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Abstract

We consider a new family of stochastic operators for reinforcement learning that
seeks to alleviate negative effects and become more robust to approximation or
estimation errors. Theoretical results are established, showing that our family of
operators preserve optimality and increase the action gap in a stochastic sense.
Empirical results illustrate the strong benefits of our robust stochastic operators,
significantly outperforming the classical Bellman and recently proposed operators.

1 Introduction

Reinforcement learning has a rich history within the machine learning community to solve a wide
variety of decision making problems in environments with unknown and possibly unstructured
dynamics. Through iterative application of a convergent operator, value-based reinforcement learning
(RL) generates successive refinements of an initial value function [14, 22, 21]. Q-learning [24] is
a particular RL technique in which the computations of value iteration consist of evaluating the
corresponding Bellman equation without a model of the environment.

WhileQ-learning continues to be broadly and successfully used in RL to determine the optimal actions
of an agent, the development of newQ-learning approaches that improve convergence speed, accuracy
and robustness remains of great interest. One area of particular interest concerns environments in
which there exist approximation or estimation errors. Of course, when no approximation/estimation
errors are present, then the corresponding Markov decision process (MDP) can be solved exactly
with the Bellman operator. However, in the presence of nonstationary errors – a typically encountered
example being when a discrete-state, discrete-time MDP is used to approximate a continuous-state,
continuous-time system – then the optimal state-action value function obtained through the Bellman
operator does not always describe the value of stationary policies. Hence, when the optimal state-
action value function and the suboptimal state-action value functions are reasonably close to each
other, approximation/estimation errors can cause suboptimal actions to be chosen instead of an
optimal action and thus in turn potentially causing errors in identifying truly optimal actions.

To help explain and formalize this phenomena, Farahmand [13] introduced the notion of action-gap
regularity and showed that a larger action-gap regularity implies a smaller loss in performance.
Building on action-gap regularity and its benefits with respect to (w.r.t.) performance loss, Bellemare
et al. [6] considered a particular approach to having the value iteration converge to an alternative
action-value function Q associated with the same optimal action policy – i.e., maintain properties of
optimality-preserving – while at the same time achieving a larger separation between the Q-values of
optimal actions and those of suboptimal actions – i.e., maintain properties of action-gap increasing.
The former properties ensure optimality whereas the latter properties may assist the value-iteration
algorithm to determine the optimal actions of an agent faster, more easily, and with less errors of
mislabeling suboptimal actions. Therefore, by exploiting weaker optimality conditions than the
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Bellman equation and due to the known benefits of larger action-gap regularity, this approach can
potentially lead to alternatives to the classical Bellman operator that improve the convergence speed,
accuracy and robustness of RL in environments with approximation/estimation errors.

Following this approach, Bellemare et al. [6] propose purely deterministic operator alternatives
to the classical Bellman operator and show that the proposed operators satisfy the properties of
optimality-preserving and gap-increasing. Then, after empirically demonstrating the benefits of
their proposed deterministic operator alternatives, the authors raise a number of open fundamental
questions w.r.t. the possibility of weaker conditions for optimality, the statistical efficiency of their
proposed operators, and the possibility of finding a maximally efficient operator.

At the heart of the problem is a fundamental tradeoff between the degree to which the preservation of
optimality is violated and the degree to which the action gap is increased. Although the benefits of
increasing action-gap regularity are known [13], increasing the action gap beyond a certain region
in a deterministic sense can lead to violations of optimality preservation (due to deviating too far
from Bellman optimality), thus rendering value iterations that may not ensure convergence to optimal
solutions. Hence, any purely deterministic operator alternative is unfortunately limited in the degree
to which it can be both gap-increasing and optimality-preserving, and thus in turn limited in the
degree to which it can address the above problems of approximation/estimation errors in RL.

We therefore consider an approach based on a novel stochastic framework that can increase the action
gap well beyond such a deterministic region for individual value iterations – via a random variable
(r.v.) – while controlling in a probabilistic manner the overall value iterations – via a sequence of
r.v.s – to ensure optimality preservation in a stochastic sense. Our general approach is applicable to
arbitrary Q-value approximation schemes in which the sequence of r.v.s provides support to devalue
suboptimal actions while preserving the set of optimal policies almost surely (a.s.), thus making it
possible to increase the action gap between the Q-values of optimal and suboptimal actions beyond
the deterministic region; this can be important in practice because of the potential advantages of
increasing the action gap when there are approximation/estimation errors. In devising a family of
operators within our framework endowed with these properties, we provide a general stochastic
approach that can address the inherent deficiencies of purely deterministic operator alternatives to
the classical Bellman operator and that can potentially yield greater robustness w.r.t. mislabeling
suboptimal actions in the presence of approximation/estimation errors. To the best of our knowledge,
this paper presents the first proposal and theoretical analysis of such types of robust stochastic
operators (RSOs), which is an approach not often seen in the RL literature and should be exploited to
a much greater extent.

The research literature contains a wide variety of studies of operator alternatives to the Bellman oper-
ator, including the ε-greedy method [24], speedy Q-learning [3], policy iteration-like Q-learning [8],
and the Boltzmann softmax operator and its variants [2]. Each of these operator alternatives seeks to
address certain issues in RL. In this paper we complement these previous studies of operator alterna-
tives and focus on operators that seek to achieve greater robustness w.r.t. approximation/estimation
errors; in fact, our empirical studies are based on Q-learning with the ε-greedy method.

Our theoretical results include proving that our stochastic operators are optimality-preserving and
gap-increasing in a stochastic sense. Since the value-iteration sequence generated under our stochastic
operators is based on realizations of independent nonnegative r.v.s, our family of RSOs subsumes the
family of purely deterministic operators in [6] as a strict subset (because the realizations of r.v.s can be
fixed to match that of any deterministic operators as a special case). We further prove that stochastic
and variability orderings among the sequence of random operators lead to corresponding orderings
among the action gaps. Our stochastic framework and theoretical results shed new light on the
open fundamental questions raised in [6], which includes our family of RSOs rendering significantly
weaker conditions for optimality and significantly stronger statistical efficiency. Another important
implication of our results is that the search space for the maximally efficient operator should be
an infinite dimensional space of sequences of r.v.s, instead of the finite dimensional space alluded
to in [6]. Yet another important implication is that the order relationships among the sequences
of random operators w.r.t. action gaps, corresponding to our stochastic and variability ordering
results, may potentially lead to determining the best sequence of r.v.s and possibly even lead to
maximally efficient operators. These theoretical results further extend our understanding of the
relationship between action-gap regularity and the effectiveness of Q-learning in environments with
approximation/estimation errors beyond the initial studies in [13, 6].
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We subsequently apply our RSOs to obtain empirical results for various problems in the OpenAI Gym
framework [10]. Using these existing codes with minor modifications, we compare the empirical
results under our family of stochastic operators against those under both the classical Bellman
operator and the consistent Bellman operator [6]. These experiments consistently show that our
RSOs outperform both of these deterministic operators. Appendix C of the supplement provides the
corresponding python code modifications used in our experiments.

