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Abstract

We present a novel algorithm to estimate the barycenter of arbitrary probability
distributions with respect to the Sinkhorn divergence. Based on a Frank-Wolfe
optimization strategy, our approach proceeds by populating the support of the
barycenter incrementally, without requiring any pre-allocation. We consider dis-
crete as well as continuous distributions, proving convergence rates of the proposed
algorithm in both settings. Key elements of our analysis are a new result show-
ing that the Sinkhorn divergence on compact domains has Lipschitz continuous
gradient with respect to the Total Variation and a characterization of the sample
complexity of Sinkhorn potentials. Experiments validate the effectiveness of our
method in practice.

1 Introduction

Aggregating and summarizing collections of probability measures is a key task in several machine
learning scenarios. Depending on the metric adopted, the properties of the resulting average (or
barycenter) of a family of probability measures vary significantly. By design, optimal transport
metrics are better suited at capturing the geometry of the distribution than Euclidean distance or
f -divergences [14]. In particular, Wasserstein barycenters have been successfully used in settings
such as texture mixing [40], Bayesian inference [49], imaging [26], or model ensemble [18].

The notion of barycenter in Wasserstein space was first introduced by [2] and then investigated
from the computational perspective for the original Wasserstein distance [12, 50, 54] as well as its
entropic regularizations (e.g. Sinkhorn) [6, 14, 20]. Two main challenges in this regard are: i) how to
efficiently identify the support of the candidate barycenter and ii) how to deal with continuous (or
infinitely supported) probability measures. The first problem is typically addressed by either fixing
the support of the barycenter a-priori [20, 50] or by adopting an alternating minimization procedure
to iteratively optimize the support point locations and their weights [12, 14]. While fixed-support
methods enjoy better theoretical guarantees, free-support algorithms are more memory efficient and
practicable in high dimensional settings. The problem of dealing with continuous distributions has
been mainly approached by adopting stochastic optimization methods to minimize the barycenter
functional [12, 20, 50].

In this work we propose a novel method to compute the barycenter of a set of probability distributions
with respect to the Sinkhorn divergence [25] that does not require to fix the support beforehand.
We address both the cases of discrete and continuous probability measures. In contrast to previous
free-support methods, our algorithm does not perform an alternate minimization between support and
weights. Instead, we adopt a Frank-Wolfe (FW) procedure to populate the support by incrementally
adding new points and updating their weights at each iteration, similarly to kernel herding strategies
[5]. We prove the convergence of the proposed optimization scheme for both finitely and infinitely

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



supported distribution settings. A central result to our analysis is the characterization of regularity
properties of Sinkhorn potentials (i.e., the dual solutions of the Sinkhorn divergence problem), which
extends recent work in [21, 23]. We empirically evaluate the performance of the proposed algorithm.

Contributions. The analysis of the proposed algorithm hinges on the following contributions: i) we
show that the gradient of the Sinkhorn divergence is Lipschitz continuous on the space of probability
measures with respect to the Total Variation. This grants us convergence of the barycenter algorithm
in finite settings. ii) We characterize the sample complexity of Sinkhorn potentials of two empirical
distributions sampled from arbitrary probability measures. This latter result is interesting on its
own but it also enables us to iii) design a concrete optimization scheme to approximately solve the
barycenter problem for arbitrary probability measures with convergence guarantees. iv) A byproduct
of our analysis is the generalization of the FW algorithm to settings where the objective functional
is defined only on a set with empty interior, which is the case for Sinkhorn divergence barycenter
problem.

The rest of the paper is organized as follows: Sec. 2 reviews standard notions of optimal transport
theory. Sec. 3 introduces the barycenter functional, and analyses the Lipschitz continuity of its
gradient. Sec. 4 describes the implementation of our algorithm and Sec. 5 studies its convergence
rates. Finally, Sec. 6 evaluates the proposed methods empirically and Sec. 7 provides concluding
remarks.

2 Background

The aim of this section is to recall definitions and properties of Optimal Transport theory with entropic
regularization. Throughout the work, we consider a compact set X ⊂ Rd and a symmetric cost
function c : X × X → R. We set D := supx,y∈X c(x, y) and denote by M+

1 (X ) the space of
probability measures on X (positive Radon measures with mass 1). For any α, β ∈ M+

1 (X ), the
Optimal Transport problem with entropic regularization is defined as follow [13, 24, 38]

OTε(α, β) = min
π∈Π(α,β)

∫
X 2

c(x, y) dπ(x, y) + εKL(π|α⊗ β), ε ≥ 0 (1)

where KL(π|α⊗ β) is the Kullback-Leibler divergence between the candidate transport plan π and
the product distribution α ⊗ β, and Π(α, β) = {π ∈ M1

+(X 2) : P1#π = α, P2#π = β}, with
Pi : X × X → X the projector onto the i-th component and # the push-forward operator. The case
ε = 0 corresponds to the classic Optimal Transport problem introduced by Kantorovich [29]. In
particular, if c = ‖· − ·‖p for p ∈ [1,∞), then OT0 is the well-known p-Wasserstein distance [52].
Let ε > 0. Then, the dual problem of (1), in the sense of Fenchel-Rockafellar, is (see [10, 21])

OTε(α, β) = max
u,v∈C(X )

∫
u(x) dα(x) +

∫
v(y) dβ(y)− ε

∫
e

u(x)+v(y)−c(x,y)
ε dα(x)dβ(y), (2)

where C(X ) denotes the space of real-valued continuous functions on X , endowed with ‖·‖∞. Let
µ ∈M+

1 (X ). We denote by Tµ : C(X )→ C(X ) the map such that, for any w ∈ C(X ),

Tµ(w) : x 7→ −ε log

∫
e

w(y)−c(x,y)
ε dµ(y). (3)

The first order optimality conditions for (2) are (see [21] or Appendix B.2)

u = Tβ(v) α- a.e. and v = Tα(u) β- a.e. (4)

Pairs (u, v) satisfying (4) exist [30] and are referred to as Sinkhorn potentials. They are unique (α, β)
- a.e. up to an additive constant, i.e., (u + t, v − t) is also a solution for any t ∈ R. In line with
[21, 23] it will be useful in the following to assume (u, v) to be the Sinkhorn potentials such that: i)
u(xo) = 0 for an arbitrary anchor point xo ∈ X and ii) (4) is satisfied pointwise on the entire domain
X . Then, u is a fixed point of the map Tβα = Tβ ◦ Tα (analogously for v). This suggests a fixed
point iteration approach to minimize (2), yielding the well-known Sinkhorn-Knopp algorithm which
has been shown to converge linearly in C(X ) [30, 41]. See also Thm. B.10 for a precise statement.
We recall a key result characterizing the differentiability of OTε in terms of the Sinkhorn potentials
that will be useful in the following.
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Proposition 1 (Prop 2 in [21]). Let ∇OTε : M+
1 (X )2 → C(X )2 be such that, ∀α, β ∈M1

+(X )

∇OTε(α, β) = (u, v), with u = Tβ(v), v = Tα(u) on X , u(xo) = 0. (5)

Then, OTε is directionally differentiable and, ∀α, α′, β, β′ ∈M+
1 (X ), the directional derivative of

OTε at (α, β) along the feasible direction (µ, ν) = (α′ − α, β′ − β) is

OT′ε(α, β;µ, ν) = 〈∇OTε(α, β), (µ, ν)〉 = 〈u, µ〉+ 〈v, ν〉 , (6)

where 〈w, ρ〉 =
∫
w(x) dρ(x) denotes the canonical pairing between the spaces C(X ) andM(X ).

Note that∇OTε is not a gradient in the standard sense. In particular note that the directional derivative
in (6) is not defined for any pair of signed measures, but only along feasible directions (α′−α, β′−β).

Sinkhorn Divergence. The fast convergence of Sinkhorn-Knopp algorithm makes OTε (with ε > 0)
preferable to OT0 from a computational perspective [13]. However, when ε > 0 the entropic
regularization introduces a bias in the optimal transport problem, since in general OTε(µ, µ) 6= 0. To
compensate for this bias, [25] introduced the Sinkhorn divergence

Sε : M+
1 (X )×M+

1 (X )→ R, (α, β) 7→ OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β), (7)

which was shown in [21] to be nonnegative, biconvex and to metrize the convergence in law under
mild assumptions. We characterize the gradient of Sε(·, β) for a fixed β ∈M+

1 (X ), which will be
key to derive our optimization algorithm for computing Sinkhorn barycenters.
Remark 2. Let ∇1OTε : M+

1 (X )2 → C(X ) denote the first component of ∇OTε (informally the
component u of the Sinkhorn potentials (u, v)). Then, it follows from Prop. 1 and the definition
of Sinkhorn divergence (7) that for any β ∈ M+

1 (X ) the function Sε(·, β) : M+
1 (X ) → R is

directionally differentiable and admits gradient

∇[Sε(·, β)] : M+
1 (X )→ C(X ) α 7→ ∇1OTε(α, β)− 1

2
∇1OTε(α, α) = u− p, (8)

with u = Tβα(u) and p = Tαα(p) the Sinkhorn potentials of OTε(α, β) and OTε(α, α) respectively
which are zero at xo.

We refer to Appendix C for an in-depth analysis of the directional differentiability properties of the
Sinkorn divergence.

3 Sinkhorn barycenters with Frank-Wolfe

Given β1, . . . βm ∈M+
1 (X ) and ω1, . . . , ωm ≥ 0 a set of weights such that

∑m
j=1 ωj = 1, the main

goal of this paper is to solve the following Sinkhorn barycenter problem

min
α∈M+

1 (X )
Bε(α), with Bε(α) =

m∑
j=1

ωj Sε(α, βj). (9)

Although the objective functional Bε is convex, its domainM1
+(X ) has empty interior in the space of

finite signed measureM(X ). Hence standard notions of Fréchet or Gâteaux differentiability do not
apply. This, in principle causes some difficulties in devising optimization methods. To circumvent
this issue, in this work we adopt the Frank-Wolfe (FW) algorithm. Indeed, one key advantage of
this method is that it is formulated in terms of directional derivatives along feasible directions (i.e.,
directions that locally remain inside the constraint set). Building upon [15, 16, 19], which study the
algorithm in Banach spaces, we show that the “weak” notion of directional differentiability of Sε
(and hence of Bε) in Remark 2 is sufficient to carry out the convergence analysis. While full details
are provided in Appendix A, below we give an overview of the main result.

