A Preliminaries on SLOPE

Sorted ¢;-norm penalized regression, henceforth referred to as SLOPE, is a method for recovering 3
when one has knowledge of y, X and the prior distribution B. We define the sorted ¢1-norm of a
vector b € RP with respect to parameter vector A € RP as follows:

p
Ia(b) := > il (A.1)
=1

where Ay > ... >\, > 0and |b|(1) > ... > |b],) are the order statistics of the entries of vector |b|.

In general, SLOPE is the solution to the following convex optimization problem

R 1
B = arg mgnC(b), where C(b) := §||y — Xb|]? + Ja(b). (A2)

We refer to E as the SLOPE estimate and C(-) as the SLOPE cost function. Notice that when
A1 = ... =\, the problem reduces to LASSO since in this case the sorted ¢1 norm, J(b), equals
the usual ¢1 norm, ||b||; = Y>-7_, |b;|. We refer to the function C(-) stated in (A.2) as the SLOPE

cost function and the SLOPE estimator ,é is the one that minimizes the SLOPE cost. We note that the
SLOPE cost function C(-) depends on both g and A, so technically a notation like C(,, x)(-) would be
more rigorous, however, we don’t think that dropping the explicit dependence on (y, A) will cause
any confusion.

In studying the SLOPE estimator ,@, it will be useful to study the proximal operator, prox ; : R? — R?,
associated with a convex function f : RP — R, which is defined for v € RP as

. 1
prox ;(v) = arg mnin {§||'U —b|* + f(b)}. (A3)

For a convex function f : R? — R, we denote the subgradient of f at a point x € RP as 0f(x). We
use the following fact relating the proximal operator to the subgradient of the SLOPE norm (A.1)
repeatedly throughout the work.

Fact A.1. If prox;, (v1) = vy, then v1 — vy € 0Jx(V2).

We now describe explicitly 9.J, C RP. Define f[m : RP — {maximal atoms}. In words, flm finds
the maximal atoms of ranking of the absolute values of «. For example if x = (5,2, —3, —5), then

I, corresponds to the mapping
1 2 3 4
{1,2} 4 3 {1,2}

with T, () = ({5, =5}, {5, =5}, =3, 2) and TT; 1 (A) = ({\1, Ao}, A, Az, {A1, Az d).

Define an equivalence relation 2 ~ y if || = |y|. Then II, partitions elements in  into different
equivalence classes I. The motivation of using equivalence classes roots from AMP. In calibration,
we need V prox which equals the number of non-zero equivalence classes.

Fact A.2.

ifsr 0 = vy € S([II;1(N\)]r) sign(s;);
ifs; =0 = |v;| € Sp([TI5?!

dJx(8) = ¢ v € RP : for each equivalent class I, o
(A1)

Here S, Sy are polytope-related mappings,

S(u) := {y : y = Au for some doubly stochastic matrix A}
So(u) := {y : y = Awu for some doubly sub-stochastic matrix A}

where a doubly sub-stochastic matrix is defined as a square matrix of non-negative real numbers,
cach of whose rows and columns sum to at most 1.

To see why 0.Jx(s) takes that form in S when s; # 0, we look at indices in the same equivalence
class: sy has the same absolute value so the penalties are shared among them. This naturally leads
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to an assignment problem: assign jobs (penalties) to workers (s;) where doubly stochastic matrix
is commonly seen. For a rigorous proof, we refer to [29] Exercise 8.31. In other words, S(u) is a
permutohedron, a convex hull with vertices corresponding to permuted entries of u.

On the other hand, Sy does not require that the sharing of penalties and entries is strict: row and/or
column sums can be smaller than one. Such difference roots from the partial derivative of ¢; norm:
ie. ’6|x|’—1whenx7é0and]6|x|] [0,1] when z = 0.

B Proof of the Main Theoretical Results

To prove Theorem 3, we use a result guaranteeing that the state evolution given in (2.4) characterizes
the performance of the SLOPE AMP algorithm (1.3b), given in Lemma B.1 below. Specifically,
Lemma B.1 relates the state evolution (2.4) to the output of the AMP iteration (1.3b) for pseudo-
Lipschitz loss functions. This result follows from [8, Theorem 14], which is a general result relating
state evolutions to AMP algorithm with non-separable denoisers. In order to apply [8, Theorem 14],
we need to demonstrate that our denoiser, i.e. the proximal operator prox Jaur, (+) defined in (A.3),

satisfies two additional properties labeled (P1) and (P2) below.
Define a sequence of denoisers {n;}peN>0 where 7]; : RP — RP to be those that apply the proximal
operator prox Joor, (+) defined in (A.3), i.e. for a vector v € RP, define

n;(v) ‘= prox;, (v). (B.1)

(P1) For each t, denoisers n;,() defined in (B.1) are uniformly Lipschitz (i.e. uniformly pseudo-
Lipschitz of order k£ = 1) per Definition 3.1.

(P2) For any s,t with (Z, Z') a pair of length-p vectors such that (Z;, Z]) are i.i.d. ~ N (0, X)
fori € {1,2,...,p} where X is any 2 X 2 covariance matrix, the following limits exist and
are finite.

plim |8, plim ~EI87r)(8+ 2), and  plim B{s3(8 + 2) (B + 2).

p—0o0 p—)OC p—>oo

We will show that properties (P1) and (P2) are satisfied for our problem in Appendix D.