2 Preliminaries

We consider a standard RL framework (see, e.g., [7]) in which a learning agent interacts with a
stochastic environment. This interaction is modeled as a discrete-space, discrete-time discounted
MDP denoted by (X,A,P, R, γ), where X represents the set of states, A the set of actions, P the
transition probability kernel, R the reward function mapping state-action pairs into a bounded subset
of R, and γ ∈ [0, 1) the discount factor. Let Q denote the set of bounded real-valued functions over
X× A. For Q ∈ Q, define V (x) := maxaQ(x, a) and use the same definition for variants such as
Q̂ ∈ Q and V̂ (x). Let x′ always denote the next state r.v. For the current state x in which action a
is taken, i.e., (x, a) ∈ X× A, denote by P(·|x, a) the conditional transition probability for the next
state x′ and define EP := Ex′∼P(·|x,a) to be the expectation w.r.t. P(·|x, a).

A stationary policy π(·|x) : X→ A defines the distribution of control actions given the current state
x, which reduces to a deterministic policy when the conditional distribution renders a constant action
for each state x; with slight abuse of notation, we always write the policy π(x). The stationary policy
π induces a value function V π : X → R and an action-value function Qπ : X × A → R where
V π(x) := Qπ(x, π(x)) defines the expected discounted cumulative reward under policy π starting in
state x and where Qπ satisfies the Bellman equation

Qπ(x, a) = R(x, a) + γEPQ
π(x′, π(x′)). (1)

Our goal is to determine a policy π∗ that achieves the optimal value function V ∗(x) :=
supπ V

π(x),∀x ∈ X, which also produces the optimal action-value function Q∗(x, a) :=
supπ Q

π(x, a),∀(x, a) ∈ X × A. The Bellman operator TB : Q → Q is defined pointwise as

TBQ(x, a) := R(x, a) + γEP max
b∈A

Q(x′, b), (2)

or equivalently TBQ(x, a) = R(x, a) + γEPV (x′). The Bellman operator TB is known (see, e.g.,
[7]) to be a contraction mapping in supremum norm, and its unique fixed point coincides with the
optimal action-value function, namely Q∗(x, a) = R(x, a) + γEP maxb∈AQ

∗(x′, b), or equivalently
Q∗(x, a) = R(x, a) + γEPV

∗(x′). This in turn indicates that the optimal policy π∗ can be obtained
by π∗(x) = argmaxa∈AQ

∗(x, a), ∀x ∈ X.

While the Bellman operator can exactly solve the MDP when there are no approximation/estimation
errors, the previously noted differences between optimal and suboptimal state-action value functions
in the presence of such errors can result in incorrectly identifying the optimal actions. To address these
and related nonstationary effects of approximation/estimation errors arising in practice, Bellemare et
al. [6] propose the so-called consistent Bellman operator defined as

TCQ(x, a) := R(x, a) + γEP[1{x6=x′}max
b∈A

Q(x′, b) + 1{x=x′}Q(x, a)], (3)

where 1{·} denotes the indicator function. The consistent Bellman operator TC preserves a local
form of stationarity by redefining the action-value function Q such that, if an action a ∈ A is taken
from the state x ∈ X and the next state x′ = x, then action a is taken again. Bellemare et al. [6]
proceed to show that the consistent Bellman operator yields the optimal policy π∗, and in particular
that TC is both optimality-preserving and gap-increasing, according to (deterministic) definitions that
they provide which are compatible with those from Farahmand [13].

The proofs of our theoretical results involve mathematical arguments and technical details that are
unique to stochastic operators and stochastic orderings, and distinct from any previous deterministic
operators. In particular, a r.v. X is stochastically greater than or equal to (≥st) a r.v. Y if P[X >
z] ≥ P[Y > z],∀z, and a r.v. X is greater than or equal to (≥cx) a r.v. Y under a convex ordering
if and only if E[f(X)] ≥ E[f(Y )], ∀ convex functions f . Additional technical details on these and
other probabilistic terms and results underlying our theoretical results can be found in [9, 11, 18].
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3 Robust Stochastic Operators

In this section we present our stochastic framework which includes proposing a general family of
RSOs, providing precise definitions of the concepts of optimality-preserving and gap-increasing in a
stochastic sense for a sequence of random operators, and establishing that any sequence of this general
family of operators is optimality-preserving and gap-increasing. Our introduction of a new family
of operators and our shifting the focus from one deterministic operator to a sequence of stochastic
operators has significant implications w.r.t. the open questions raised in [6]. Specifically, our results
show that the conditions for optimality are much weaker and the statistical efficiency of our operators
can be made much stronger, both allowing significant degrees of freedom in finding alternatives to the
Bellman operator for different purposes and applications. Meanwhile, these important improvements
completely alter and clarify the question of finding the maximally efficient operators from a finite
dimensional parameter optimization problem suggested in [6] to an optimization problem in an
infinite dimensional space (of the infinite sequences of r.v.s), for which we establish that stochastic
and variability orderings among the sequence of random operators lead to corresponding orderings
among the action gaps. It is important to note that our approach can be extended to variants of the
Bellman operator such as SARSA [17], policy evaluation [19] and fitted Q-iteration [12].

For all Q0 ∈ Q, x ∈ X, a ∈ A and sequences {βk : k ∈ Z+} of independent nonnegative r.v.s with
expectation βk := Eβ [βk] between 0 and 1 inclusively for each k ∈ Z+, we define

Tβk
Qk(x, a) := R(x, a) + γEP max

b∈A
Qk(x

′, b)− βk(Vk(x)−Qk(x, a)), (4)

or equivalently Tβk
Qk(x, a) := R(x, a) + γEPV (x′) − βk(Vk(x) − Qk(x, a)). (Note that the

operator in (4) is equivalent to the Bellman operator whenever the action a is optimal or βk = 0, thus
making the difference term zero in these cases.) Then members of the general family of RSOs include
the sequence {Tβk

} defined over all probability distributions for each r.v. in the sequence {βk} with
βk ∈ [0, 1]. (Note, in particular, that the r.v.s βk can follow a different probability distribution for
each k.) We further define T Fβ to be the general family of RSOs comprising all sequences of operators
{T }, each as defined in (4), such that there exists a sequence of {βk} and, for all x ∈ X and a ∈ A,
the following inequalities hold

TBQ(x, a)− βk(Vk(x)−Qk(x, a)) ≤ T Q(x, a) ≤ TBQ(x, a).