Frank-Wolfe in dual Banach spaces. Let W be a real Banach space with topological dual W∗
and let D ⊂ W∗ be a nonempty, convex, closed and bounded set. For any w ∈ W∗ denote by
FD(w) = R+(D − w) the set of feasible direction of D at w (namely s = t(w′ − w) with w′ ∈ D
and t > 0). Let G : D → R be a convex function and assume that there exists a map ∇G : D →W
(not necessarily unique) such that 〈∇G(w), s〉 = G′(w; s) for every s ∈ FD(w). In Alg. 1 we present
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Algorithm 1 FRANK-WOLFE IN DUAL BANACH SPACES

Input: initial w0 ∈ D, precision (∆k)k∈N ∈ RN
++, such that ∆k(k + 2) is nondecreasing.

For k = 0, 1, . . .
Take zk+1 such that G′(wk, zk+1 − wk) ≤ minz∈D G′(wk, z − wk) + ∆k

2

wk+1 = wk + 2
k+2

(zk+1 − wk)

a method to minimize G. The algorithm is structurally equivalent to the standard FW [19, 27] and
accounts for possible inaccuracies when computing the conditional gradient (i.e. solving the FW
inner minimization). This will be key in Sec. 5 when studying the barycenter problem for βj with
infinite support. The following result (see proof in Appendix A) shows that under the additional
assumption that ∇G is Lipschitz-continuous and with sufficiently fast decay of the errors, the above
procedure converges in value to the minimum of G with rate O(1/k). Here diam(D) denotes the
diameter of D with respect to the dual norm.
Theorem 3. Under the assumptions above, suppose in addition that∇G is L-Lipschitz continuous
with L > 0. Let (wk)k∈N and (∆k)k∈N be defined according to Alg. 1. Then, for every integer k ≥ 1,

G(wk)− min
w∈D

G(w) ≤ 2

k + 2
Ldiam(D)2 + ∆k. (10)

Frank-Wolfe Sinkhorn barycenters. We show that the barycenter problem (9) satisfies the setting
and hypotheses of Thm. 3 and can be thus approached via Alg. 1.

Optimization domain. LetW = C(X ), with dualW∗ =M(X ). The constraint set D =M+
1 (X ) is

convex, closed, and bounded.

Objective functional. The objective functional G = Bε : M+
1 (X ) → R, defined in (9), is convex

since it is a convex combination of Sε(·, βj), with j = 1 . . .m. The gradient∇Bε : M+
1 (X )→ C(X )

is∇Bε =
∑m
j=1 ωj ∇Sε(·, βj), where ∇Sε(·, βj) is given in Remark 2.

Lipschitz continuity of the gradient. This is the most critical condition and it is studied in the following
theorem.
Theorem 4. The gradient ∇OTε defined in Prop. 1 is Lipschitz continuous. In particular, the first
component∇1OTε is 2εe3D/ε-Lipschitz continuous, i.e., for every α, α′, β, β′ ∈M+

1 (X ),

‖u− u′‖∞ = ‖∇1OTε(α, β)−∇1OTε(α′, β′)‖∞ ≤ 2εe3D/ε (‖α− α′‖TV + ‖β − β′‖TV ),
(11)

where D = supx,y∈X c(x, y), u = Tβα(u), u′ = Tβ′,α′(u
′), and u(xo) = u′(xo) = 0. Moreover, it

follows from (8) that∇Sε(·, β) is 6εe3D/ε-Lipschitz continuous. The same holds for∇Bε.

Thm. 4 is one of the main contributions of this paper. It can be rephrased by saying that the operator
that maps a pair of distributions to their Sinkhorn potentials is Lipschitz continuous. This result is
significantly deeper than the one given in [20, Lemma 1], which establishes the Lipschitz continuity
of the gradient in the semidiscrete case. The proof (given in Appendix D) relies on non-trivial tools
from Perron-Frobenius theory for Hilbert’s metric [32], which is a well-established framework to
study Sinkhorn potentials [38]. We believe this result is interesting not only for the application of
FW to the Sinkhorn barycenter problem, but also for further understanding regularity properties of
entropic optimal transport.

4 Algorithm: practical Sinkhorn barycenters

According to Sec. 3, FW is a valid approach to tackle the barycenter problem (9). Here we describe
how to implement in practice the abstract procedure of Alg. 1 to obtain a sequence of distributions
(αk)k∈N minimizing Bε. A main challenge in this sense resides in finding a minimizing feasible
direction for B′ε(αk;µ− αk) = 〈∇Bε(αk), µ− αk〉. According to Remark 2, this amounts to solve

µk+1 ∈ argmin
µ∈M+

1 (X )

m∑
j=1

ωj 〈ujk − pk, µ〉 where ujk − pk = ∇Sε[(·, βj)](αk), (12)
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Algorithm 2 SINKHORN BARYCENTER

Input: βj = (Yj , bj) with Yj ∈ Rd×nj , bj ∈ Rnj , ωj > 0 for j = 1, . . . ,m, x0 ∈ Rd, ε > 0, K ∈ N.

Initialize: α0 = (X0, a0) with X0 = x0, a0 = 1.

For k = 0, 1, . . . ,K − 1

p = SINKHORNKNOPP(αk, αk, ε)
p(·) = SINKHORNGRADIENT(Xk, ak, p)

For j = 1, . . .m
vj = SINKHORNKNOPP(αk, βj , ε)
uj(·) = SINKHORNGRADIENT(Yj , bj , vj)

Let ϕ : x 7→
∑m

j=1 ωj uj(x)− p(x)

xk+1 = MINIMIZE(ϕ)

Xk+1 = [Xk, xk+1] and ak+1 = 1
k+2

[k ak, 2]

αk+1 = (Xk+1, ak+1)

Return: αK

with pk = ∇1OTε(αk, αk) not depending on j. In general (12) would entail a minimization over
the set of all probability distributions on X . However, since the objective functional is linear in µ
andM+

1 (X ) is a weakly-∗ compact convex set, we can apply Bauer maximum principle (see e.g.,
[3, Thm. 7.69]). Hence, solutions are achieved at the extreme points of the optimization domain.
These correspond to Dirac’s deltas in the case ofM+

1 (X ) [11, p. 108]. Denote by δx ∈ M+
1 (X )

the Dirac’s delta centered at x ∈ X . We have 〈w, δx〉 = w(x) for every w ∈ C(X ). Hence (12) is
equivalent to

µk+1 = δxk+1
with xk+1 ∈ argmin

x∈X

m∑
j=1

ωj
(
ujk(x)− pk(x)

)
. (13)

Once the new support point xk+1 has been obtained, the update in Alg. 1 corresponds to

αk+1 = αk +
2

k + 2
(δxk+1

− αk) =
k

k + 2
αk +

2

k + 2
δxk+1

. (14)

If FW is initialized with a Dirac’s delta α0 = δx0 for some x0 ∈ X , then every further iterate αk
will have at most k + 1 support points. According to (13), the inner optimization for FW consists in
minimizing the functional x 7→

∑m
j=1 ωj

(
ujk(x)− pk(x)

)
over X . In practice, having access to

such functional poses already a challenge, since it requires computing the Sinkhorn potentials ujk
and pk, which are infinite dimensional objects. Below we discuss how to estimate these potentials
when the βj have finite support. We then address the general setting.

Computing∇1OTε for probability distributions with finite support. Let α, β ∈M+
1 (X ), where

β =
∑n
i=1 biδyi and b = (bi)

n
i=1 nonnegative weights summing up to 1. It is useful to identify β

with the pair (Y, b), where Y ∈ Rd×n is the matrix with i-th column equal to yi. Let (u, v) ∈ C(X )2

be the pair of Sinkhorn potentials associated to α and β in Prop. 1, recall that u = Tβ(v). Denote by
v ∈ Rn the evaluation vector of the Sinkhorn potential v, with i-th entry vi = v(yi). According to
the definition of Tβ in (3), for any x ∈ X

[∇1OTε(α, β)](x) = u(x) = [Tβ(v)](x) = −ε log

n∑
i=1

e(vi−c(x,yi))/ε bi, (15)

since the integral Tβ(v) reduces to a sum over the support of β. Hence, the gradient of OTε (i.e.
the potential u), is uniquely characterized in terms of the finite dimensional vector v collecting the
values of the potential v on the support of β . We refer as SINKHORNGRADIENT to the routine which
associates to each triplet (Y, b, v) the map x 7→ −ε log

∑n
i=1 e

(vi−c(x,yi))/ε bi.

Sinkhorn barycenters: finite case. Alg. 2 summarizes FW applied to the barycenter problem (9)
when the βj’s have finite support. Starting from a Dirac’s delta α0 = δx0 , at each iteration k ∈ N the
algorithm proceeds by: i) finding the corresponding evaluation vectors vj’s and p of the Sinkhorn
potentials for OTε(αk, βj) and OTε(αk, αk) respectively, via the routine SINKHORNKNOPP (see
[13, 21] or Alg. B.2). This is possible since both βj and αk have finite support and therefore the
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problem of approximating the evaluation vectors vj and p reduces to an optimization problem over
finite vector spaces that can be efficiently solved [13]; ii) obtain the gradients uj = ∇1OTε(αk, βj)
and p = ∇1OTε(αk, αk) via SINKHORNGRADIENT; iii) minimize ϕ : x 7→

∑n
j=1 ωj uj(x)− p(x)

over X to find a new point xk+1 (we comment on this meta-routine MINIMIZE below); iv) finally
update the support and weights of αk according to (14) to obtain the new iterate αk+1.

