |T \ T ′| > 2εm

s

]
≤ Pr

[
|T \ T ′| > εm

s

]
= Pr

[∑
i∈T

Yi >
2εm

s

]
≤ exp

(
−Ω

(εm
s

))
.

Combining these two cases, and simplifying yields the desired claim.

We now show that with high probability, we do not need to repeat this procedure too many times before
the sum decreases by a constant factor.
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Lemma A.4. Let δ > 0, and let t = Ω̃
(
log
(
τmaxm
bσ

)
log(1/δ)

)
. Then, the probability that Algorithm 9 runs

for more than t iterations is at most δ.

Proof. Let J = log τmaxm
bσ . For j = 1, . . . , J , let

Aj =
{
i ∈ T : τi ∈

(
τmax · 2−j , τmax · 2−j−1

]}
.

For all j = 1, . . . , J , we claim that conditional on the event that the algorithm has not terminated yet, and all
points from Aj′ have been removed, for j′ < j, then after t′ iterations, all points from Aj have been removed

with probability at least 1 − m2−t
′
. Indeed, for all i ∈ Aj , in every iteration, if it has not been already

removed, then it is removed with probability at least 1/2. Thus after t′ iterations, the probability that any
point from Aj remains is at most n2−t

′
. Therefore, by a union bound, after Jt′ iterations, conditioned on

the event that the algorithm hasn’t terminated yet, the probability that any point from Aj for any j is at

most Jm2−t
′
. However, if all points from Aj are removed, for all j, then if T ′ is the remaining set, we have∑

i∈T ′ τi ≤ bσ, so if all such points are removed, then the algorithm must either terminate or have already
terminated. This proves the claim by setting t′ = log(Jm/δ).

Theorem A.2 follows from Lemma A.3 and Lemma A.4, by appropriately adjusting parameters.

The full algorithm using the randomized filter It is straightforward for the full matrix multiplicative
weights algorithm to use the randomized filter rather than the downweighting-based method. Given an
ε-corrupted dataset of size n initally, we do the following. At every instance where we pass to the filter,
simply run the randomized filter instead of the downweighting-based method, and output the set of weights
which is 1/n for every point that remains after running the randomized filter, and 0 otherwise.

The guarantee of the randomized filter is slightly weaker than the guarantee of the downweighting-based
method, so we cannot use black-box use the analysis presented beforehand to also analyze the algorithm
instantiated with the weights given by the randomized filter. This is because our guarantee allows for
slightly more good points than bad points to be removed per run of the algorithm. However, since the
matrix multiplicative weights routine runs for at most polylogarthmically many iterations, by setting s =
poly log(nd), we can guarantee that at the end of all of the runs, we have removed at most 2εn data points
from Sg. It is straightforward to verify that (up to a factor of 2), the same analysis for matrix multiplicative
works with this slightly weaker guarantee, for ε sufficiently small. For conciseness, we omit the proof.

B Omitted Proofs from Section 6

B.1 Proof of Lemma 6.1

Before we prove this lemma, we require the following matrix Chernoff bound:

Fact B.1 (Theorem 5.1.1 in [33]). Let M1, . . . ,Mn ∈ Rd×d be a sequence of independent, random, PSD
matrices. Assume that ‖Mi‖2 ≤ L for all i = 1, . . . , n, and suppose ‖E [

∑n
i=1Mi]‖2 ≤ n. Then, there is

some universal constant c ≤ 2 log 2− 1 so that for all t ≥ 2, we have

Pr

[∥∥∥∥∥
n∑
i=1

Mi

∥∥∥∥∥
2

≥ tn

]
≤ d exp (−ctn/L) .

Proof. Observe that if X ∼ D, then E
[
‖X − µ‖22

]
= tr(Σ) ≤ d. Let c > 0 be a constant to specify later. By

Markov’s inequality, we have

Pr

[
‖X − µ‖2 ≥

√
d

cε

]
≤ cε . (45)

43



Let E be the event E =

{
X : ‖X − µ‖2 <

√
d
cε

}
, and let S = {Xi : Xi ∈ E}. We claim this set satisfies the

properties claimed.
We first demonstrate that with probability 1−exp(−εn), we have |S| ≥ (1−ε)n. Letting Zi = I{Xi ∈ Ec},

we have we have |S| = n−
∑n
i=1 Zi, where E [Zi] ≤ cε, and hence, by Chernoff bounds,

Pr [|S| < (1− ε)n] = Pr
[∑

Zi > εn
]

≤
(
e1/c−1

(1/c)1/c

)cεn
= exp (εn− cεn− εn log 1/c) .