Lemma B.1. [8, Theorem 14] Under assumptions (Al) - (A4), given that (P1) and (P2) are satisfied,
for the AMP algorithm in (1.3b) and for any uniformly pseudo-Lipschitz sequence of functions
¢n R" X R™ = Rand ¢, : RP x RP —» R, let Z ~ N(0,1,,) and Z' ~ N(0,1,), then

plim (¢n(zt, w) — Elo,(w + /72 — 02Z, w)]) =0,
plim (1,(8" + X', 9) ~ E[u,(8 + 72", 8)]) =0,
p

where Ty is defined in (2.4).

We now show that Theorem 3 follows from Lemma B.1 and Theorem 2.

Proof of Theorem 3. First, for any fixed n and ¢, the following bound uses that ,, is uniformly
pseudo-Lipschitz of order £ and the Triangle Inequality,

6(8'.8) (8.0 = £(1+ (1220 1+(”(\@)”) )xle - Al

<2(+ (07 () (B e - B

Now we take limits on either side of the above, first with respect to p and then with respect to t. We
note that the term \/LE |3t — 3| vanishes by Theorem 2. Then as long as

k—1 ~ k—1 k—1
mplim (18°1/v5) el (181/vp) . and  plim (I8I/vE) . B2)
p p p
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are all finite, we have that
plim ¢;,(B, 8) = lim plim v, (8", 8).
P P

But by Theorem B.1 we also know that

11{11 plim z/)p(ﬂt, B8) = li}n plim E[dJP(nt(,B +7Z),8),
L p L p

giving the desired result.

Finally we convince ourself that the limits in (B.2) are finite. Since k finite, that the third term in
(B.2) is finite follows by property (P2). The bound for the first term in (B.2) follows by Theorem B.1:
since

B =prox,, (X T2+ 8" = (X T2+ ),

Tt

we apply Theorem B.1 with uniformly pseudo-Lipschitz function ¢, (3¢ + X T 2%, 8) = %”77; (B* +
X T24)|12 to get
plim ||8'||* /p = plim Ez[[[;,(8 + :.2)|*]/p,
P P

for Z ~ N(0,1,). Then we note that by the Lipschitz property of 77;; (property (P1)), we have

Elll, (8 + 7 2)|1") <E[|8 + 7. Z|*] < 2| 8| + 2p7.
Plugging this into the limit result, we find

lim plim ||8'[|*/p = 2 plim [|8]]*/p + 21im 7§ = 2073 + 277,
P p

where the final inequality follows by Assumption (A2) and Property (P2). Then the second term in
(B.2) is finite follows by Theorem 3 and the bound on the first term.

d
C State Evolution Analysis
Proof of Theorem 1. To begin with, we will prove that F(72, ar) defined in (2.8), namely
1
F(TQ,QT) =02+ 5—pE||pr0me (B+71Z2)— B||2, (C.1)

is concave with respect to 72. The proof follows along the same lines as the proof of [3, Proposition
1.3], however, whereas the proof of [3, Proposition 1.3] proceeds by explicitly expressing the first
derivative of the corresponding function F, and then differentiating on the explicit form to get the
second derivative, in SLOPE case, because of the averaging that occurs within the proximal operation,
it is extremely difficult to similarly derive an explicit form. To work around this, we keep all
differentiation implicit.

First note
oF . 0 ; 1 .
Srhar) = oo (o 5y Elpros,, (B +72) - B|?)
(a) 1 L 0 2
= %ZE{F([pFOXJGT(B‘FTZ”i—Bi> } (C2)

i=1
p
= 2> B{(lpron,,. (B +72)): - B) 5 lorox,, (B + 72)L )
i=1

We note that the interchange between the derivative (a limit) and the expectation in step (a) of the
above holds due to a dominated convergence argument that relies on the following lemma.
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Lemma C.1. Define an equivalence classes I; for each index i = {1,2, ..., p}, defined as
I :={j : |lprox,, (B +7Z)];| = |[prox,, (B +7Z)][}.

With the above definition, for any j € I; we have that I; = I;. Let I indicate the collection of unique
equivalence classes. Then

<Z|Slgn (Bi+712)2Z; — ozz|)2 (C.3)

1 1
~prox;, (B+72) - B! << Y —
plka‘ | i€y,

9
o2 p

Lemma C.1 will be proved below, after we solve % prox; (B+71Z)l;.

Now we describe how the bound in Lemma C.1 can be used to produce the dominated convergence
result needed in step (a) of (C.2). First note,

%}E{ZlI—tl(Zﬁlgn(B +772,)7; —m|) }S%E{Ikzalj—lk'(;‘wzg_i_a?)z}

L€l
E{ZZZ2+O¢ }z;E{Z(Zﬁ—I—&f)}
Ix€l i€l i€[p]

:2+2||a|| /p < 00

The first and second inequalities follow from (>, z;)? < n ", z7. The last inequality comes from
entries of ¢ being finite and then ||| /p < max; a? < oco. Therefore we can invoke the dominated
convergence theorem that allows the exchange of the derivative and expectation in step (a) of (C.2).