A key feature of Alg. 2 is that the support of the candidate barycenter is updated incrementally
by adding at most one point at each iteration, a procedure similar in flavor to the kernel herding
strategy in [5, 31] and conditional gradient for sparse inverse problem [8, 9]. This contrasts with
previous methods for barycenter estimation [6, 14, 20, 50], which require the support set, or at least
its cardinality, to be fixed beforehand. However, indentifying the new support point requires solving
the nonconvex problem (13), a task addressed by the meta-routine MINIMIZE. This problem is
typically smooth (e.g., a linear combination of Gaussians when c(x, y) = ‖x− y‖2) and first or
second order nonlinear optimization methods can be adopted to find stationary points. We note that
all free-support methods in the literature for barycenter estimation are also affected by nonconvexity
since they typically require solving a biconvex problem (alternating minimization between support
points and weights) which is not jointly convex [12, 14]. We conclude by observing that if we restrict
to the setting of [20, 50] with fixed finite support set, then MINIMIZE can be solved exactly by
evaluating the functional in (13) on each candidate support point.

Sinkhorn barycenters: general case. When the βj’s have infinite support, it is not possible to apply
Sinkhorn-Knopp in practice. In line with [23, 50], we can randomly sample empirical distributions
β̂j = 1

n

∑n
i=1 δxij

from each βj and apply Sinkhorn-Knopp to (αk, β̂j) in Alg. 1 rather than to the
ideal pair (αk, βj). This strategy is motivated by [21, Prop 13], where it was shown that Sinkhorn
potentials vary continuously with the input measures. However, it opens two questions: i) whether
this approach is theoretically justified (consistency) and ii) how many points should we sample from
each βj to ensure convergence (rates). We answer these questions in Thm. 7 in the next section.

5 Convergence analysis

We finally address the convergence of FW applied to both the finite and infinite settings discussed in
Sec. 4. We begin by considering the finite setting.

Theorem 5. Suppose that β1, . . . βm ∈M+
1 (X ) have finite support and let αk be the k-th iterate of

Alg. 2 applied to (9). Then,

Bε(αk)− min
α∈M+

1 (X )
Bε(α) ≤ 48 ε e3D/ε

k + 2
. (16)

The result follows by the convergence result of FW in Thm. 3 applied with the Lipschitz constant
from Thm. 4, and recalling that diam(M+

1 (X )) = 2 with respect to the Total Variation. Note that
Thm. 5 assumes SINKHORNKNOPP and MINIMIZE in Alg. 2 to yield exact solutions. In Appendix D
we extend of Alg. 2 and Thm. 5 which account for approximation errors in the above routines.

General setting. As mentioned in Sec. 4, when the βj’s are not finitely supported we adopt a
sampling approach. More precisely we propose to replace in Alg. 2 the ideal Sinkhorn potentials of
the pairs (α, βj) with those of (α, β̂j), where each β̂j is an empirical measure randomly sampled from
βj . In other words we are performing the FW algorithm with a (possibly rough) approximation of
the correct gradient of Bε. According to Thm. 3, FW allows errors in the gradient estimation (which
are captured into the precision ∆k in the statement). To this end, the following result quantifies the
approximation error between∇1OTε(·, β) and ∇1OTε(·, β̂) in terms of the sample size of β̂.

Theorem 6 (Sample Complexity of Sinkhorn Potentials). Suppose that c ∈ Cs+1(X × X ) with
s > d/2. Then, there exists a constant r = r(X , c, d) such that for any α, β ∈ M+

1 (X ) and any
empirical measure β̂ of a set of n points independently sampled from β, we have, for every τ ∈ (0, 1]

‖u− un‖∞ = ‖∇1OTε(α, β)−∇1OTε(α, β̂)‖∞ ≤
8ε re3D/ε log 3

τ√
n

(17)

with probability at least 1− τ , where u = Tβα(u), un = Tβ̂α(un) and u(xo) = un(xo) = 0.
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Fig. 1: Barycenter of nested ellipses Fig. 2: Barycenters of Gaussians (see text)

The result in Thm. 6 is of central importance in this work. We point out that it cannot be obtained by
means of the Lipschitz continuity of∇1OTε in Thm. 4, since empirical measures do not converge in
‖·‖TV to their target distribution [17]. Instead, the proof consists in considering the weaker Maximum
Mean Discrepancy (MMD) metric associated to a universal kernel [46], which metrizes the topology
of the convergence in law ofM+

1 (X ) [47]. Empirical measures converge in MMD metric to their
target distribution [46]. Therefore, by proving the Lipschitz continuity of ∇1OTε with respect to
MMD (see Prop. E.5) we are able to conclude that (17) holds. This latter result relies on regularity
properties of Sinkhorn potentials, which have been recently shown [23, Thm.2] to be uniformly
bounded in Sobolev spaces under the additional assumption c ∈ Cs+1(X ×X ). For sufficiently large
s, the Sobolev norm is in duality with the MMD [35] and allows us to derive the required Lipschitz
continuity. We conclude noting that while [23] studied the sample complexity of the Sinkhorn
divergence, Thm. 6 is a sample complexity result for Sinkhorn potentials. In this sense, we observe
that the constants appearing in the bound are tightly related to those in [23, Thm.3] and have similar
behavior with respect to ε. We can now study the convergence of FW in continuous settings.

Theorem 7. Suppose that c ∈ Cs+1(X ×X ) with s > d/2. Let n ∈ N and β̂1, . . . , β̂m be empirical
distributions with n support points, each independently sampled from β1, . . . , βm. Let αk be the k-th
iterate of Alg. 2 applied to β̂1, . . . , β̂m. Then for any τ ∈ (0, 1], the following holds with probability
larger than 1− τ

Bε(αk)− min
α∈M+

1 (X )
Bε(α) ≤

64r̄εe3D/ε log 3m
τ

min(k,
√
n)

. (18)

The proof is shown in Appendix E. A consequence of Thm. 7 is that the accuracy of FW depends
simultaneously on the number of iterations and the sample size used in the approximation of the
gradients: by choosing n = k2 we recover the O(1/k) rate of the finite setting, while for n = k we
have a rate of O(k−1/2), which is reminiscent of typical sample complexity results, highlighting the
statistical nature of the problem.

Remark 8 (Incremental Sampling). The above strategy requires sampling the empirical distributions
for β1, . . . , βm beforehand. A natural question is whether it is be possible to do this incrementally,
sampling new points and updating β̂j accordingly, as the number of FW iterations increase. To this
end, one can perform an intersection bound and see that this strategy is still consistent, but the bound
in Thm. 7 worsens the logarithmic term, which becomes log(3mk/τ).

6 Experiments

In this section we show the performance of our method in a range of experiments. Additional
experiments are provided in the supplementary material. Code has been made publicly available1.

Discrete measures: barycenter of nested ellipses. We compute the barycenter of 30 randomly
generated nested ellipses on a 50× 50 grid similarly to [14]. We interpret each image as a probability
distribution in 2D. The cost matrix is given by the squared Euclidean distances between pixels. Fig. 1
reports 8 samples of the input ellipses and the barycenter obtained with Alg. 2. It shows qualitatively
that our approach captures key geometric properties of the input measures.

1 https://github.com/GiulsLu/Sinkhorn-Barycenters
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Fig. 3: Matching of a 140x140 image. 5000 FW iterations Fig. 4: MNIST k-means (20 centers)

Continuous measures: barycenter of Gaussians. We compute the barycenter of 5 Gaussian
distributions N (mi, Ci) i = 1, . . . , 5 in R2, with mean mi ∈ R2 and covariance Ci randomly
generated. We apply Alg. 2 to empirical measures obtained by sampling n = 500 points from
each N (mi, Ci), i = 1, . . . , 5. Since the (Wasserstein) barycenter of Gaussian distributions can be
estimated accurately (see [2]), in Fig. 2 we report both the output of our method (as a scatter plot) and
the true Wasserstein barycenter (as level sets of its density). We observe that our estimator recovers
both the mean and covariance of the target barycenter. See the supplementary material for additional
experiments also in the case of mixtures of Gaussians.

Image “compression” via distribution matching. Similarly to [12], we test Alg. 2 in the special
case of computing the “barycenter” of a single measure β ∈ M1

+(X ). While the solution of
this problem is the distribution β itself, we can interpret the intermediate iterates αk of Alg. 2 as
compressed version of the original measure. In this sense k would represent the level of compression
since αk is supported on at most k points. Fig. 3 (Right) reports iteration k = 5000 of Alg. 2 applied
to the 140× 140 image in Fig. 3 (Left) interpreted as a probability measure β in 2D. We note that the
number of points in the support is ∼ 3900: indeed, Alg. 2 selects the most relevant support points
points multiple times to accumulate the right amount of mass on each of them (darker color = higher
weight). This shows that FW tends to greedily search for the most relevant support points, prioritizing
those with higher weight.

k-means on MNIST digits. We tested our algorithm on a k-means clustering experiment. We
consider a subset of 500 random images from the MNIST dataset. Each image is suitably normalized
to be interpreted as a probability distribution on the grid of 28× 28 pixels with values scaled between
0 and 1. We initialize 20 centroids according to the k-means++ strategy [4]. Fig. 4 depicts the 20
centroids obtained by performing k-means with Alg. 2. We see that the structure of the digits is
successfully detected, recovering also minor details (e.g. note the difference between the 2 centroids).

Real data: Sinkhorn propagation of weather data. We consider the problem of Sinkhorn propa-
gation similar to the one in [45]. The goal is to predict the distribution of missing measurements for
weather stations in the state of Texas, US by “propagating” measurements from neighboring stations
in the network. The problem can be formulated as minimizing the functional

∑
(v,u)∈V ωuvSε(ρv, ρu)

over the set {ρv ∈M+
1 (R2)|v ∈ V0}with: V0 ⊂ V the subset of stations with missing measurements,

G = (V, E) the whole graph of the stations network, ωuv a weight inversely proportional to the
geographical distance between two vertices/stations u, v ∈ V . The variable ρv ∈M+

1 (R2) denotes
the distribution of measurements at station v of daily temperature and atmospheric pressure over one
year. This is a generalization of the barycenter problem (9) (see also [38]).