Observe that, for any (x, a) in (4) where a is not the optimal action, we have Vk(x) > Qk(x, a)
occurring very often (i.e., for many k), causing Q(x, a) to (eventually) deviate more from V (x);
otherwise, for a such that Q(x, a) = V (x), then Vk(x) > Qk(x, a) will only happen relatively rarely,
thus not affecting the end value of V (x). Since the value function V (x) does not change but the action-
value function Q(x, a) does indeed change, this can lead to a larger action gap and can potentially
render more efficient ways of ultimately finding V (x) through the iterative updating of Q(x, a), as
indicated in [13, 6]. Moreover, we observe that the multiplier βk in front of Vk(x) − Qk(x, a) is
desired to be relatively large individually, but its overall efforts should not be so large as to affect
the end value of V (x). We therefore introduce a family of RSOs where βk is allowed to take on any
value as long as its average βk remains less than or equal to 1. Obviously, these conditions are strictly
weaker than those identified in [6] – theirs being purely deterministic and constrained to [0, 1), and
ours based on r.v.s βk that can take on values well outside of [0, 1). Since the r.v.s βk need not be
identically distributed (with the sole requirement that βk is between 0 and 1 inclusively) and since
realizations of βk can take on values far beyond or equal to 1, the family of operators T Fβ clearly
subsumes the family of previously identified deterministic operators as a special case.

For the analysis of our family of stochastic operators, we consider the following key definitions.
Definition 3.1. A sequence of random operators {Tk} for M = (X,A,P, R, γ) is optimality-
preserving in a stochastic sense if for any Q0 ∈ Q and x ∈ X, and for the sequence of r.v.s
Qk+1 := TkQk, the following properties hold: Vk(x) := maxa∈AQk(x, a) converges a.s. to a
constant V̂ (x) as k →∞, and for all a ∈ A, we have a.s.

Q∗(x, a) < V ∗(x)⇒ lim sup
k→∞

Qk(x, a) < V̂ (x). (5)

Definition 3.2. A sequence of random operators {Tk} forM = (X,A,P, R, γ) is gap-increasing in
a stochastic sense if for all Q0 ∈ Q, x ∈ X and a ∈ A, the following inequality holds a.s.:

A(x, a) := lim inf
k→∞

[Vk(x)−Qk(x, a)] ≥ V ∗(x)−Q∗(x, a). (6)
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The property of the optimality-preserving definition essentially ensures a.s. that at least one optimal
action remains optimal and all suboptimal actions remain suboptimal, while the property of the
gap-increasing definition implies robustness when the inequality (6) is strict a.s. for at least one
(x, a) ∈ X× A. In particular, as the action gap of an operator increases while remaining optimality-
preserving, the end result can be greater robustness to approximation/estimation errors [13].

We next present one of our main theoretical results establishing that our general family of RSOs is
both optimality-preserving and gap-increasing in a stochastic sense.

Theorem 3.1. Let TB be the Bellman operator defined in (2) and {Tβk
} a sequence of RSOs as

defined in (4). Considering the sequence of r.v.s Qk+1 := Tβk
Qk on a sample path basis with

Q0 ∈ Q, the sequence of operators {Tβk
} is both optimality-preserving and gap-increasing in a

stochastic sense, a.s. Furthermore, all operators in the family T Fβ are optimality-preserving and
gap-increasing in a stochastic sense, a.s.

Even though the stochastic operators in T Fβ are not contraction mappings and therefore do not have a
fixed point (as is also true for TC [6]), Theorem 3.1 establishes that each of these stochastic operators
in T Fβ is still optimality-preserving. Moreover, the definition of T Fβ and Theorem 3.1 significantly
enlarge the set of optimality-preserving and gap-increasing operators beyond the purely deterministic
operators identified in [6]. In particular, our new sufficient conditions for optimality-preserving
operators in a stochastic sense implies that significant deviation from the Bellman operator is possible
without loss of optimality; in comparison, the deterministic operator in [6] never allows a value of βk
equal to or greater than 1. More importantly, the definition of T Fβ and Theorem 3.1 imply that the
search space for maximally efficient operators is an infinite dimensional space of sequences of r.v.s,
instead of the finite dimensional space for maximally efficient operators alluded to in [6]. To this
end and due to our stochastic framework, we now establish results on stochastic ordering properties
among the sequences of r.v.s {βk} that lead to corresponding ordering properties among the action
gaps of the random operators. These results offer key relational insights into important orderings of
different operators in T Fβ , which further demonstrates the benefit of our RSOs and can potentially be
exploited in searching for and attempting to find maximally efficient operators in practice.

Theorem 3.2. For all Q̂0 = Q̃0 = Q0 ∈ Q and for each integer k ≥ 0, suppose Q̂k+1 and Q̃k+1

are respectively updated with two different RSOs Tβ̂k
and Tβ̃k

that are distinguished by β̂k and β̃k
satisfying the stochastic ordering β̂k ≥st β̃k; namely Q̂k+1 = Tβ̂k

Q̂k and Q̃k+1 = Tβ̃k
Q̃k. Then we

have that the action gaps of the two systems are stochastically ordered in the same direction, namely
Â(x, a) ≥st Ã(x, a).

Theorem 3.3. For all Q̂0 = Q̃0 = Q0 ∈ Q and for each integer k ≥ 0, suppose Q̂k+1 and Q̃k+1

are respectively updated with two different RSOs Tβ̂k
and Tβ̃k

that are distinguished by β̂k and β̃k
satisfying the convex ordering β̂k ≥cx β̃k; namely Q̂k+1 = Tβ̂k

Q̂k and Q̃k+1 = Tβ̃k
Q̃k. Then

we have that the action gaps of the two systems are convex ordered in the same direction, namely
Â(x, a) ≥cx Ã(x, a).

Theorem 3.4. For all Q̂0 = Q̃0 = Q0 ∈ Q and for each integer k ≥ 0, suppose Q̂k+1 and Q̃k+1

are respectively updated with two different RSOs Tβ̂k
and Tβ̃k

that are distinguished by β̂k and β̃k
satisfying E[β̂k] = E[β̃k] and Var[β̂k] ≤ Var[β̃k]; namely Q̂k+1 = Tβ̂k

Q̂k and Q̃k+1 = Tβ̃k
Q̃k.