Now we want to further simplify (C.2). For each 1 <1 < p, we would like to study 5% [prox;_ (B+
7Z));. We first note that the mapping 72 — [prox ; (B + 7Z)]; can be considered as f(g(72)),

where g : R — R?” is defined as y — g(y) := (B + Z\/gj,a\/ﬂ) and f : R? — R is defined as
(a,b) — f(a,b) := [prox j, (a)];. Hence,

0
77|

prox (B +72)]; = Jrog(12) 2 J5(9(r%) dy(72)
2 a]T (C4)

= [Vaf(g(7'2)),vbf(g(7.2))] [;7 x

where Jp, € R™*" is the Jacobian matrix of a function h : R™ — R™ and step (a) follows by the
chain rule. We denote the proximal operator using a function 7 : R* — R as n(a, b) := prox ;, (a)
and we consider the partial derivatives of 7 with respect to its first and second arguments. We denote

o 0 7]
o1m(a,b) —dlag(aa1 By ’dap) n(a, b), (C.5)
and 9 9
dan(a,b) := dlag(db1 30 By ) (a,b). (C.6)
Recall that we have defined the derivatives computed in 017(a, b) in (2.2). Note that by anti-symmetry
between two arguments, %[n(a,b)]i = —sign([n(a.b)];) 7= [ (a,b)];. Then using (2.2), namely
the result,
Olproxy, () _ ain(o, N _ [ st N el i [0, )| = (o, AL,
0, v, 0, otherwise,
_ (o, Ml = [[n(v, M);1} sign([n(v, M)liln(v, M)
HL <k <p: (v, M| = [n(v, N[}
we have
d .
Ef( b) = o—[n(a, b)]s = Hl[n(a, b)li| = |ln(a, b)];|} sign(n(a, b)li[n(a, b)l;)[drn(a, b)L;,
3 J
(C.7)
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and similarly,

Ji-1(@.b) = (e b) = X {n(a. b)) | = [ B sizulln(a. b)) Drnta. b

J

Now plugging the above into (C.4), we have
6[pr0xjm (B+712)];
or?

= (B + 72, o)) sign(n(B + 7Z,a7)]) Y (sian(n(B + 72, a)},)Z; — a)
JeL;

(C.8)

Then dropping the explicit statement of the 7(+, -) input to save space, namely writing 7; to mean
(B + 7Z,at)]; or [01n); to mean [01m(B + 7Z, a)]; for example, we plug the result of (C.8)
into (C.2) to find

o am) = 23 S w0 B Pl sl g7, — o)
i=1jel;
~ L Z ST B0l + (0~ B, Z S E{ (i B2 [ouns sign(m)o }.
i=1j€I; i=1j€I;

(C.9)

where the second equality follows by Stein’s lemma: for fixed ¢ and j € I, for standard Gaussian Z
we have E{f(Z)Z} = E{f'(Z)} and therefore,

1 ) .
—E{[0un]; sign(mi) (n; — Bi) sign(n;) Z; }
= E{ sign(n;) sign(n;) [(m —Bi)- -
= E{ (i — B0l + (02 .

where in the last step we use the definition of - [n(a b)]; given in (C.7) and the fact that

A 0in(a,b)); = sign(n) sign(n,)[93n(a. b)].

Therefore, simplifying (C.9), we have shown

(6pT) x an (7%, ar) ZE{TIII(GM +(i Bi)[f‘??n]) [O1m): sign (n; )( j;%}
(C.10)

We now have the tools to prove Lemma C.1.

Proof of Lemma C.1. First,

a1 1~ 0 2
w};”proxJM(B +77Z) — B||2 = EZ w([proxj (B+7124)]; — B7)
i=1
2 < 9
— [—); [prome (B+71Z)]; — Bi) ﬁ[proxJM (B+712Z)];.

As in the work above, we denote the proximal operator using a function 1 : R?? — RP as n(a, b) :=
prox ;, (a). Now from (C.8), denoting I; := {j : |[n(a, b)];| = |[n(a,b)]:|},

dlprox;_ (B +712)];
or?

= - [0(B + 2. ar)isien(n(B + 72, ar)]) Y (sign(n(B + 72, a1)];)Z; — ay).
JEL;
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Noting that sign([n(B+7Z, at)];) = sign(B; +7Z;) for any index i when [n(B+7Z, at)]; # 0,
we therefore have,

0 1
WEHPTOXJQT(B +7Z) - B

p
= i’ Z([n(B +7Z,ar1)]; — B;) [0n(B + 7Z, ar)); sign(B; + 7Z;) Z(sign(Bj +72;)Z; — o).
i= jel;
’ (C.11)

Now using the fact that the averaging operation reduces the dot product, meaning informally, that for
a vector v € RP,

(mean(v), ..., mean(v)) - v < ||jv|%.
Using this in (C.11), we have for any i € {1,2,...,p} that n(B + 7Z, ar)]; — B; can be replaced
with B; + 7Z; — sign(B; + 7Z;)a;7 — B;. Therefore,

01
gz lorons, (B +72) ~ BP?