From the total |V| = 115, we randomly select 10%, 20% or 30% to be available stations, and
use Alg. 2 to propagate their measurements to the remaining “missing” ones. We compare our
approach (FW) with the Dirichlet (DR) baseline in [45] in terms of the error d(CT , Ĉ) between the
covariance matrix CT of the groundtruth distribution and that of the predicted one. Here d(A,B) =
‖log(A−1/2BA−1/2)‖ is the geodesic distance on the cone of positive definite matrices. The average
prediction errors are: 2.07 (FW), 2.24 (DR) for 10%, 1.47 (FW), 1.89(DR) for 20% and 1.3 (FW),
1.6 (DR) for 30%. Fig. 5 qualitatively reports the improvement ∆ = d(CT , CDR)− d(CT , CFW )
of our method on individual stations: a higher color intensity corresponds to a wider gap in our
favor between prediction errors, from light green (∆ ∼ 0) to red (∆ ∼ 2). Our approach tends to
propagate the distributions to missing locations with higher accuracy.
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Fig. 5: From Left to Right: propagation of weather data with 10%, 20% and 30% stations with
available measurements (see text).

7 Conclusion

We proposed a Frank-Wolfe-based algorithm to find the Sinkhorn barycenter of probability distribu-
tions with either finitely or infinitely many support points. Our algorithm belongs to the family of
barycenter methods with free support since it adaptively identifies support points rather than fixing
them a-priori. In the finite settings, we were able to guarantee convergence of the proposed algorithm
by proving the Lipschitz continuity of gradient of the barycenter functional in the Total Variation
sense. Then, by studying the sample complexity of Sinkhorn potential estimation, we proved the
convergence of our algorithm also in the infinite case. We empirically assessed our method on a
number of synthetic and real experiments, showing that it exhibits good qualitative and quantitative
performance. While in this work we have considered FW iterates that are a convex combination of
Dirac’s delta, models with higher regularity (e.g. mixture of Gaussians) might be more suited to
approximate the barycenter of distributions with smooth density. Hence, in the future we plan to
investigate whether the perspective adopted in this work could be extended also to other barycenter
estimators.
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Supplementary Material
Below we give an overview of the structure of the supplementary material and highlight the main
novel results of this work.

Appendix A: abstract Frank-Wolfe algorithm in dual Banach spaces. This section contains
full details on Frank-Wolfe algorithm. The novelty stands in the relaxation of the differentiability
assumptions.

Appendix B: DAD problems and convergence of Sinkhorn-Knopp algorithm. This section is a
brief review of basic concepts from the nonlinear Perrom-Frobeius theory, DAD problems, and
applications to the study of Sinkorn algorithm.

Appendix C: Lipschitz continuitity of the gradient of the Sinkhorn divergence with respect to
Total Variation. This section contains one of the main contributions of our work, Theorem C.4,
from which we derive Theorem 4 in the main text.

Appendix D: Frank-Wolfe algorithm for Sinkhorn barycenters. This section contains the
complete analysis of FW algorithm for Sinkhorn barycenters, which takes into account the
error in the computation of Sinkhorn potentials and the error in their minimization. The main re-
sult is the convergence of the Frank-Wolfe scheme for finitely supported distributions in Theorem D.2.

Appendix E: Sample complexity of Sinkhorn potential and convergence of Algorithm 2 in case
of continuous measures. This section contains the discussion and the proofs of two of main results
of the work Theorem 6, Theorem 7.

Appendix F: additional experiments. This section contains additional experiment on barycenters of
mixture of Gaussian, barycenter of a mesh in 3D (dinosaur) and additional figures on the experiment
on Sinkhorn propagation described in Section 6.

A The Frank-Wolfe algorithm in dual Banach spaces

In this section we detail the convergence analysis of the Frank-Wolfe algorithm in abstract dual
Banach spaces and under mild directional differentiablility assumptions so to cover the setting of
Sinkhorn barycenters described in Section 3 of the paper.

Let W be a real Banach space and let W∗ be its topological dual. Let D ⊂ W∗ be a nonempty,
closed, convex, and bounded set and let G : D → R be a convex function. We address the following
optimization problem

min
w∈D

G(w), (A.1)

assuming that the set of solutions is nonemtpy.

We recall the concept of the tangent cone of feasible directions.

Definition A.1. Let w ∈ D. Then the cone of feasible directions of D at w is FD(w) = R+(D −w)
and the tangent cone of D at w is

TD(w) = FD(w) =
{
v ∈ W∗ | (∃(tk)k∈N ∈ RN

++)(tk → 0)(∃(wk)k∈N ∈ DN) t−1
k (wk−w)→ v

}
.

Remark A.1. FD(w) is the cone generated by D − w, and it is a convex cone. Indeed, if t > 0
and v ∈ FD(w), then tv ∈ FD(w). Moreover, if v1, v2 ∈ FD(w), then there exists t1, t2 > 0 and
w1, w2 ∈ D such that vi = ti(wi − w), i = 1, 2. Thus,

v1 + v2 = (t1 + t2)
( t1
t1 + t2

w1 +
t2

t1 + t2
w2 − w

)
∈ R+(D − w).

So, TD(w) is a closed convex cone too.
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Definition A.2. Let w ∈ D and v ∈ FD(w). Then, the directional derivative of G at w in the
direction v is

G′(w; v) = lim
t→0+

G(w + tv)− G(w)

t
∈ [−∞,+∞[ .

Remark A.2. The above definition is well-posed. Indeed, since v is a feasible direction of D at w,
there exists t1 > 0 and w1 ∈ D such that v = t1(w1 − w); hence

(∀ t ∈ ]0, 1/t1]) w + tv = w + t t1(w1 − w) = (1− t t1)w + t t1w1 ∈ D.
Moreover, since G is convex, the function t ∈ ]0, 1/t1] 7→ (G(w+ tv)−G(w))/t is increasing, hence

lim
t→0+

G(w + tv)− G(w)

t
= inf
t∈]0,1/t1]

G(w + tv)− G(w)

t
. (A.2)

It is easy to prove that the function

v ∈ FD(w) 7→ G′(w; v) ∈ [−∞,+∞[

is positively homogeneous and sublinear (hence convex), that is,

(i) (∀ v ∈ FD(w))(∀ t ∈ R+) G′(w; tv) = tG′(w; v);
(ii) (∀ v1, v2 ∈ FD(w)) G′(w; v1 + v2) ≤ G′(w; v1) + G′(w; v2).

We make the following assumptions about G:

H1 (∀w ∈ D) the function v 7→ G′(w; v) is finite, that is, G′(w; v) ∈ R.
H2 The curvature of G is finite, that is,

CG = sup
w,z∈D
γ∈[0,1]

2

γ2

(
G(w + γ(z − w))− G(w)− γG′(w, z − w)

)
< +∞. (A.3)

Remark A.3. For every w, z ∈ D, we have

G(z)− G(w) ≥ G′(w; z − w). (A.4)

This follows from (A.2) with w1 = z and t = 1 (t1 = 1).

The (inexact) Frank-Wolfe algorithm is detailed in Algorithm A.1.

Algorithm A.1 Frank-Wolfe in Dual Banach Spaces
Let (γk)k∈N ∈ RN

++ be such that γ0 = 1 and, for every k ∈ N, 1/γk ≤ 1/γk+1 ≤ 1/2 + 1/γk (e.g.,
γk = 2/(k+ 2)). Let w0 ∈ D and (∆k)k∈N ∈ RN

+ be such that (∆k/γk)k∈N is nondecreasing. Then

for k = 0, 1, . . .⌊
find zk+1 ∈ D is such that G′(wk; zk+1 − wk) ≤ infz∈D G′(wk; z − wk) + 1

2∆k

wk+1 = wk + γk(zk+1 − wk)

Remark A.4.

(i) Algorithm A.1 does not require the sub-problem minz∈D G′(wk; z − wk) to have solutions.
Indeed it only requires computing a ∆k-minimizer of G′(wk; · − wk) on D, which always
exists.

(ii) Since D is weakly-∗ compact (by Banach-Alaoglu theorem), if G′(wk; · − wk) is weakly-∗
continuous on D, then the sub-problem minz∈D G′(wk; z −wk) admits solutions. Note that
this occurs when the directional derivative G′(w; ·) is linear and can be represented inW .
This case is addressed in the subsequent Proposition A.7.

Theorem A.5. Let (wk)k∈N be defined according to Algorithm A.1. Then, for every integer k ≥ 1,

G(wk)− min
w∈D

G(w) ≤ CGγk + ∆k. (A.5)
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Proof. Let w∗ ∈ D be a solution of problem (A.1). It follows from H2 and the definition of wk+1 in
Algorithm A.1, that

G(wk+1) ≤ G(wk) + γkG
′(wk; zk+1 − wk) +

γ2
k

2
CG.

Moreover, it follows from the definition of zk+1 in Algorithm A.1 and (A.4) that

G′(wk; zk+1 − wk) ≤ inf
z∈D

G′(wk; z − wk) +
1

2
∆k

≤ G′(wk;w∗ − wk) +
1

2
∆k

≤ −(G(wk)− G(w∗)) +
1

2
∆k.

Then,

G(wk+1)− G(w∗) ≤ (1− γk)(G(wk)− G(w∗)) +
γ2
k

2

(
CG +

∆k

γk

)
. (A.6)

Now, similarly to [28, Theorem 2], we can prove (A.5) by induction. Since γ0 = 1, 1/γ1 ≤
1/2 + 1/γ0, and ∆0/γ0 ≤ ∆1/γ1, it follows from (A.6) that

G(w1)− G(w∗) ≤
1

2

(
CG +

∆0

γ0

)
≤ γ1

(
CG +

∆1

γ1

)
, (A.7)

hence (A.5) is true for k = 1. Set, for the sake of brevity, Ck = CG + ∆k/γk and suppose that (A.5)
holds for k ∈ N, k ≥ 1. Then, it follows from (A.6) and the properties of (γk)k∈N that

G(wk+1)− G(w∗) ≤ (1− γk)γkCk +
γ2
k

2
Ck

= Ckγk

(
1− γk

2

)
≤ Ckγk

(
1− γk+1

2

)
≤ Ck

1

1/γk+1 − 1/2

(
1− γk+1

2

)
= Ckγk+1

≤ Ck+1γk+1.