Then we have Var[Q̂k+1] ≤ Var[Q̃k+1]. Furthermore, the action gaps of the two systems have the
following properties: E[Â(x, a)] = E[Ã(x, a)] and Var[Â(x, a)] ≤ Var[Ã(x, a)].

The first two theorems conclude that, among the sequences of βk that preserve optimality, those
stochastically larger and more variable sequences can produce larger action gaps w.r.t. two standard
and important stochastic orderings. Theorem 3.4 points out that a larger variance for βk, with the
same fixed mean value, leads to a larger variance for Qk(x, a) while rendering the same expectation
for the action gap and a larger variance in the action gap. We know that, in the limit, the optimal
action will maintain its state-action value function. Then, when k is sufficiently large, we can expect
that the state-value function Qk(x, b∗) for the optimal action b∗ in state x will be very close to the
optimal value Q∗(x, b∗). A larger variance therefore suggests the potential for a greater separation
between Qk(x, b∗) and the state-value function Qk(x, a) for sub-optimal actions a, and thus the
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latter can be understood to have a larger action gap in the limit. Hence, sequences of βk with large
variances can be seen as a very simple instance of the stochastic ordering results.

4 Experimental Results

Within the general RL framework of interest, we consider a standard, yet generic, form for Q-learning
so as to cover the various problems empirically examined in this section. Specifically, for all Q0 ∈ Q,
x ∈ X, a ∈ A and an operator of interest T , we consider the sequence of action-value Q-functions
based on the following generic update rule:

Qk+1(x, a) = (1− αk)Qk(x, a) + αkT Qk(x, a), (7)

where αk is the learning rate for iteration k. Our theoretical results study the behavior of Q(x, a)
under a general class of different operators, establishing the benefits of our RSOs over previously
proposed operators. We now turn to our empirical comparisons that consist of the Bellman operator
TB , the consistent Bellman operator TC , and instances of our family of RSOs Tβk

under different
distributions for the sequence of βk.

We conduct various experiments across several well-known problems using the OpenAI Gym frame-
work [10], namely Acrobot, Mountain Car, Cart Pole and Lunar Lander. This collection of problems
spans a variety of RL examples with different characteristics, dimensions, parameters, and so on. In
each case, the state space is continuous and discretized to a finite set of states; i.e., each dimension is
discretized into equally spaced bins where the number of bins depends on the problem to be solved
and the reference codebase used. For every problem, the specific Q-learning algorithms considered
are defined as in (7) where the appropriate operator of interest TB , TC or Tβk

is substituted for T ;
at each timestep, (7) is iteratively applied to the Q-function at the current state and action. The
experiments for each problem from the OpenAI Gym were run using the existing code found at [23, 1]
exactly as is with the default parameter settings and the sole change consisting of the replacement
of the Bellman operator in the code with corresponding implementations of either the consistent
Bellman operator or RSO; see Appendix C of the supplement for the corresponding python code. It
is apparent from these codes that RSO can be directly and easily implemented as a replacement for
the classical Bellman operator.

We note that each of the algorithms from the OpenAI Gym implements a form of the ε-greedy method
(e.g., occasionally picking a random action or using a randomly perturbed Q-function for determining
the action) to enable some form of exploration in addition to the exploitation-based search of the
optimal policy using the Q-function. Our experiments were therefore repeated over a wide range of
values for ε, where we found that the relative performance trends of the various operators did not
depend significantly on the amount of exploration under the ε-greedy algorithm. In particular, the
same performance trends were observed over a wide range of ε values and hence we present results
based on the default value of ε used in the reference codebase.

Multiple experimental trials are run for each problem, where we ensured the setting of the random
starting state to be the same in each experimental trial for all of the operators considered by
initializing them with the same random seed. We observe in general across all experimental results
that for different problems and different variants of the Q-learning algorithm, simply replacing the
Bellman operator or the consistent Bellman operator with an RSO results in significant performance
improvements. The RSOs considered in every set of experimental trials for each problem consist
of different distributions for the sequence of βk. Specifically, we empirically study the following
instances of our family of RSOs:
1. βk sampled from a uniform distribution over [0, 1), thus E[βk] = 1

2 and Var[βk] = 1
12 ;

2. βk sampled from a uniform distribution over [0, 2), thus E[βk] = 1 and Var[βk] = 1
3 ;

3. βk sampled from a uniform distribution over [0.5, 1.5), thus E[βk] = 1 and Var[βk] = 1
12 ;

4. βk set to 3
5 plus a r.v. sampled from a Beta(2, 3) distribution, thus E[βk] = 1 and Var[βk] = 1

25 ;
5. βk set to 7

9 plus a r.v. sampled from a Beta(2, 7) distribution, thus E[βk] = 1 and Var[βk] = 7
405 ;

6. βk set to a r.v. sampled from a Pareto(1, 2) distribution minus 1, thus E[βk] = 1, Var[βk] =∞;
7. βk set to a r.v. sampled from a Pareto(1, 3) distribution minus 1

2 , thus E[βk] = 1, Var[βk] = 3
4 ;

8. βk set to 0.5 and 1.5 in an alternating manner, thus having E[βk] = 1 and Var[βk] = 1
12 ;

9. βk set to 1, thus having E[βk] = 1 and Var[βk] = 0.
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Observe that the first and second RSO instances include values of βk that are equal or relatively close
to 0; since xm = 1 in the sixth instance together with the subtraction of 1, this also includes values of
βk that are equal or relatively close to 0; all other RSO instances exclude values of βk that are equal
or relatively close to 0. We note that the last RSO instance is consistent with the advantage learning
operator in [4, 6], though it is important to note that β = 1 was disallowed in [6], unnecessarily so as
our results have established. To gain insight on the different RSO instances, the results presented in
this section focus on the simple case of operators Tβk

associated with sequences of r.v.s {βk} drawn
from specific probability distributions in an independent and identically distributed manner. We
note, however, that various experiments were performed with very simple combinations of different
distributions for βk over the iterations k ∈ Z+. As a specific example, we considered βk ∼ U [0, 1)
for β0, . . . , βk′ and then βk ∼ U [0, 2) for βk′+1, . . ., but these results were not considerably better,
and often worse, than those presented below for βk ∼ U [0, 2).
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Figure 1: Average number of steps needed to solve minimization problems during training phase.

4.1 Acrobot

This problem is first discussed in [20]. The state vector is 6-dimensional with three actions possible
in each state, and the score represents the number of timesteps needed to solve the problem. The
position and velocity are discretized into 8 bins whereas the other state components are discretized
into 10 bins. We ran 50 experimental trials over many episodes, with a goal of minimizing the score.