In particular, we let c = e−2, by simplifying we obtain that Pr [|S| < (1− ε)n] < exp(−εn). Let E1 be the
event that |S| ≥ (1− ε)n.

We now demonstrate that with probability 1 − δ, our set S is (γ1, γ2)-good with respect to D, where
γ1, γ2 are given as in (9). We first prove concentration of the empirical mean. For i = 1, . . . , n, let Yi =
(Xi − µ) · I{Xi ∈ E}. Since the Xi are independent, so too are the Yi. Moreover, since multiplying by an
indicator variable can only decrease variance, we have that Cov [Yi] � I. Letting µ′ = E[Yi], we thus have

E

∥∥∥∥∥ 1

n

n∑
i=1

Yi − µ′
∥∥∥∥∥
2

2

 ≤ tr(Σ)

n
≤ d

n
.

Thus, if we let E2 be the event

E1 =

{∥∥∥∥∥ 1

n

n∑
i=1

Yi − µ′
∥∥∥∥∥
2

≤
√

2d

nδ

}
,

by Markov’s inequality, we have Pr[E1] ≥ 1− δ/2. We additionally have that for any unit vector v,

|〈v, µ′〉| = |E [〈v,Xi − µ〉 · I{Xi ∈ E}]|
= |E [〈v,Xi − µ〉 · I{Xi ∈ Ec}]|

≤ E
[
〈v,Xi − µ〉2

]1/2
Pr
X∼D

[X ∈ Ec]1/2

=
(
vTΣv

)1/2 · Pr
X∼D

[X ∈ Ec]1/2 ≤
√
cε ,

where the third line follows from Cauchy-Schwartz, the last line follows from (45), and since Σ � Id. Taking
a supremum over all unit vectors v yields that ‖µ′‖2 ≤

√
cε. Therefore, conditioned on both E1 and E2, we

have ∥∥∥∥∥ 1

|S|
∑
i∈S

Xi − µ

∥∥∥∥∥
2

=
n

|S|

∥∥∥∥∥ 1

n

n∑
i=1

Yi

∥∥∥∥∥
2

≤ n

|S|

(∥∥∥∥∥ 1

n

n∑
i=1

Yi − µ′
∥∥∥∥∥
2

+ ‖µ′‖2

)

≤ n

|S|
·

(√
2d

nδ
+
√
cε

)

≤ 1

1− ε
·

(√
2d

nδ
+
√
cε

)
= γ1 . (46)
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We now turn our attention to the claimed bound on the covariance. Let Yi be as above. Then, by
assumption we have

∥∥YiY >i ∥∥2 = ‖Yi‖22 ≤
d
cε , and moreover we have

E

[
n∑
i=1

YiY
>
i

]
� nCov [Yi] ≤ n · Id .

Hence, by Fact B.1, we have that

Pr

[∥∥∥∥∥ 1

n

n∑
i=1

YiY
>
i

∥∥∥∥∥
2

>
d(log d+ log 2/δ)

c′εn

]
≤ δ/2 , (47)

for some universal constant c′ > 0. Let E3 be the event that (47) holds. Then, conditioned on both E1 and
E3 holding, we have

‖Cov(S)‖2 =

∥∥∥∥∥ 1

|S|

n∑
i=1

(Yi − µ(S))(Yi − µS)>

∥∥∥∥∥
2

(a)

≤

∥∥∥∥∥ 1

|S|

n∑
i=1

YiY
>
i

∥∥∥∥∥
2

≤ 1

1− ε
· d(log d+ log 2/δ)

c′εn
= γ2 , (48)

as claimed, where (a) follows since centering the second moment matrix can only decrease its top eigenvalue.
Thus, (46) and (48) imply that, conditioned on events E1, E2, E3 simultaneously, the set S is (γ1, γ2)-good
with respect to D. By a union bound, these three events happen simultaneously with probability at least
1− δ − exp(−εn), as claimed.
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