Corollary A.6. Under the assumptions of Theorem A.5, suppose in addition that ∆k = ∆γζk , for
some ζ ∈ [0, 1] and ∆ ≥ 0. Then we have

G(wk)− min
w∈D

G(w) ≤ CGγk + ∆γζk . (A.8)

Proof. It follows from Theorem A.5 by noting that the sequence ∆k/γk = 1/γ1−ζ
k is nondecreasing.

Proposition A.7. Suppose that there exists a mapping∇G : D →W such that2,

(∀w ∈ D)(∀ z ∈ D) 〈∇G(w), z − w〉 = G′(w; z − w). (A.9)

Then the following holds.

(i) Let k ∈ N and suppose that there exists uk ∈ W such that ‖uk −∇G(wk)‖ ≤ ∆1,k/4 and
that zk+1 ∈ D satisfies

〈uk, zk+1〉 ≤ min
z∈D
〈uk, z〉+

∆2,k

2
,

for some ∆1,k,∆2,k > 0. Then

G′(wk; zk+1 − wk) ≤ min
z∈D

G′(wk; z − wk) +
1

2
(∆1,kdiam(D) + ∆2,k). (A.10)

2This mapping does not need to be unique.
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(ii) Suppose that ∇G : D → W is L-Lipschitz continuous for some L > 0. Then, for every
w, z ∈ D and γ ∈ [0, 1],

G(w + γ(z − w))− G(w)− γ 〈z − w,∇G(w)〉 ≤ L

2
γ2 ‖z − w‖2

and hence CG ≤ Ldiam(D)2.

Proof. (i): We have

〈∇G(wk), zk+1 − wk〉 = 〈uk, zk+1 − wk〉+ 〈∇G(wk)− uk, zk+1 − wk〉

≤ min
z∈D
〈uk, z − wk〉+

∆2,k

2
+

∆1,k

4
diam(D). (A.11)

Moreover,

(∀ z ∈ D) 〈uk, z − wk〉 = 〈∇G(wk), z − wk〉+ 〈uk −∇G(wk), z − wk〉

≤ 〈∇G(wk), z − wk〉+
∆1,k

4
diam(D),

hence

min
z∈D
〈uk, z − wk〉 ≤ min

z∈D
〈∇G(wk), z − wk〉+

∆1,k

4
diam(D). (A.12)

Thus, (A.10) follows from (A.11), (A.12), and (A.9).

(ii): Letw, z ∈ D, and defineψ : [0, 1]→W∗ such that, ∀ γ ∈ [0, 1], ψ(γ) = G(w+γ(z−w)). Then,
it is easy to see that for every γ ∈ ]0, 1[, ψ is differentiable at γ andψ′(γ) = G′(w+γ(z−w); z−w) =
〈∇G(w + γ(z − w)), z − w〉. Moreover, ψ is continuous on [0, 1]. Therefore, the fundamental
theorem of calculus yields

ψ(γ)− ψ(0) =

∫ γ

0

ψ′(t)dt

and hence

G(w + γ(z − w))− G(w)− 〈∇G(w), z − w〉 =

∫ γ

0

〈∇G(w + t(z − w))−∇G(w), z − w〉 dt

≤
∫ γ

0

‖∇G(w + t(z − w))−∇G(w)‖ ‖z − w‖ dt

≤
∫ γ

0

Lt ‖z − w‖2 dt

= L
γ2

2
‖z − w‖2 .

The following result is an extension of a classical result on the directional differentiability of a max
function [7, Theorem 4.13] which relaxes the inf-compactness condition and allows the parameter
space to be a convex set, instead of the entire Banach space. This result provides a prototype of
functions (of which the entropic regularization of the Wasserstein distance is an instance) which
are directionally differentiable only along the feasible directions of their domain and satisfies the
hypotheses of Proposition A.7.

Proposition A.8. Let Z andW be real Banach spaces and letW∗ be the topological dual ofW . Let
D ⊂ W∗ be a nonempty closed convex set, and let g : Z ×W∗ → R be such that

1) for every z ∈ Z, g(z, ·) : W∗ → R is Gâteaux differentiable with derivative inW , and the
partial derivative with respect to the second variable D2g : Z ×W∗ →W is continuous.

2) for every w ∈ D, S(w) := argmaxZ g(·, w) 6= ∅.

3) there exists a continuous mapping ϕ : D → Z such that, for every w ∈ D, ϕ(w) ∈ S(w).
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Let G : D → R be defined as
G(w) = max

z∈Z
g(z, w). (A.13)

Then, G is continuous, directionally differentiable, and, for every w ∈ D and v ∈ FD(w)

G′(w; v) = max
z∈S(w)

〈D2g(z, w), v〉 = 〈D2g(ϕ(w), w), v〉 . (A.14)

Proof. The function G is well defined, since by assumption 2), for every w ∈ D, argmaxZ g(·, w) 6=
∅. Let w, u ∈ D with w 6= u. Then, since ϕ(w) ∈ S(w), we have G(w) = g(ϕ(w), w) and hence

G(u)− G(w)− 〈D2g(ϕ(w), w), u− w〉
‖u− w‖

≥ g(ϕ(w), u)− g(ϕ(w), w)− 〈D2g(ϕ(w), w), u− w〉
‖u− w‖

→ 0, (A.15)

since g(ϕ(w), ·) is Fréchet differentiable3 at w with gradient D2g(ϕ(w), w). Now, ϕ(u) ∈ S(u),
and hence G(u) = g(ϕ(u), u). Moreover, g(ϕ(u), w) ≤ G(w). Therefore,

G(u)− G(w)− 〈D2g(ϕ(w), w), u− w〉
‖u− w‖

≤ g(ϕ(u), u)− g(ϕ(u), w)− 〈D2g(ϕ(w), w), u− w〉
‖u− w‖

. (A.16)

Let ε > 0. Since D2g is continuous, there exists δ > 0 such that, for every z′ ∈ Z and w′ ∈ W∗

‖z′ − ϕ(w)‖ ≤ δ and ‖w′ − w‖ ≤ δ =⇒ ‖D2g(z′, w′)−D2g(ϕ(w), w)‖ ≤ ε. (A.17)

Moreover, since ϕ : D → Z is continuous, there exists η > 0 such that,

‖u− w‖ ≤ η =⇒ ‖ϕ(u)− ϕ(w)‖ ≤ δ. (A.18)

Let z′ ∈ Z and suppose that ‖z′ − ϕ(w)‖ ≤ δ and ‖u− w‖ ≤ δ. Define ψ : [0, 1] → R such that,
for every s ∈ [0, 1], ψ(s) = g(z′, w + s(u − w)). Then, ψ is continuously differentiable on [0, 1]
and ψ′(s) = 〈D2g(z′, w + s(u− w)), u− w〉. Therefore,

ψ(1)− ψ(0) =

∫ 1

0

ψ′(s)ds (A.19)

and hence, it follows from (A.17) that

|g(z′, u)− g(z′, w)− 〈D2g(ϕ(w), w), u− w〉|

=
∣∣∣ ∫ 1

0

〈D2g(z′, w + s(u− w))−D2g(ϕ(w), w), u− w〉 ds
∣∣∣

≤
∫ 1

0

‖D2g(z′, w + s(u− w))−D2g(ϕ(w), w)‖ ‖u− w‖ ds

≤ ε ‖u− w‖ .
Therefore, we derive from (A.18), that for every u ∈ D such that ‖u− w‖ ≤ min{η, δ}, we have∣∣∣∣g(ϕ(u), u)− g(ϕ(u), w)− 〈D2g(ϕ(w), w), u− w〉

‖u− w‖

∣∣∣∣ ≤ ε.
This shows that

lim
u∈D
u→w

g(ϕ(u), u)− g(ϕ(u), w)− 〈D2g(ϕ(w), w), u− w〉
‖u− w‖

= 0. (A.20)

Then, we derive from (A.15), (A.16), and (A.20) that

lim
u∈D
u→w

G(u)− G(w)− 〈D2g(ϕ(w), w), u− w〉
‖u− w‖

= 0. (A.21)

3continuously Gâteaux differentiable function are Fréchet differentiable [7, pp.34-35].
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This implies that limu∈D,u→w G(u) = G(w). Moreover, if v ∈ FD(w), there exists λ > 0 and
u ∈ D such that v = λ(u− w) and, for every t ∈ ]0, 1/λ],

G(w + tv)− G(w)

t
− 〈D2g(ϕ(w), w), v〉

= ‖λ(u− w)‖ G(w + tλ(u− w))− G(w)− 〈D2g(ϕ(w), w), tλ(u− w)〉
‖tλ(u− w)‖

(A.22)

and the right hand side goes to zero as t→ 0+, because of (A.21). Therefore, for every z ∈ S(w),
since G(w) = g(z, w) and G(w + tv) ≥ g(z, w + tv), we have

〈D2g(ϕ(w), w), v〉 = lim
t→0+

G(w + tv)− G(w)

t
≥ lim
t→0+

g(z, w + tv)− g(z, w)

t
= 〈D2g(z, w), v〉

and (A.14) follows.

B DAD problems and convergence of Sinkhorn-Knopp algorithm

In this section we review the basic concepts of the nonlinear Perron-Frobenius theory [32] which
provides tools for dealing with DAD problems and ultimately to study the key properties of the
Sinkhorn potentials. This analysis will allow us to provide in Appendix C an upper bound estimate
for the Lipschitz constant of the gradient of Bε, which is needed in the Frank-Wolfe algorithm.

B.1 Hilbert’s metric and the Birkhoff-Hopf theorem

In the rest of the appendix we will assume X ⊂ Rd to be a compact set. We denote by C(X ) the
space of continuous functions on X endowed with the sup norm, namely ‖f‖∞ = supx∈X |f(x)|.
Let C+(X ) be the cone of nonnegative continuous functions, that is, f ∈ C(X ) such that f(x) ≥ 0
for every x ∈ X . Also, we denote by C++(X ) the set of continuous and (strictly) positive functions
on X , which turns out to be the interior of C+(X ).