11) Z ; —sign(B; + 77;)a;) [01n(B + 7Z, o)) sign(B; + 77;) (sign(B; + 7Z;) Z; — o)

Z sign(B; + 7Z;)Z; — o) (sign(B; + 72;)Z; — o) [0in(B + 7Z, ) ;|-
el

Sx

1
pl-

(C.12)
Next, using that 0 < [[O1n)];| < 1/|L;],

P
‘ Z Z(sign(Bi +72)Z; — o) (sign(Bj +72;)Z; — o) [Oin(B + 72, aT)];
i=1 jel»

_Z|I| Z’ (sign(B; + 72;)Z; — o) (sign(Bj + 72;)Z; — o)|.
Jjel;

Finally we make the following observation. Any equivalence class I; is a collection of indices
j € {1,2,...,p} such that |[prox; (B + 7Z)|;| = |[prox; (B + 7Z)];|. Therefore, for any
J € I; we have that I; = I;. We then let I indicate the collection of unique equivalence classes, and
we have

Z 1A Z ’ sign(B; + 72;)Z; — o) (sign(B; + 72;)Z; — ozj)’
]EI

Z 7 Z ’&gnB +77:)Z; — o) (sign(Bj + 725) Z; —aj)’
I€I| k'weh

Now plugging back into (C.12),
a1
‘ﬁ—ﬂproxjm(B +72) - B

<S>

| k| Z ‘(sign(BZ- +77;)Z; — o) (sign(B; +7725) 25 — )

Pier i,5€I

2
Z (Z|Slgn (Bj+717Z;)Z; — |)
Py, eI an

O

Now considering (C.10), for simplicity in our future calculations, we suppress |I;| to 1 without loss
of generality, since |I;| is a constant and all operations below preserves linearity. To see this, recall
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that I; == {j : |[n(B + 7Z,ar)|;| = |[n(B + 7Z, 7));|} and note that when |[n(B + 7Z, aT)];
equals |[n(B + 7Z, ar)];, the terms will remain equal after small changes in 7. Note that similarly,
> jer, &> will pass through future calculations as a constant. We will convince the readers by
generalizing back to multiple-element equivalence classes at the end. Therefore the above becomes

(opT) % (T , QT)

ijr { OB +7Z,an)]) + ((1(B + 72, ar)]; — B)[03(B + 77, a7)];

— Zoc IE{ sign([n(B+7Z,ar)];)(In(B+7Z,ar)); — B;)[01n(B + 12, aT)]i}-
(C.13)

In what follows we will need (o take care with the points (x, y) such that [037(x, y)]; is not equal to
0. We will refer to such points as ‘kink’ points, since these are points where the partial derivative
jumps (and the second partial gradient acts like Dirac delta function (z)), or in other words the
points where the two (sorted, averaged) arguments in 7 are equal to each other. Informally, we define
a ‘kink’ point as an index where the sorted vector  matches the corresponding threshold y exactly.
In LASSO, for example, the correspond to the ‘kinks’ of the soft-thresholding function. We have

(%n(B +7Z,ar)); =6(B; +77; — cut) — 6(Bi + 7Z; + i)

and
EA(nB+r2,an)-B)oRn(B+7Z, 07} = — B{Bils(ai—= B)—o(~ai— B}
Therefore,

(opT) % (98F2 (7%, at)

= 1E||on(B +7Z,a1)|]* - {BT [P — %B) — (o — %B)}} (C.14)

.
- E{ [a osign(n(B +7Z.ar)® ()(B +1Z,ar) — B)] on(B + 12, ar)}.

Now that we’ve shown the first derivative, we want to consider the second derivative in order to prove
concavity.

Notice, however, that in order to prove concavity of F(72, a7) it suffices to show % [% (%, ar)] <

0 because 525 (£5) = 25 [ (#5)] = 7= (£ (%))
We now show -2 [ 25 (72, ar)] < 0. First,
o1 OF

(09) ¥ 5-[ 55 (7% an)]

9 , 01 1 1

= 5-Ellom(B+7Z,a7)|* - -~ E{BT[¢(a— —B) - 6(~a - ~B)]}

01 . T
— E;E{ {a Osign(n(B+7Z,a1))© (n(B+71Z,a1) — B)] (B + TZ,aT)}.

(C.15)

Now we apply chain rule to the first term on the right side of (C.15):

9 0 &
E1E||z~)177(B +7Z,ar)|]? = 5 ZE{([am(B +7Z,a71)))*}
) ! ) (C.16)
Z {{omn(B +72,a7)] i5-l0m(B + rZ,ar));}.
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Similarly to the work shown in Lemma C.1 and the description immediately following, a dominated

convergence argument justifies the interchange of expectation and differentiation. We note that by
(C.8),

or (B +7Z,ar)]; = [Z; — a;sign(B; + 72;)|[0in(B + 72, at))s,
and a similar argument gives

o [in(B+7Z,ar)); = Zi[afn(B +7Z,ar1)); + o;[020m(B + 7Z, o)) C.17)
= [Zi — aisign(B; + 72,)|[0in(B + 7Z, aT)];.