Figure 1a plots the score, averaged over moving windows of 1000 episodes across the 50 trials, as a
function of the number of episodes for a subset of operators during the training phase; the full set of
results are provided in Figure 3. We observe that the average score under the RSOs generally exhibit
much better performance than under the Bellman operator or the consistent Bellman operator, with
the βk sequences of all ones and from Beta(2, 7) rendering the best performance. Table 1 presents
the average score over the last 1000 episodes across the 50 trials together with the corresponding
95% confidence intervals. We observe that the confidence intervals for all operators are quite small
and that the best average scores are consistent with those plotted in Figure 3.

Figure 2b presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are obtained under many of the RSOs and that the confidence intervals for all
operators are quite small. We further observe the differences in the performance orderings among the
operators in comparison with the results in Table 1, where the βk sequences from Pareto(1, 2) and
alternating 0.5 and 1.5 render the best performance followed by βk sequences from U [0, 1).

4.2 Mountain Car

This problem is first discussed in [16]. The state vector is 2-dimensional with a total of three possible
actions, and the score represents the number of timesteps needed to solve the problem. The state
space is discretized into a 40×40 grid. We ran 50 experimental trials over many episodes for training,
each of which consists of up to 200 steps and with a goal of minimizing the score.

Figure 1b plots the score, averaged over moving windows of 1000 episodes across the 50 trials, as a
function of the number of episodes for a subset of operators during the training phase; the full set
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of results are provided in Figure 4. We observe that the average score under the RSOs generally
exhibit considerably better performance than under the Bellman operator or the consistent Bellman
operator, with the βk sequences from Pareto(1, 2) and alternating 0.5 and 1.5 rendering the best
performance followed by βk sequences from U [0, 2). Table 1 presents the average score over the
last 1000 episodes across the 50 trials together with the corresponding 95% confidence intervals. We
observe that the confidence intervals for all operators are quite small and that the best average scores
are consistent with those plotted in Figure 4.

Figure 2b presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are generally obtained under the RSOs and that the confidence intervals for
all operators are quite small. We further observe the differences in the average score performance
orderings among the operators in comparison with the results in Table 1, where the βk sequences
from Pareto(1, 3) and U [0, 2) render the best average score performance.

4.3 Cart Pole

This problem is first discussed in [5]. The state vector is 4-dimensional with two actions possible in
each state, and the score represents the number of steps where the cart pole stays upright before either
falling over or going out of bounds. The position and velocity are discretized into 8 bins whereas
the angle and angular velocity are discretized into 10 bins. We ran 50 experimental trials over many
episodes, each of which consists of up to 200 steps with a goal of maximizing the score. The problem
is considered solved when the score exceeds 195.

Table 1 presents the average score over the last 1000 episodes across the 50 trials for all operators
during the training phase, together with the corresponding 95% confidence intervals. We observe
that the best average scores are obtained under many of the RSOs, with the βk sequences of all ones
and from Beta(2, 7) rendering the best performance followed by βk sequences from U [0.5, 1.5). We
further observe that the confidence intervals for all operators are quite small.

Table 2 presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are obtained under many of the RSOs and that the confidence intervals for
all operators are quite small. We further observe the differences in the average score performance
orderings among the operators in comparison with the results in Table 1, where the βk sequences
from U [0.5, 1.5) and U [0, 2) render the best average score performance.
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(a) Average Lunar Lander score (training).

Testing Score Acrobot Mountain Car Lunar Lander

Bellman 189.1± 0.17% 131.2± 0.23% −231.0± 0.92%
Consistent Bellman 185.3± 0.20% 127.2± 0.22% −185.1± 0.98%

βk ∼ U [0, 2) 189.5± 0.16% 121.2± 0.21% −164.4± 1.05%
βk ∼ U [0, 1) 184.9± 0.18% 126.9± 0.23% −207.0± 0.94%
βk = 1.0 189.2± 0.18% 121.9± 0.21% −157.8± 1.10%

βk ∈ {0.5, 1.5} 181.3± 0.23% 122.3± 0.20% −174.0± 1.01%
βk ∼ U [0.5, 1.5) 192.4± 0.13% 122.8± 0.21% −168.1± 1.08%
βk ∼ Beta(2,3) 185.0± 0.20% 122.6± 0.21% -163.5± 1.13%
βk ∼ Beta(2,7) 186.2± 0.19% 122.3± 0.21% −164.8± 1.06%
βk ∼ Pareto(2) 180.7± 0.37% 125.0± 0.20% −216.9± 0.94%
βk ∼ Pareto(3) 186.6± 0.21% 121.1± 0.21% −166.2± 1.04%

1

(b) Table of average scores (testing).

Figure 2: Average number of steps needed to solve Lunar Lander maximization problem during
training phase; Average scores for all RSO instances and three problems during testing phase.

4.4 Lunar Lander

This problem is discussed in [10]. The state vector is 8-dimensional with a total of four possible
actions, and the physics of the problem is known to be notoriously more difficult than the foregoing
problems. The 6 continuous state variables are each discretized into 4 bins. The score represents
the cumulative reward comprising positive points for successful degrees of landing and negative
points for fuel usage and crashing. We ran 50 experimental trials over many episodes, each of which
consists of up to 200 steps with a goal of maximizing the score.
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Figure 2a plots the score, averaged over moving windows of 1000 episodes across the 50 trials, as a
function of the number of episodes for a subset of operators during the training phase; the full set of
results are provided in Figure 5. We observe that the average score under the RSOs generally exhibit
better performance than under the Bellman operator or the consistent Bellman operator, with the
βk sequences from Beta(2, 3) and of all ones rendering the best performance. Table 1 presents the
average score over the last 1000 episodes across the 50 trials together with the corresponding 95%
confidence intervals. We observe that the confidence intervals for all operators are quite small and
that the best average scores are consistent with those plotted in Figure 5.

Figure 2b presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are generally obtained under the RSOs and that the confidence intervals for
all operators are quite small. We further observe some consistencies in the performance orderings
among the operators in comparison with the results in Table 1, where the βk sequences of all ones
and from Beta(2, 3) render the best performance followed by βk sequences from U [0, 2).