Let c : X ×X → R+ be a positive, symmetric, and continuous function and define k : X ×X → R++

as
(∀x, y ∈ X ) k(x, y) = e−

c(x,y)
ε . (B.1)

Set D = supx,y∈X c(x, y). Then, we have k(x, y) ∈ [e−D/ε, 1] for all x, y ∈ X . Let α ∈ M+
1 (X ).

The operator Lα : C(X )→ C(X ) is defined as

(∀f ∈ C(X )) Lαf : x 7→
∫

k(x, z)f(z) dα(z). (B.2)

Note that Lα is linear and continuous. In particular, since k(x, y) ∈ [0, 1] for all x, y ∈ X , we have

(∀ f ∈ C+(X )) Lαf ≥ 0 (B.3)

and
(∀ f ∈ C(X )) ‖Lαf‖∞ ≤ ‖f‖∞ . (B.4)

Hilbert’s Metric. The cone C+(X ) induces a partial ordering ≤ on C(X ), such that

(∀ f, f ′ ∈ C(X )) f ≤ f ′ ⇔ f ′ − f ∈ C+(X ). (B.5)

According to [32], we say that a function f ′ ∈ C+(X ) dominates f ∈ C(X ) if there exist t, s ∈ R
such that

tf ′ ≤ f ≤ sf ′. (B.6)

This notion induces an equivalence relation on C+(X ), denoted f ∼ f ′, meaning that f dominates
f ′ and f ′ dominates f . The corresponding equivalence classes are called parts of C+(X ). Let
f, f ′ ∈ C+(X ) be such that f ∼ f ′. We define

M(f/f ′) = inf{s ∈ R | f ≤ sf ′} and m(f/f ′) = sup{t ∈ R | tf ′ ≤ f}. (B.7)
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Note that m(f/f ′) ≤M(f/f ′). Moreover, for every f, f ′ ∈ C+(X ) such that f ∼ f ′, we have that
supp(f) = supp(f ′) and if f ′ 6= 0 (hence f 6= 0), then

M(f/f ′) = max
x∈supp(f ′)

f(x)

f ′(x)
> 0 and m(f/f ′) = min

x∈supp(f ′)

f(x)

f ′(x)
> 0. (B.8)

The Hilbert’s metric is defined as

dH(f, f ′) = log
M(f/f ′)

m(f/f ′)
, (B.9)

for all f ∼ f ′ with f 6= 0 and f ′ 6= 0, dH(0, 0) = 0 and dH(f, f ′) = +∞ otherwise. Direct
calculation shows that [33, Proposition 2.1.1]

(i) dH(f, f ′) ≥ 0 and dH(f, f ′) = dH(f ′, f), for every f, f ′ ∈ C+(X );
(ii) dH(f, f ′′) ≤ dH(f, f ′) + dH(f ′, f ′′), for every f, f ′, f ′′ ∈ C+(X ) with f ∼ f ′ and

f ′ ∼ f ′′;
(iii) dH(sf, tf ′) = dH(f, f ′), for every f, f ′ ∈ C+(X ) and s, t > 0.

Note that dH is not a metric on the parts of C+(X ). However the set C++(X ) ∩ ∂B1(0) = {f ∈
C++(X ) | ‖f‖∞ = 1} equipped with dH is a complete metric space [36]. Also, dH induces a metric
on the rays of the parts of C+(X ) [33, Lemma 2.1].

We now focus on C++(X ). A direct consequence of Hilbert’s metric properties is the following.
Lemma B.1 (Hilbert’s Metric on C++(X )). The interior of C+(X ) corresponds to the set of (strictly)
positive functions C++(X ) and is a part of C+(X ) with respect to the equivalence relation induced
by dominance. For every f, f ′ ∈ C++(X ),

M(f/f ′) = max
x∈X

f(x)

f ′(x)
m(f/f ′) = min

x∈X

f(x)

f ′(x)
, (B.10)

and M(f/f ′) ≥ m(f/f ′) > 0. Therefore

dH(f, f ′) = log max
x,y∈X

f(x) f ′(y)

f(y) f ′(x)
. (B.11)

Proof. Since X is compact it is straightfoward to see that C++(X ) is the interior of C+(X ). By
applying [32, Lemma 1.2.2] we have that C++(X ) is a part of C+(X ). The characterization of
M(f/f ′) and m(f/f ′) follow by direct calculation from the definition using the fact that infX h =
minX h > 0 for any h ∈ C++(X ) since X is compact. Finally, the characterization of Hilbert’s
metric on C++(X ) is obtained by recalling that (minx∈X h(x))−1 = maxx∈X h(x)−1 for every
h ∈ C++(X ).

Lemma B.2 (Ordering properties of Lα). Let α ∈M+
1 (X ). Then the following holds:

(i) the operator Lα is order-preserving (with respect to the cone C+(X )), that is,

(∀ f, f ′ ∈ C(X )) f ≤ f ′ ⇒ Lαf ≤ Lαf
′; (B.12)

(ii) Lα maps parts of C+(X ) into parts of C+(X ), that is,

(∀ f, f ′ ∈ C+(X )) f ∼ f ′ ⇒ Lαf ∼ Lαf
′; (B.13)

(iii) Lα(C+(X )) ⊂ C++(X ) ∪ {0} and Lα(C++(X )) ⊂ C++(X ).

Proof. (i): Let f, f ′ ∈ C(X ) with f ≤ f ′. Then f ′ − f ∈ C+(X ) and by linearity of Lα combined
with (B.3), we have Lαf

′ − Lαf = Lα(f − f ′) ≥ 0.

(ii): Let f, f ′ ∈ C+(X ) with f ∼ f ′. Then there exist t, s ∈ R and s′, t′ ∈ R such that tf ′ ≤ f ≤ sf ′
and t′f ≤ f ′ ≤ s′f . Since Lα is linear and order-preserving, we have Lαf ∼ Lαf

′.

(iii): Let f ∈ C+(X ). By (B.3) and (B.4), for any x ∈ X

0 ≤ (Lαf)(x) ≤ ‖Lαf‖∞ ≤
∫
f(x) dα(x) = ‖f‖L1(X ,α) . (B.14)
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Moreover,

Lαf(x) =

∫
k(y, x)f(y) dα(y) ≥ e−D/ε ‖f‖L1(X ,α) . (B.15)

Therefore, if ‖f‖L1(X ,α) = 0 then by (B.14) Lαf = 0 while, if ‖f‖L1(X ,α) > 0 then by (B.15)
Lαf ∈ C++(X ). We conclude that the operator Lα maps C+(X ) in C++(X ) ∪ {0}. Moreover,
Lα(C++(X )) ⊂ C++(X ), since for every f ∈ C++(X ) we have ‖f‖L1(X ,α) ≥ minX f > 0.

Following [32, Section A.4] we now introduce a quantity which plays a central role in our analysis.
Definition B.1 (Projective Diameter of Lα). Let α ∈M+

1 (X ). The projective diameter of Lα is

∆(Lα) = sup{dH(Lαf, Lαf
′) | f, f ′ ∈ C+(X ), Lαf ∼ Lαf

′}. (B.16)

The following result shows that it is possible to find a finite upper bound on ∆(Lα) that is independent
on α.
Proposition B.3 (Upper bound on the Projective Diameter of Lα). Let α ∈M+

1 (X ). Then

∆(Lα) ≤ 2D/ε. (B.17)

Proof. Let f, f ′ ∈ C+(X ). Recall that Lα maps C+(X ) into C++(X ) ∪ {0} (see Lemma B.2 (iii))
and that {0} and C++(X ) are two parts of C+(X ) with respect to the relation ∼ (see [32, Lemma
1.2.2]). Now, if Lαf = Lαf

′ = 0, then we have dH(Lαf, Lαf
′) = dH(0, 0) = 0. Therefore it is

sufficient to study the case that Lαf, Lαf ′ ∈ C++(X ). Following the characterization of Hilbert’s
metric on C++(X ) given in Lemma B.1, we have

dH(Lαf, Lαf
′) = log max

x,y∈X

(Lαf)(x) (Lαf
′)(y)

(Lαf)(y) (Lαf ′)(x)

= log max
x,y∈X

∫
k(x, z)f(z) dα(z)

∫
k(y, w)f ′(w) dα(w)∫

k(y, z)f(z) dα(z)
∫
k(x,w)f ′(w) dα(w)

= log max
x,y∈X

∫
k(x, z)k(y, w) f(z)f ′(w) dα(z)dα(w)∫
k(y, z)k(x,w) f(z)f ′(w) dα(z)dα(w)

= log max
x,y∈X

∫ k(x,z)k(y,w)
k(y,z)k(x,w) k(y, z)k(x,w) f(z)f ′(w) dα(z)dα(w)∫

k(y, z)k(x,w) f(z)f ′(w) dα(z)dα(w)

≤ log max
x,y,z,w∈X

k(x, z)k(y, w)

k(y, z)k(x,w)
.

Since, for every x, y ∈ X , c(x, y) ∈ [0,D], we have k(x, y) ∈ [e−D/ε, 1] and hence

dH(Lαf, Lαf
′) ≤ 2D/ε.

A consequence of Proposition B.3 is a special case of Birkhoff-Hopf theorem.

Theorem B.4 (Birkhoff-Hopf Theorem). Let λ = eD/ε−1
eD/ε+1

and α ∈ M+
1 (X ). Then, for every

f, f ′ ∈ C+(X ) such that f ∼ f ′, we have

dH(Lαf, Lαf
′) ≤ λ dH(f, f ′). (B.18)

Proof. The statement is a direct application of the Birkhoff-Hopf theory [32, Sections A.4 and A.7]
The Birkhoff contraction ratio of Lα is defined as

κ(Lα) = inf
{
λ̂ ∈ R+

∣∣ dH(Lαf, Lαf
′) ≤ λ̂dH(f, f ′) ∀f, f ′ ∈ C+(X ), f ∼ f ′

}
.