Plugging (C.17) into (C.16),
0

—E|on(B + 7Z,ar)|]?
or

2

I
.Mﬁ

s
Il
-

]E{[Zi — a;sign(B; + 7Z;)][0wn(B + 7Z, ar)]i[ﬁf'r](B +77, ar)]l}

I

©
Il
-

E{[011(B + 72, ar)i{(Z; — a)d([B +7(Z - a)l;) — (Zi + a)d([B +7(Z + @)},

(C.18)
where the final equality follows since for any index i, [0n(x,y)]; = 0 at almost every (x,y)

Namely, the points (z,y) such that [0%7(z, y)]; is not equal to 0 are the ‘kink’ points, as described
above, where the partial derivative is undefined and the two (sorted, averaged) arguments are equal.
Namely, in these cases B+ 7Z = ot or B + 7Z = —a7. We note that

2) E{[0i(B +7Z,an)il(Z: — a)o(B +7(Z — a)l) — (Zi+a)o(B +(Z + )]}

= 2E{[8177(B +7Z,am) ' (Z-a)0d(B+717(Z —-a))— (Z+a)0d(B+71(Z + a))]}.
Next we see that
(Z-a)0dB+7(Z—-a)) — (Z+ ) ©6(B+71(Z + o))
- (B/n) o [5(3 Y71 (Z-a) -8B +r(Z+ a))]
Hence, using ¢(z) = \/szﬂ exp(—22/2) to be the standard Gaussian density,

9 2
5-Ellom(B +72,a7)]|

- QIEBIEZ|B{[8177(b t7Z,ar)] [(Z-a)cdb+m(Z —a))— (Z+a)odbtr(Z+a)|B= b}
@ SEn{bT 6 (b/r) b ole t (b/r))|B = b}

_ —%EB{BT [$la— (B/7) — éla+ (B/7)] }.

(C.19)

In step (a) in the above, the extra 1/7 scaling comes from the fact that 7Z is the input to the Dirac
delta.

Then, using ¢'(u) = —ue¢(u), the second term in (C.15) equals

1B {B (6~ 2B) - o(-a - -B))}
5 E{BTl6(a~ ~B) ~¢(-a - B} (€20

- %E {(Bz)T[(%B — ) o dla— %B) - (%B b a)od(—a— %B)]}
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Now we study the third term in (C.15). First, recalling 01 = —0d,n we have
01

T
E;E{ [a Osign(B+717Z)0 (n(B+71Z,a71) — B)] om(B+T1Z, ar)}

1 - , T
— 7§E{ [a osign(B4+7Z)0 (n(B+71Z,aT1) — B)] hn(B+T1Z, aT)} (C.21)
1 .
+ . ; aiEE{ sign(B; + 7Z;)([n(B + 7Z,a1)|; — B;)[oin(B 4+ 7Z, aT)]i},

and therefore we study %E{ sign(B; + 72Z;)(In(B + 7Z,ar)); — B))[0Oin(B +1Z, ar)]l}. We

agin note that in (C.21), a dominated convergence argument will justify the interchange of derivative
and expectation. This is done similarly to what was studied in Lemma C.1 and the description
immediately following.

By (C.8) and (C.17),
0

E[n(B +7Z,ar1)); = Z; — a;sign(B; + 77;)|[0in(B + 7Z, at)];,

and

0
5o 0m(B + 72, an)]; = [Z; — cisign(Bi + TZ)0in(B +7Z, at));.
Then using an argument as in (C.4), we have that

- %E{ sign(B; + 7Z;)(In(B + 7Z,ar)); — B;)[0in(B + 72, aT)]i}
- IE{[ZZ- — asign(B; + 72:)|([0vn(B + 7 Z, m)]i)Q} (C.22)
+ E{[Zi — a;sign(B; + 7Z)|([n(B +7Z,a)]; — By)[0in(B +7Z, 0”')]2'}~

Plugging (C.22) back into (C.21), we have

QE]E{ {a Osign(B+72) o (n(B+7Z,a71) — B)} Tam(B +7Z ar)}
orr c’ ’ ’

T
= —%E{ [a Osign(B+7Z)0 (n(B+71Z4,at) — B)] on(B+T1Z, om-)}
1 . 2 T 2
+ ;E{ [81gn(B +7Z2)0a+a® Z] (Oin(B +1Z,ar)) }

1 T
+ ;E{ [sign(B +7Z)0a’+a 0 Z} [(n(B +7Z,a1) - B)® #n(B+7Z, ar)] },
(C.23)
Now consider the first two terms on the right side of (C.23). We write | := — sign(B + 7Z) . Then
using 0 < 917(B + 7Z, at) < 1 where the inequalities hold elementwise,
1 T 1 T
_2E{ [a olon(B+T1Z,ar) — B)} on(B+T1Z, aT)} — —IE{ [I caltae Z] (Om(B+71Z, OLT))2}
T T
1 T 1 9 T
< SE{[a0lomB+Z.a7) - B)| om(B+rZ,an)} - —E{‘I Da+ao Z‘ on(B +7Z,ar) |
T T

< %E{ [a © (l ©MmB+T1Z,a1)-B)-T1|l0a+ Z|)}T01U(B+TZ,QT)} <o,
(C.24)

where the final step of (C.24) follows since, elementwise, if n(B + 7Z, ar) = 0 then 01n(B +
T7Z,at) =0and if (B +7Z,ar) # 0thenn(B +7Z,a1) = B+ 17Z — arsign(B + 7Z)
and therefore

lomB+71Z,ar)—B)—71[loa+Z|=16 (7Z — arsign(B+72)) -7l © a + Z]