5 Conclusions and Discussion

Building on the work of Farahmand [13] and Bellemare et al. [6], who argue that increasing the
action gap while preserving optimality can improve the performance of value-iteration algorithms
in environments with approximation or estimation errors, we propose and analyze a new general
family of RSOs for RL that subsumes as a strict subset the classical Bellman operator and other
purely deterministic operators proposed in the literature. Our theoretical results include proving that
our stochastic operators are optimality-preserving and gap-increasing in a stochastic sense and that
stochastic and variability orderings among the sequence of random operators lead to corresponding
orderings among the action gaps. In addition, our stochastic framework and theoretical results shed
new light on and help to resolve the open fundamental questions raised in [6] related to the possibility
of weaker optimality conditions, the statistical efficiency of proposed deterministic operators, and the
possibility of finding maximally efficient operators. Specifically, our theoretical results show that the
conditions for optimality are much weaker and the statistical efficiency of our stochastic operators
can be made much stronger, both allowing significant degrees of freedom in finding alternatives to the
Bellman operator for different purposes and applications. Meanwhile, these important improvements
completely alter and clarify the question of finding the maximally efficient operators from a finite
dimensional parameter optimization problem suggested in [6] to an optimization problem in an
infinite dimensional space (of the infinite sequences of r.v.s), for which our established stochastic and
variability orderings among sequences of random operators can potentially assist in searching for
maximally efficient operators in practice. Our family of RSOs represents a stochastic approach not
often seen in the RL literature that should be exploited to a much greater extent.

A collection of empirical results – based on well-known problems within the OpenAI Gym frame-
work spanning various RL examples with diverse characteristics – support our theoretical results,
consistently demonstrating and quantifying the significant performance improvements obtained with
our RSOs over existing operators. We note that, while the focus of our empirical results has been on
Q-learning, our family of RSOs are applicable to other RL approaches such as DQN [15].

It is important to highlight a few fundamental tradeoffs in identifying maximally efficient operators for
different RL problems, based on our theoretical and empirical results. On the one hand, when sampled
values of βk are relatively small, then it is possible for the small offset by βk(Vk(x) − Qk(x, a))
on truly suboptimal actions a to have limited or no effect on the separation between optimal and
suboptimal actions. On the other hand, when sampled values of βk are relatively large, then it is
possible for the large offset of βk(Vk(x)−Qk(x, a)) to be applied against the truly optimal action
a∗ due to approximation or estimation errors. In addition, the level of impact of these and related
factors associated with the sequence of r.v.s {βk} can vary over the value iterations moving from
k = 0 to the limit as k →∞. We view the problem of finding maximally efficient operators for RL
problems as identifying sequences of random operators that address these fundamental tradeoffs in
order to maximize action-gap regularity for the suboptimal actions of each state. Our theoretical
and empirical results further raise a related fundamental issue that concerns whether maximizing the
action gap is sufficient to improve the performance of value-iteration algorithms in environments
with approximation or estimation errors.
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A Proofs of Theoretical Results

In this section we present the proofs of our main theoretical results.

A.1 Proof of Theorem 3.1

For any x ∈ X, define πbk(x) := argmaxbQk(x, b) on each sample path ω of the stochastic operator
{Tβk
}. By the definition of Qk(x, a), and since Vk(x) ≥ Qk(x, a) for all a by the definition of

Vk(x), we have that Tβk
Qk(x, a) ≤ TBQk(x, a) and Tβk

Qk(x, π
bk(x)) = TBQk(x, πbk(x)), both

a.s. Although πbk depends on the state x, we will omit the argument x in what follows for ease of
exposition.

Making use of the facts that Qk(x, πbk) = Tβk
Qk−1(x, π

bk) = Vk(x), we then derive

Vk+1(x)− Vk(x) ≥ Qk+1(x, π
bk)−Qk(x, πbk)

= Tβk
Qk(x, π

bk)− Tβk
Qk−1(x, π

bk) = TBQk(x, πbk)− Tβk
Qk−1(x, π

bk)

= TBQk−1(x, πbk) + γEP[Vk(x
′)− Vk−1(x′)|x, πbk ]− Tβk

Qk−1(x, π
bk)

≥ γEP[Vk(x
′)− Vk−1(x′)|x, πbk ],

where the third line follows directly from the definition of TB and the fourth line is directly due to
the order relation of TB and Tβk

. This renders

Vk+1(x)− Vk(x) ≥ γEP[Vk(x
′)− Vk−1(x′)|x, πbk ],

and by induction we obtain

Vk+1(x)− Vk(x) ≥ γkEP[V1(x
′)− V0(x′)|x, πb1 , . . . , πbk ],

from which we conclude

Vk+1(x)− Vk(x) ≥ −γk||V1(x′)− V0(x′)||∞. (8)

Define fk = ||V1(x′)− V0(x′)||∞
∑k−1
`=0 γ

` for k ∈ Z+. Obviously, Vk(x) + fk is uniformly upper
bounded from the facts that the rewards are bounded functions and γ ∈ (0, 1). Then (8) implies
that Vk(x) + fk is monotone, and thus it will converge. Meanwhile, fk obviously converges to
||V1(x′)− V0(x′)||∞/(1− γ), which leads to the a.s. convergence of Vk(x).

Given the a.s. convergence of Vk(x), we now need to identify its limit. The probabilistic nature of
the stochastic operators makes it possible to leverage different forms of convergence of measures
for the corresponding sequence of r.v.s. Specifically, this probabilistic nature affords us the liberty
to exploit weak convergence limits (convergence in probability) to identify the limit of Vk(x) after
establishing above the stronger a.s. convergence for Vk(x), since a.s. convergence naturally implies
that Vk(x) also weakly converges to the limit. Namely, it suffices for us to establish the limit
of Vk(x) under convergence in probability which, although a weaker form of convergence, leads
to the same limit as that for a.s. convergence. We therefore need to show that, for any ε > 0,
limk→∞ P[|Vk(x)− V ∗(x)| > ε] = 0. Denoting V̂ (x) = limk→∞ Vk(x) and defining

Q̂(x, a) := lim sup
k→∞

Qk(x, a) = lim sup
k→∞

Tβk
Qk(x, a),

it is readily apparent that we simply need to show

P[Q̂(x, a)− TBQ̂(x, a) > ε] = 0 and P[Q̂(x, a)− TBQ̂(x, a) < −ε] = 0, (9)

since (9) leads to V̂ (x) = maxa{R(x, a)} + γE[V̂ (x′)], which is the equation that is uniquely
satisfied by V ∗(x).

Let us show the first part of (9), and the second part can be argued similarly. Observe the statement
of P[Q̂(x, a)− TBQ̂(x, a) > ε] = 0 is actually equivalent to

{Qk(x, a) ≤ TBQk(x, a) + ε}
happens infinitely often as k goes to infinity. The later is true due to the fact that

{Qk+1(x, a) ≤ TBQk(x, a) +
ε

2
} ∪ {|Qk+1(x, a)−Qk(x, a)| ≤

ε

2
} ⊆ {Qk(x, a) ≤ TBQk(x, a) + ε}
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and the fact that both {Qk+1(x, a) ≤ TBQk(x, a)+ ε
2} and {|Qk+1(x, a)−Qk(x, a)| ≤ ε

2} happen
infinitely often. The first one is due to the definition of Qk(x, a) and the second one is due to the
convergence of the subsequence corresponding to the limit superior.