Then it follows from Birkhoff-Hopf theorem [32, Theorem A.4.1] that

κ(Lα) = tanh

(
1

4
∆(Lα)

)
. (B.19)

Recalling the upper bound on the projective diameter f Lα given in Proposition B.3, we have

κ(Lα) ≤ tanh

(
D

2ε

)
=
eD/ε − 1

eD/ε + 1
= λ,

and (B.18) follows.
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B.2 DAD problems

The map Aα. Let α ∈M1
+(X ). We define the map Aα : C++(X )→ C++(X ), such that

(∀ f ∈ C++(X )) Aα(f) = R ◦ Lα(f) = 1/(Lαf), (B.20)

where R : C++(X )→ C++(X ) is defined by R(f) = 1/f with

(1/f) : x 7→ 1

f(x)
. (B.21)

Note that Aα is well defined since, by Lemma B.2 (iii), Lα(C++(X )) ⊂ C++(X ) and, for every
f ∈ C++(X ), minX f > 0, being X compact. Moreover, it follows from (B.11) in Lemma B.1, that,
for any two f, f ′ ∈ C++(X )

dH(1/f, 1/f ′) = log max
x,y∈X

f(y)f ′(x)

f(x)f ′(y)
= dH(f, f ′). (B.22)

We highlight here the connection between Tα introduced in the main text in (3) and Aα, namely for
any α ∈M+

1 (X ) and u ∈ C(X )

Tα(u) = ε log(Aα(eu/ε)). (B.23)

Dual OTε Problem. We focus on the dual problem (2) of the optimal transport problem with entropic
regularization. Let α, β ∈M+

1 (X ) and ε > 0, we consider

max
u,v∈C(X )

∫
u(x) dα+

∫
v(y) dβ(y)− ε

∫
e

u(x)+v(y)−c(x,y)
ε dα(x)dβ(y). (B.24)

The optimality conditions for problem (B.24) are
e−

u(x)
ε =

∫
X
e

v(y)−c(x,y)
ε dβ(y) (∀x ∈ supp(α))

e−
v(y)
ε =

∫
X
e

u(x)−c(x,y)
ε dα(x) (∀ y ∈ supp(β)),

(B.25)

which are equivalent to
g(y)−1 =

∫
X
e
−c(x,y)

ε f(x) dα(x) (∀ y ∈ supp(β))

f(x)−1 =

∫
X
e
−c(x,y)

ε g(y) dβ(y) (∀x ∈ supp(α)),

(B.26)

where f = eu/ε ∈ C++(X ) and g = ev/ε ∈ C++(X ). In the rest of the section we will consider the
following DAD problem [32, 37]: find f, g ∈ C++(X ) such that

(∀ y ∈ X )

∫
X
f(x)k(x, y)g(y) dα(x) = 1 and (∀x ∈ X )

∫
X
f(x)k(x, y)g(y) dβ(y) = 1,

(B.27)
where k is defined in (B.1). It is clear that a solution of (B.27) is also a solution of (B.26). However,
the vice versa is in general not true, even though there is a canonical way to build solutions of
(B.27) starting from solutions of (B.26): indeed if (f, g) is a solution of (B.26), then the functions
f̄ , ḡ : X → R defined through f̄(x)−1 =

∫
X k(x, y)g(y) dβ(y) and ḡ(y)−1 =

∫
X k(x, y)f(x) dα(x)

provide a solution of (B.27). So, the dual OTε problem (B.24) admits a solution if and only if the
corresponding DAD problem (B.27) admits a solution. Recalling the definition of Aα in (B.20),
problem (B.27) can be more compactly written as

f = Aβ(g) and g = Aα(f), (B.28)

or equivalently, by setting Aβα = Aβ ◦ Aα and Aαβ = Aα ◦ Aβ ,

f = Aβα(f) and g = Aαβ(g). (B.29)
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This shows that the solutions of the DAD problem (B.27) are the fixed points of Aαβ and Aβα
respectively. Note that the operators Aβα and Aαβ are positively homogeneous, that is, for every
t ∈ R++ and f ∈ C++(X ), Aβα(tf) = tAβα(f) and Aαβ(tf) = tAαβ(f). Thus, if f is a fixed
point of Aβα, then tf is also a fixed point of Aβα, for every t > 0. If (f, g) is a solution of the DAD
problem (B.27), then the pair (u, v), with u = ε log f and v = ε log g is a solution of (B.24). We
refer to these solutions as Sinkhorn potentials of the pair (α, β). Finally, note that, it follows from
(B.25) that solutions of (B.24) are determined (α, β)-a.e. on X and up to a translation of the form
(u+ t, v − t), for some t ∈ R.

The following result is essentially the specialization of [32, Thm. 7.1.4] to the case of the map Aβα.
We report the proof here for completeness and the reader’s convenience.
Theorem B.5 (Hilbert’s metric contraction for Aβα). The map Aβα : C++(X ) → C++(X ) has
a unique fixed point up to positive scalar multiples. Moreover, let λ = eD/ε−1

eD/ε+1
. Then, for every

f, f ′ ∈ C++(X ),
dH(Aβα(f),Aβα(f ′)) ≤ λ2 dH(f, f ′). (B.30)

Proof. By combining (B.22) with Theorem B.4 we obtain that, for any f, f ′ ∈ C++(X )

dH(Aα(f),Aα(f ′)) = dH(1/(Lαf), 1/(Lαf
′)) = dH(Lαf, Lαf

′) ≤ λ dH(f, f ′). (B.31)

Since the same holds for Aβ then (B.30) is satisfied. Now, let C = C++(X ) ∩ ∂B1(0). Let
Aβα : C → C be the map such that

(∀f ∈ C) Aβα(f) =
Aβα(f)

‖Aβα(f)‖∞
. (B.32)

Then, since dH(sf, tf ′) = dH(f, f ′) for any s, t > 0 and f, f ′ ∈ C, we have

dH(Aβα(f),Aβα(f ′)) = dH(Aβα(f),Aβα(f ′)) ≤ λ2 dH(f, f ′). (B.33)

Since (C, dH) is a complete metric space [36, Theorem 1.2] and Aβα is a contraction, we can apply
Banach’s contraction theorem and conclude that there exists a unique fixed point of Aβα, namely a
function f̄ ∈ C such that

f̄ = Aβα(f̄) =
Aβα(f̄)∥∥Aβα(f̄)

∥∥
∞
. (B.34)

Hence f̄ is an eigenvector for Aβα with eigenvalue t = ‖Aβα(f̄)‖∞ > 0. Now, we note that

(∀ f, g ∈ C++(X )) 〈gLαf, β〉 = 〈fLβg, α〉 =

∫
X×X

f(x)k(x, y)g(y)d(α⊗ β)(x, y). (B.35)

Set ḡ = Aα(f̄), so that Aβ(ḡ) = tf̄ . Then, recalling the definitions of Aα and Aβ , we have ḡLαf̄ ≡ 1
and t−1 ≡ f̄Lβ ḡ. Hence t−1 =

〈
f̄Lβ ḡ, α

〉
=
〈
ḡLαf̄ , β

〉
= 1. Therefore f̄ is a fixed point of Aβα.

Finally, if f̄ ′ ∈ C++(X ) is a fixed point of Aβα, then, since Aβα is positively homogeneous, we have

Aβα(f̄ ′/‖f̄ ′‖∞) =
Aβα(f̄ ′/‖f̄ ′‖∞)

‖Aβα(f ′/‖f̄ ′‖∞)‖∞
=

Aβα(f̄ ′)

‖Aβα(f̄ ′)‖∞
=

f̄ ′

‖f̄ ′‖∞
, (B.36)

that is, f̄ ′/
∥∥f̄ ′∥∥∞ is a fixed point of Aβα. Thus, f̄ ′/

∥∥f̄ ′∥∥∞ = f̄ and hence f̄ ′ is a multiple of f̄ .

Corollary B.6 (Existence and uniqueness of Sinkhorn potentials). Let α, β ∈ M1
+(X ). Then, the

DAD problem (B.27) admits a solution (f, g) and every other solution is of type (tf, t−1g), for some
t > 0. Moreover, there exists a pair (u, v) ∈ C(X )2 of Sinkhorn potentials and every other pair of
Sinkhorn potentials is of type (u+ s, v − s), for some s ∈ R. In particular, for every xo ∈ X , there
exist a unique pair (u, v) of Sinkhorn potentials such that u(x0) = 0.

Proof. It follows from Theorem B.5 and the discussion after (B.29).

Bounding (f, g) point-wise. We conclude this section by providing additional properties of the
solutions (f, g) of the DAD problem (B.28). In particular, we show that there exists one such solution
for which it is possible to provide a point-wise upper and lower bound independent on α and β.
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Remark B.7. Let f ∈ C++(X ) and set g = Aα(f). Then, recalling (B.20) and (B.4), we have that,
for every x ∈ X ,

1 = g(x)(Lα f)(x) ≤ g(x) ‖Lαf‖∞ ≤ g(x) ‖f‖∞
and

1 = g(x)(Lα f)(x) ≥ g(x)(min
X

f)

∫
k(x, z) dα(z) ≥ g(x)(min

X
f)e−D/ε.

Therefore,

min
X

g ≥ 1

‖f‖∞
and ‖g‖∞ ≤

eD/ε

minX f
. (B.37)

Lemma B.8. (Auxiliary Cone) Consider the set

K = {f ∈ C+(X ) | f(x) ≤ f(y) eD/ε ∀x, y ∈ X}. (B.38)

Let α ∈M1
+(X ). Then the following holds.

(i) K is a closed convex cone and K ⊂ C++(X ) ∪ {0};

(ii) Lα(C+(X )) ⊂ K;

(iii) R(K) ⊂ K;

(iv) Ran(Aα) ⊂ K;

(v) If f ∈ K and g = Aαf , then g ∈ K and 1 ≤ (minX g) ‖f‖∞ ≤ ‖g‖∞ ‖f‖∞ ≤ e2D/ε.