By considering the individual cases | =1 = B+ 7Z <0andl=—-1 = B+ 7Z > 0,itis
not hard to see that the above is less than or equal to 0.
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Now plugging (C.24) into (C.23), we have

31]E{ [a Osign(B+72Z) o (n(B+7Z,a7) — B)]Tam(B +172 aT)}
orr ' ’ ’
.
< %E{ [sign(B +7Z)0a’+ae Z] {(n(B +7Z.ar) — B) 0 din(B + TZ,aT)j| },

(C.25)

Next we note that 97n(B + 7Z, aT) is zero everywhere except at the ‘kink’ points B + 7Z = aT
or B + 7Z = —ar and therefore when the inner product is elementwise non-zero we have that

nB+17Z,ar)—B=1(a+2)0dB+7Z=—ar)+717(Z-a)0d(B+7Z =ar)
=—-B0o[0(Z=-B/t—a)+0(Z=—-B/t+a).
This means
- E{[sign(B +7Z2)0a’+ao Z]" [(n(B +7Z,ar) - B)@ #n(B+71Z, ar)] }
= —IEBIEZ|B{[sign(b +7Z)0a’+ao Z]" [(n(b +7Z,ar) —b) ©din(b+7Z, ar)} ‘B = b}
_ —IEB]EZ|B{[a2 caoz]" [B ©8(Z=-BJr — a)] t~a2+an )" [B ©8(Z =B/ + a)] ‘B - b}
= “Bp{la (B/)TBeo(B/r+ )] + lac (B/D][Boo(-B/r +a)}

= Es{la 0 BY [0(B/r +a) + o(-B/7 + )},
(C.26)

Now we plug (C.19),(C.20) and (C.26) back into (C.15) in order to show that d@ [(?—F(T ,ar)] <0.

09) x [ (72, am)| < - LER{(BY) [o(-B/r + @)~ o(B/r+a))}.  €20)

Now we justify that the above is non-positive by showing that the elementwise term inside the
expectation is non-positive. First assume B; > 0, then o; — B; /7 < a; + B; /7 and ¢(ov; — B; /7) >
¢(a; + B; /7). The other case B; < 0 follows similarly.
Therefore, (C.27), implies

oF

or [0 2(7- om‘)} <0

Recall in (C.13), we suppressed | ;| to 1 and consequently set jer 0 = Qg Now we validate that

we did not lose generality: multiplying |I;| to (C.27) does not change the negativity as shown, and
changing o; — > jer, @ makes no difference to the conclusion as both terms are positive.

Now we have shown that F(72, at) defined in (2.8), is concave with respect to 72. Next we consider
taking 72 — oc. Define f () := 6 lim o 425 (72, 7). By a very similar argument to the proof
of concavity, we can see f'(a) < 0: letting 7 — o0 is equivalent to setting B = 0 in (C.10). Now
we define D elementwise as [D(v)]; = #{j : |v;| = |vl|} if v; # 0 and oo otherwise, define

n:=n(Z,a) and rewrite O1n(7Z, 1) = " n(Z, o) = D( 5- From (C.10),
12
)= 5 2 {IDwZ )l nn(Z. l)? ozl nZ el 3 o}
=1 J:ln(Z.e)]il=[n(Z,0)]:]
12
= Z-)ZE 1—[[n(Z, el > a; | /[D(n(Z, a))];
i=1 3:1n(Z,e))il=|n(Z,e));]

(C.28)

This simplification is both explicit and much more efficient in computation because only 7 need to be
memorized.
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Now considering the above we let & — oo and we note that in this case n(Z, o) = 01n(Z,a) = 0
since Z < « almost surely as & — 0o. Therefore lim o0 f(a) = 0. Combined with the fact that
f(a) <0, it follows that f(car) > 0 for all cx.

Since F is concave and strictly increasing for 72 large enough, it is increasing everywhere. Another
fact is that by (C.28), we know that

1 5 1 5 1 .
f(0) = ~E[011(72Z,0)||* = ~E|01(rZ)|* = ~E| Z|]* = 1.
p p p
Then considering the function F again, where
1
F(T2,a7‘) =02+ 5—pE||prome(B +72) — B||27

we have F(0,0) = 02 > 0, and ddTFz (0,0) = $ > 1. Comparing to 7% = O,g—:z =lat7 =0,
together with f(co) = 0, the fixed point equation admits at least one solution for a satisfying
f(a) < . Notice by monotonicity of f, we can define Ayin := {a : f(a) = §} and requires «
being larger than at least one element in A,;,. Here a vector v is larger than another vector u when

Vi, v; > u; and v; > u; for some j. The concavity of F guarantees that the solution is unique and

. . ) . 2
that the sequence of iterates 7; converge to 7. Finally, at fixed point, %(T, ar) < % =1.
O

D Verifying Properties (P1) and (P2)

In this appendix we demonstrate that the properties (P1) and (P2) given in Section B and relating to
the denoiser 7} (-) defined in (B.1) are true.