Hence, the desired relationship V̂ (x) = V ∗(x) holds a.s., which establishes the preservation of
optimality.

Now, turning to prove that Tβk
is gap-increasing in a stochastic sense, the above arguments render

limk→∞ Vk(x) = V ∗(x) a.s., and thus (6) is equivalent to lim supk→∞Qk(x, a) ≤ Q∗(x, a) a.s.
This inequality follows on a sample path basis from Tβk

Q(x, a) ≤ TBQ(x, a) by definition and our
above arguments, and thus we have the desired result for the operators Tβk

. Furthermore, it is readily
verified that the above arguments can be similarly applied to cover all of the operators in T Fβ .

Lastly, from the above results of (6) and V̂ (x) = V ∗(x) a.s., it follows that (5) also holds a.s. for Tβk

as well as for all operators in T Fβ , thus completing the proof.

A.2 Proof of Theorem 3.2

First, we prove that Q̂k ≤st Q̃k holds for every k ≥ 0, arguing by induction where the relationship
obviously holds for k = 0. Suppose that this holds true for certain k, then the identity

Qk+1(x, a) = R(x, a) + γEP max
b∈A

Qk(x
′, b)− βk(Vk(x)−Qk(x, a)),

together with the fact that β̂k ≥st β̃k, yields

E[f(Q̂k+1)|Q̂k] ≤ E[f(Q̃k+1)|Q̃k]

for any increasing function f(·), as long as the expectations exist. Furthermore, by the induction
assumption, we can conclude that E[f(Q̂k+1)] ≤ E[f(Q̃k+1)], and therefore Q̂k ≤st Q̃k because of
the properties of f(·) and the definition of stochastic ordering (≥st). Meanwhile, for any state-action
pair (x, a) in these systems, the action gap is characterized by the quantity

lim inf
k→∞

Vk(x)−Qk(x, a).

Equivalently, we have

V ∗(x)− lim sup
k→∞

Qk(x, a),

since we know that for both sequences {β̂k} and {β̃k}, the RSO is optimality preserving. We
therefore obtain

E[f(V ∗(x)− lim sup
k→∞

Q̂k+1)] ≥ E[f(V ∗(x)− lim sup
k→∞

Q̃k+1)]

for any increasing function, which follows from the fact that the limit preserves the stochastic order.
Hence, the stochastic order of the action gap is established.

A.3 Proof of Theorem 3.3

We follow along similar lines for the proof of Theorem 3.2, but for convex ordering. With f(x) being
a convex function (and so is f(−x)) and with the identity

Qk+1(x, a) = R(x, a) + γEP max
b∈A

Qk(x
′, b)− βk(Vk(x)−Qk(x, a)),

we can prove by induction that Q̂k ≥cx Q̃k. Then, for any convex function f(·), we have

E[f(V ∗(x)− lim sup
k→∞

Q̂k+1)] ≥ E[f(V ∗(x)− lim sup
k→∞

Q̃k+1)],

and thus establishing the convex order of the action gaps.
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A.4 Proof of Theorem 3.4

Let us start by showing that Var[Q̂k] ≤ Var[Q̃k], for any k ≥ 0. Proceeding by induction where the
result trivially holds when k = 0, we assume the result holds for any k and we examine Var[Q̂k] and
Var[Q̃k]. We can readily see that

Var[Q̂k+1] = E[Var[Q̂k+1|Q̂k] + Var[E[Q̂k+1|Q̂k]]
= Var[β̂k]E[(V̂k(x)− Q̂k(x, a))2] + Var[E[Q̂k+1|Q̂k]]

and
Var[Q̃k+1] = E[Var[Q̃k+1|Q̃k] + Var[E[Q̃k+1|Q̃k]]

= Var[β̃k]E[(Ṽk(x)− Q̃k(x, a))2] + Var[E[Q̃k+1|Q̃k]],
and therefore Var[Q̂k+1] ≤ Var[Q̃k+1].

Next, for any ε > 0, we know that |E[V̂k(x)] − E[Ṽk(x)]| < ε for sufficiently large k and for
any x, due to the a.s. convergence of both V̂k(x) and Ṽk(x) to V ∗(x) together with their uniform
boundedness. We then can conclude, for sufficiently large k, that |E[Q̂k(x, a)]− E[Q̃k(x, a)]| < ε
from the expressions

E[Q̂k(x, a)] = [E[TBQ̂k|Q̂k]] + E[β̂k]E[E[V̂k(x)− Q̂k(x, a)|Q̂k]],
E[Q̃k(x, a)] = [E[TBQ̃k|Q̃k]] + E[β̃k]E[E[Ṽk(x)− Q̃k(x, a)|Q̃k]].

Now, recalling the definition in (6) that A(x, a) := lim infk→∞[Vk(x) − Qk(x, a)] for any (x, a),
and considering any converging subsequence of Q̂nk

(x, a), we have

E[ lim
nk→∞

[Vnk
(x)− Q̂nk

(x, a)]] = lim
nk→∞

E[Vnk
(x)− Q̂nk

(x, a)]

≥ lim
nk→∞

E[Vnk
(x)− Q̃nk

(x, a)]− ε

≥ E[lim inf
nk→∞

[Vnk
(x)− Q̃nk

(x, a)]]− ε ≥ E[Ã(x, a)]− ε,

where the interchange of limit and expectation in the first equality is due the uniform boundedness
of Q̂k(x, a), the first inequality is due to the above relationship between E[V̂k(x)] and E[Ṽk(x)] as
well as E[Q̂k(x, a)] and E[Q̃k(x, a)], the second inequality is due to Fatou’s Lemma, and the last
inequality is a basic property of limit inferior. Since this is true for any converging subsequence, it
holds for the subsequence that achieves Â(x, a), and therefore we have E[Â(x, a)] ≥ E[Ã(x, a)]− ε.
Meanwhile, we can apply the exact same arguments in a similar manner to also conclude that
E[Ã(x, a)] ≥ E[Â(x, a)]− ε. We therefore have E[Â(x, a)] = E[Ã(x, a)] since ε is arbitrary.