Verifying Properties (P1) and (P2). Property (P1) follows from the fact that 77;,() = prox;_ (),

as it is easy to show that proximal operators are Lipschitz continuous with Lipschitz constant one.
Namely

[ (v1) = (v2)|| = || prox s, (v1) = prox,, (v2)|] < |lv1 — val|.

Next we show that property (P2) is true. We restate property (P2) for convenience: for any s, ¢ with
(Z, Z’) apair of length-p vectors such that (Z;, Z]) are i.id. ~ N(0,X) for i € [p] where X is any
2 x 2 covariance matrix, the following limits exist and are finite.

1
plim —[| 8], (D.1)
p—oo P
plim %}Ez[,ﬁ—rn;(ﬁ + Z)], (D.2)
pP—00

1
plim Z-)EZ,Z/ m3(B+2Z") 0B+ Z)). (D.3)
pP—00

We first note that the limit in (D.1) exists by Assumption (A2) and the strong law of large numbers.
We focus on the other two limits. These results follow by [21, Proposition 1] given in Lemma E.1
and the following lemma, which is a classic result in probability theory.

Lemma D.1 (Doob’s L' maximal inequality, [19] Chapter VII, Theorem 3.4). Let X1, Xo,. .. , Xp
be a sequence of nonnegative i.i.d. random variables such that E[X; max{0,log(X1)}] < oco. Then,

Xi+Xo4-+X
E[Sup{ 1+ X0+ + pHS e
p>1 p e—1

(1 + E[X; max{0,log(X1)}]).

Proof. Let M,, = %(X 1+ X2+ -+ X,). Then the sequence {M),} is a submartingale and hence
by Doob’s maximal inequality,

E [ sup ]\/fp:| < ﬁ(l + E[M,y max{0,log(M,)}]).
, -

'2p>1
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Note the mapping * — xmax{0,logz} is convex and hence E[M, max{0,log(M,)}]) <
E[X; max{0,log(X;)}]. The result follows by Fatou’s lemma and by noting that supp/>p>1 M, 1t
sup,,~; Mp as p’ — oo. a

We first consider the limit in (D.2). Note that by Cauchy-Schwarz, (E.1) implies that
‘BT (8+2)-BTH(B+2) 50, as p-roc, (D4)
This follows because

|87 8+ 2) - 8TH (8 + 2)| <

181 y [nb(B+ 2Z) - h(B+ Z)|
VP VP '

Then the right side of the above goes to 0 with growing p because ||3||/,/p limits to a constant as
justified above (this is the limit in (D.1)), and the other term limits to 0 by (E.1).

Next, we show that Ez {sup,, %‘ﬁTﬂ;(ﬁ +2Z) - BThY (B + Z)‘} is finite. Since both 7}, and h*
are Lipschitz(1), by Cauchy-Schwarz inequality, the desired expectation is finite almost surely if both

loun (P [ <0 o i o {20 ] <o

But Lemma D.1 immediately implies the above since E[B2 max{0,log B}] < oo by assumption
(A2).

Now by dominated convergence we have that
IE{hm BT0B+2) ~ BTH (B + )|} = lim ]E‘ﬁ (8+2) - BTH(B+ 2)
> h;n];]g{ﬁ B+ 2)} ~EBTH B+ 2))

Then the above implies that

CEBTB+ 2} ~EBTH B+ 2| 50, s po.

Therefore,

plim ~E2[81(8 + Z)) = plim ~ ; (B0 {h"(Bor + Z0)} - + o B ! (o + Z,)})

p—oo P p—00
— E[BRY(B + Z)],

where B, Z are univariate. By Cauchy Schwarz inequality, E[Bh'(B + Z)] < 0 if E[B?] < o0
and E[h’(B + Z)?] < oo. Since E[B?] = 0 < oo is given by our assumption, it suffices to

show E[h!(B + Z)?] < oo. But this follows from the fact that h'(-) is Lipschitz(1) and therefore
E[h!(B + Z)?] < E[(B + Z)*] <E[B? + E[Z?] = 0 + ¥11 < 00

Finally consider (D.3). Similarly to the work in studying the limit in (D.2), we can show

plim E[np(ﬁ +2Z) "0l (B+ Z)] =E[r*(B+ Z')h'(B + Z)], D.5)

p—>oo

where E[1*(B + Z')h!(B + Z)] < oo by Cauchy-Schwarz and the fact that h*(-) and h'(-) are
Lipschitz(1). Namely, this gives the bound

(MR (B + 21" (B + 2)1)2 < E[(h*(B + 2))| E[(h(B + 2))*] <E((B + Z')*|E[(B + 2)*]
= (E[B*] + E[Z"”])(E[B?] + E[Z?]) = (0§ + 22)(05 + $11) < o0.
In order to prove (D.5), we will show that

SB+Z) 0B+ 2Z)-h(B+2Z) h(B+2Z) =0, as p— oo, (D.6)

23



Then (D.5) follows from (D.6) using a dominated convergence argument, i.e. since both ﬁ,t;(') and
h*(-) are Lipschitz(1), using the Cauchy-Schwarz inequality, if both

L R e A

1
e
2% Sup

then

ﬂﬁ+zfﬁw+zy4ﬂﬁ+Zme+Zﬂ}<m. (D.8)

Note that as before, (D.7) is true by Lemma D.1 and assumption (A2), and so we have the result in
(D.8). Now by dominated convergence, we have that

};ﬁ?%SW+TW%W+m—MW+ZWMW+mH

1
—hm— IEZ
pz

|8+ 2) T8+ 2)~ 1B+ 2) B+ 2)|

> lim — s NT ot _ s NnT ¢ ‘
_QyﬂgghMB+Z)nAﬁ+Zﬂ JE AN (B+2)TH(8+ 2))
Then the above implies, along with the result in (D.6), that
_ s NTpt
| B8+ 2 T8+ 20— B {08+ Z) (B 2| 0, as po oo

But now, using the above, we have the desired result (D.5). Narnely,

1
plim = B {1;(8 + 2") "n (8 + Z)} = plim = 2}E{W@+Zwﬂm+zn
p—oo P Z p—oo P %
=E[h*(B + Z YhW'(B + Z)],
where B, Z’, and Z are univariate. We have now shown (D.5).

Now we want to prove (D.6). First note
B+ 2 B+ 2) — (B + 2)Th(B+ Z)|

S8+ 2) B+ 2)— 1B+ 2) B+ Z)| +

hW(B+Z) B+ 2Z)—h(B+2Z) KB+ Z)|.
D.9)

Now we upper bound both of the terms on the right side of (D.9) using Cauchy-Schwarz. Consider
the second term on the right side of (D.9). Then,

BB+ 2B+ Z) ~ h*(8+ 2 h(B+ 2)| < ||In*(B8+ Z) |8+ 2) — h'(B + Z)]|.
(D.10)

Now consider the first term on the right side of (D.9). Again, by Cauchy-Scwarz,

B2 B+ 2) - 1B+ Z) B+ 2)| = |8+ 2) w8+ 2] W8+ 2)

—|[m(8+ 2) - w8+ 2] [i(8+2) - w8+ 2)+ 1B+ )|

<|[m@+2)-w@+2)] [+ 2 -n@+ )|+ |6+ 2) - wE )] we )
<|np(B+2") = 1*(B + Z")||ln,(B + Z) — h*(B + Z)|| + |*(B + Z)|[|;(B + Z") — h*(B + Z')]|.

(D.11)
Plugging (D.10) and (D.11) into (D.9) we find
hm “(B+2)n w+zy4ﬂﬁ+zfﬁm+zw
SMJ%W+Z)—Ww+ZNW%w+Z%JNﬁ+@H+Mﬂmw+zmwmﬁ+zq_mw+zw
P VD N2 P VP Nz
RSB+ Z))| Iny(B+ Z) — (B + Z)||
1 .
+ 111)11 \/2_? \/}_7
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Now, (D.6) follows since the right side of the above goes to 0 as p grows. This follows since, by
(E.1), as p — o0,

In(B+2) B2 B+ Z) - h(B+ )|
¥ VP

Moreover, since h*(-) and h(-) are separable, by the Law of Large Numbers,

— 0.

lim [h(8 ; z)? _ 1111)11]1) Zp:[hswi + Z)? = E[(h*(B + Z))*] < o0,
ninw = lim [% S hHB + Z))? = RB[(WH(B + 2))’] < %0

where the inequalities follow since E[(h*(B + Z'))*] < E[(B + Z')?] < 0j + %22 < oo and
E[(h"(B + Z))?| <E[(B + Z)?] < 05 + 11 < 0o We have now shown that property (P2) is true.

a

E Proof of Fact 2.4

Proof. The fact follows from the asymptotic separability of the proximal operator [21, Proposition 1]
and the dominated convergence theorem [30] allowing for interchange of limit and expectation. We
sketch this argument now, but first restate [21, Proposition 1], which says that prox Tour, (+) becomes

asymplotically separable as p — oo, for convenience.
Lemma E.1 (Proposition 1, [21]). For an input sequence {v(p)}, and a sequence of thresholds
{A(p)}, both having empirical distributions that weakly converge to a distributions V and A, re-

spectively, then there exists a limiting scalar function h (determined by V and A) such that as
p — o0,

1
Sproxs,,, (w(p)) — h(v(p);V, AP = o, (E.1)
where h applies h(-; V, A) coordinate-wise to v(p) (hence it is separable) and h is Lipschitz(1).

Now we sketch the proof of the existence of the limit in (2.4) (and the result for the limit in (2.10)
follows similarly). By Lemma E.1, the weak convergence of a(p) to A, and the Weak Law of Large
Numbers, one can argue that

1im6ip\\proxJ (B+7.Z) - B|?= %E(h(B +7.Z) — B)?, (E.2)
p

a(p)T«

where h(-) := h(:; B + 7.Z, A7) is the unspecified, separable function of Lemma E.1. This is
consistent with [Lemma 29, [21]]. So then the limit in (2.4) exists if $E(h(B + 7.Z) — B)? < 00
which is true:

E(h(B +7.Z) — B)> < 2B(h(B + 7.2)* + B?) < 2E((B + 7.2)* + B?)
< 2E(2B% + 2722% + B?) = 6E(B?) + 472 < .

Here the first and third inequalities follow from (z — y)? < 2(2? + y?) and the second inequality
follows from h being Lipschitz(1): |h(x)| = |h(z) — h(0)| < |z — 0| = |z|. O
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