The desired result on the variance ordering will follow by showing that E[Â(x, a)2] ≤ E[Ã(x, a)2].
For this purpose, again consider any converging subsequence of Q̃nk

(x, a). We then similarly have

E
[

lim
nk→∞

(Vnk
(x)− Q̃nk

(x, a))2
]
= lim

nk→∞
E
[
(Vnk

(x)− Q̃nk
(x, a))2

]
= lim

nk→∞
E[V ∗(x)− Q̃nk

(x, a)]2

≥ lim
nk→∞

E[V ∗(x)− Q̂nk
(x, a)]2

≥ E
[
lim inf
nk→∞

[V ∗(x)− Q̂nk
(x, a)]2

]
≥ E

[
lim inf
k→∞

[V ∗(x)− Q̂k(x, a)]2
]
≥ E[Â(x, a)2],

where the interchange of limit and expectation in the first equality is due the uniform boundedness
of Q̃k(x, a), the second equality is due to the fact that Vnk

(x) converges to V ∗(x) a.s., the first
inequality follows from Var[Q̂k] ≤ Var[Q̃k], the second inequality is due to Fatou’s Lemma, and the
last inequality is a basic property of limit inferior. Since this result holds true for any converging
subsequence of Q̃nk

(x, a), with the one that achieves Ã(x, a) being one of them, we can conclude
that E[Ã(x, a)2] ≥ E[Â(x, a)2].
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B Additional Experimental Results

In this section we provide additional experimental results that expand upon those provided in the
main paper.

The full set of experimental results during the training phase for Acrobot, Mountain Car, and Lunar
Lander are presented in Figures 3, 4, and 5, respectively.
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Figure 3: Average number of steps needed to solve Acrobot minimization problem during training
phase. Full set of experiments under all RSO instances.
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Figure 4: Average number of steps needed to solve Mountain Car minimization problem during
training phase. Full set of experiments under all RSO instances.

The statistics for each problem during the training phase are presented in Table 1, while the statistics
for each problem during the testing phase are presented in Table 2.
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Figure 5: Average score in solving Lunar Lander maximization problem during training phase. Full
set of experiments under all RSO instances.

Training Score Acrobot Mountain Car Cartpole Lunar Lander
Bellman 199.7± 0.02% 199.8± 0.01% 184.2± 0.32% −188.5± 0.84%

Consistent Bellman 199.8± 0.01% 199.2± 0.02% 189.2± 0.22% −171.1± 0.95%
βk ∼ U [0, 2) 184.1± 0.14% 184.5± 0.09% 189.3± 0.21% −165.0± 1.00%
βk ∼ U [0, 1) 198.9± 0.03% 196.8± 0.04% 186.1± 0.25% −183.0± 0.87%
βk = 1.0 145.7± 0.26% 184.8± 0.09% 190.9± 0.19% -159.7± 1.05%

βk ∈ {0.5, 1.5} 192.1± 0.10% 183.9± 0.09% 185.8± 0.26% −162.7± 1.05%
βk ∼ U [0.5, 1.5) 161.0± 0.22% 185.7± 0.09% 189.6± 0.21% −168.2± 0.98%
βk ∼ Beta(2,3) 151.3± 0.24% 184.6± 0.09% 187.1± 0.26% −158.5± 1.05%
βk ∼ Beta(2,7) 147.7± 0.25% 184.4± 0.09% 190.4± 0.20% −162.3± 1.05%
βk ∼ Pareto(2) 198.4± 0.04% 183.7± 0.09% 184.3± 0.32% −183.2± 0.90%
βk ∼ Pareto(3) 181.4± 0.16% 184.9± 0.09% 185.6± 0.28% −163.9± 1.01%

Table 1: Mean scores for solving each problem during training phase. Full set of experiments under
all RSO instances. The best scores are highlighted in bold and the second best scores are highlighted
in italics.

Testing Score Acrobot Mountain Car Cartpole Lunar Lander
Bellman 189.1± 0.17% 131.2± 0.23% 189.2± 0.24% −231.0± 0.92%

Consistent Bellman 185.3± 0.20% 127.2± 0.22% 185.5± 0.28% −185.1± 0.98%
βk ∼ U [0, 2) 189.5± 0.16% 121.2± 0.21% 189.6± 0.23% −164.4± 1.05%
βk ∼ U [0, 1) 184.9± 0.18% 126.9± 0.23% 184.9± 0.26% −207.0± 0.94%
βk = 1.0 189.2± 0.18% 121.9± 0.21% 189.6± 0.25% −157.8± 1.10%

βk ∈ {0.5, 1.5} 181.3± 0.23% 122.3± 0.20% 181.6± 0.33% −174.0± 1.01%
βk ∼ U [0.5, 1.5) 192.4± 0.13% 122.8± 0.21% 192.8± 0.18% −168.1± 1.08%
βk ∼ Beta(2,3) 185.0± 0.20% 122.6± 0.21% 185.0± 0.29% -163.5± 1.13%
βk ∼ Beta(2,7) 186.2± 0.19% 122.3± 0.21% 186.4± 0.27% −164.8± 1.06%
βk ∼ Pareto(2) 180.7± 0.37% 125.0± 0.20% 180.1± 0.52% −216.9± 0.94%
βk ∼ Pareto(3) 186.6± 0.21% 121.1± 0.21% 186.5± 0.29% −166.2± 1.04%

Table 2: Mean scores for solving each problem during testing phase. Full set of experiments under all
RSO instances. The best scores are highlighted in bold and the second best scores are highlighted in
italics.
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C Python Code

We tested the various operators of interest on several RL problems and algorithms. For our empirical
comparisons, the existing code that updates the Q-learning value based on the Bellman operator TB
is replaced with the corresponding code for the TC and Tβk

operators. In particular, the snippets of
code in Figure 6 describe how this is generically implemented for the original TB operator together
with the added TC and Tβk

operators, respectively.

def UpdateQBellman(self,currentState,action,nextState,reward,alpha,gamma):
Qvalue=self.Q[currentState,action]
rvalue=reward+gamma*max([self.Q[nextState,a] for a in self.actionsSet])
self.Q[currentState,action] += alpha*(rvalue - Qvalue)

def UpdateQConsistent(self,currentState,action,nextState,reward,alpha,gamma):
Qvalue=self.Q[currentState,action]
rvalue=reward+gamma*(max([self.Q[nextState,a] for a in self.actionsSet])

if currentState != nextState else Qvalue)
self.Q[currentState,action] += alpha*(rvalue - Qvalue)

def UpdateQRSO(self,currentState,action,nextState,reward,alpha,gamma,beta):
Qvalue=self.Q[currentState,action]
rvalue=reward+(gamma*(max([self.Q[nextState,a] for a in self.actionsSet]))

-beta*(max([self.Q[currentState,a] for a in self.actionsSet])-Qvalue))
self.Q[currentState,action] += alpha*(rvalue - Qvalue)

Figure 6: Generic python code for all three operators
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