(vi) If f ∈ K is such that f(xo) = 1 for some xo ∈ X , then ‖ε log f‖∞ ≤ D.

Proof. (i): We see that for any f ∈ K,

max
X

f ≤ (min
X

f) eD/ε, (B.39)

so, if f(x) = 0 for some x ∈ X , then f(x) = 0 on all X . Hence K ⊆ C++(X ) ∪ {0}. It is
straightforward to verify that K is a convex cone. Moreover K is also closed. Indeed if (fn)n∈N is a
sequence in K which converges uniformly to f ∈ C(X ), then, for every x, y ∈ X and every n ∈ N,
fn(x) ≤ fn(y)eD/ε and hence, letting n→ +∞, we have f(x) ≤ f(y)eD/ε.

(ii): For every f ∈ C+(X ) and x, y ∈ X , we have

(Lαf)(x) =

∫
k(x, z)f(z) dα(z)

=

∫
k(x, z)

k(y, z)
k(y, z)f(z) dα(z)

≤ eD/ε
∫

k(y, z)f(z) dα(z)

= eD/ε(Lαf)(y).

(iii): For every f ∈ K,

(∀x, y ∈ X ) f(x) ≤ f(y) eD/ε ⇔ 1

f(y)
≤ 1

f(x)
eD/ε.

(iv) It follows from (ii) and (iii) and the definitions of Aα.

(v): It follows from (iv), (B.37), and (B.39).

(vi): Let f ∈ K be such that f(xo) = 1. Then minX f ≤ 1 ≤ maxX f . Thus, it follows from (B.39)
that

max
X

f ≤ eD/ε and min
X

f ≥ e−D/ε (B.40)

and hence, for every x ∈ X , −D ≤ ε log f(x) ≤ D.
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As a direct consequence of Lemma B.8 we can establish a uniform point-wise upper and lower bound
for the value of DAD solutions.
Corollary B.9. Let α, β ∈ M+

1 (X ). Let xo ∈ X and let (f, g) be the solution of (B.28) such that
f(xo) = 1. Then ‖f‖∞ ≤ eD/ε and ‖g‖∞ ≤ e2D/ε. Moreover, the corrisponding pair (u, v) of
Sinkhorn potentials satifies ‖u‖∞ ≤ D and ‖v‖∞ ≤ 2D.

Proof. Since f and g are fixed points of Aβα and Aαβ respectively, it follows from Lemma B.8 (iv)
that f, g ∈ K. Then, Lemma B.8 (vi) yields ‖f‖∞ ≤ eD/ε, whereas by the second of (B.37) and
(B.40) we derive that ‖g‖∞ ≤ e2D/ε.

B.3 Sinkhorn-Knopp algorithm in infinite dimension

In the context of optimal transport, Sinkhorn-Knopp algorithm is often presented and studied in finite
dimension [13, 38]. The algorithm originates from so called matrix scaling problems, also called
DAD problems, which consists in finding, for a given matrix A with nonnegative entries, two diagonal
matrices D1, D2 such that D1AD2 is doubly stochastic [41]. In our setting it is crucial to analyze
the algorithm in infinite dimension.

Theorem B.5 shows that Aβα is a contraction with respect to the Hilbert’s metric. This suggests a
direct approach to find the solutions of the DAD problem by adopting a fixed-point strategy, which
turns out to applying the operators Aα and Aβ alternatively, starting from some f (0) ∈ C++(X ). This
is exactly the approach to the Sinkhorn algorithm pioneered by [22, 34] and further developed in an
infinite dimensional setting in [37]. In this section we review the algorithm and give the convergence
properties for the special kernel k in (B.1). In particular we provide rate of convergence in the sup
norm ‖·‖∞.

Algorithm B.1 Sinkhorn-Knopp algorithm (infinite dimensional case)

Let α, β ∈M1
+(X ). Let f (0) ∈ C++(X ) and define,

for ` = 0, 1, . . .⌊
g(`+1) = Aα(f (`))

f (`+1) = Aβ(g(`+1))

Theorem B.10 (Convergence of Sinkhorn-Knopp algorithm). Let (f (`))`∈N be defined according
to Algorithm B.1. Let xo ∈ X and let (f, g) be the solution of the DAD problem (B.26) such that
f(xo) = 1. Then, defining λ according to Theorem B.5 and, for every ` ∈ N, f̃ (`) = f (`)/f (`)(xo)
and g̃(`+1) = g(`+1)f (`)(xo), we have‖log f̃ (`) − log f‖∞ ≤ λ2`

(
D

ε
+ log

∥∥f (0)
∥∥
∞

minX f (0)

)
‖log g̃(`+1) − log g‖∞ ≤ e3D/ε‖log f̃ (`) − log f‖∞.

(B.41)

Moreover, let the potentials (u, v) = (ε log f, ε log g) and, for every ` ∈ N, (ũ(`), ṽ(`)) =

(ε log f̃ (`), ε log g̃(`)). Then we have

‖ũ(`) − u‖∞ ≤ λ2`

(
D + maxX u

(0) −minX u
(0)

ε

)
. (B.42)

Proof. Let A be the set in Lemma C.1. Clearly, for every ` ∈ N, we have f (`+1) = Aβα(f (`)) and
f̄ , f̃ ` ∈ A. Thus, it follows from Theorem B.5 and (C.2) in Lemma C.1 that, for every ` ∈ N,

‖log f̃ (`) − log f‖∞ ≤ dH(f̃ `, f) = dH(A
(`)
βα(f (0)), f) ≤ λ2`dH(f (0), f).

Moreover, recalling (B.11), we have

dH(f (0), f) = dH(1/f (0), Lβg) = log max
x,y∈X

f (0)(y)Lβg(y)

f (0)(x)Lβg(x)
≤ log

[
eD/ε max

x,y∈X

f (0)(y)

f (0)(x)

]
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where we used the fact that Lβ(C++(X )) ⊂ K and the definition (B.38). Thus, the first inequality in
(B.41) follows. The second inequality in (B.41) and (B.42) follow directly from Lemma C.3 and the
fact that u(0) = ε log f (0).

Algorithm B.2 Sinkhorn-Knopp algorithm (finite dimensional case)

Let M ∈ Rn1×n2
++ , a ∈ Rn1

+ , with a>1n1 = 1, and b ∈ Rn2
+ , with b>1n2 = 1. Let f(0) ∈ Rn1

++ and
define

for ` = 0, 1, . . . g(`+1) =
b

M>f(`)

f(`+1) =
a

Mg(`+1)
.

Proposition B.11. Suppose that α and β are probability measures with finite support. Then Al-
gorithm B.1 can be reduced to the finite dimensional Algorithm B.2. More specifically, suppose
that α =

∑n1

i=1 aiδxi , and β =
∑n2

i=1 biδyi , where a = (ai)1≤i≤n1 ∈ Rn1
+ ,
∑n
i=1 ai = 1 and

b = (bi)1≤i≤n2
∈ Rn2

+ ,
∑n
i=1 bi = 1. Let K ∈ Rn1×n2 be such that Ki1,i2 = k(xi1 , yi2) and let

M = diag(a)Kdiag(b) ∈ Rn1×n2 . Let (f(`))`∈N and (f (`))`∈N be defined according to Algorithm B.2
and Algorithm B.1 respectively, with f(0) = (f (0)(xi))1≤i≤n1

. Then, for every ` ∈ N,

(∀x ∈ X )(∀ y ∈ X ) g(`+1)(y)−1 =

n1∑
i1=1

k(xi1 , y)ai1 f
(`)
i1

and f (`+1)(x)−1 =

n2∑
i2=1

k(x, yi2)bi2g
(`+1)
i2

.

Moreover, setting u(`) = ε log f (`), v(`) = ε log g(`), u(`) = ε log f(`), and v(`) = ε log g(`), we have
(∀ y ∈ X ) v(`+1)(y) = −ε log

n1∑
i1=1

exp(u
(`)
i1
− c(xi1 , y))ai1

(∀x ∈ X ) u(`+1)(x) = −ε log

n2∑
i2=1

exp(v
(`+1)
i2

− c(x, yi2))bi2 .

(B.43)

Proof. Since α and β have finite support, we derive from the definitions of f (`+1) and g(`+1) in
Algorithm B.1 and that of Aα and Aβ that

(∀x ∈ X ) g(`+1)(y)−1 = (Lαf
(`)))(y) =

n1∑
i1=1

ai1k(xi1 , y)f (`)(xi1)

(∀ y ∈ X ) f (`+1)(x)−1 = (Lβg
(`+1)))(x) =

n2∑
i2=1

k(x, yi2)bi2g
(`+1)(yi2).

Now, multiplying the above equations by bi2 and ai1 respectively, and recalling that Mi1,i2 =
ai1k(xi1 , yi2)bi2 , we have b1g

(`+1)(y1)−1

...

bn2g
(`+1)(yn2)−1

 = M>

 f
(`)(x1)

...
f (`)(xn1

)

 ,
 a1f

(`+1)(x1)−1

...

an1f
(`+1)(xn1)−1

 = M

 g
(`+1)(y1)

...

g(`+1)(yn2)

 ,
and hence g

(`+1)(y1)
...

g(`+1)(yn2
)

 = b

/
M>

 f
(`)(x1)

...
f (`)(xn1

)

 ,
 f

(`+1)(x1)
...

f (`+1)(xn1
)

 = a

/
M

 g
(`+1)(y1)

...
g(`+1)(yn2

)

 .
Therefore, since f(0) = (f (0)(xi))1≤i≤n1 , recalling Algorithm B.2, it follows by induction that,
for every ` ∈ N, f(`) = (f (`)(xi))1≤i≤n1

and g(`) = (g(`)(xi))1≤i≤n1
. Thus, the first part of the

statement follows. The second part follows directly from the definitions of u(`), v(`), u(`), and
v(`).
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Remark B.12.

(i) Algorithm B.2 is the classical (discrete) Sinkhorn algorithm which was recently studied in
several papers [13]. It follows from Theorem B.10 that considering the solution (f, g) of
the DAD problem such that f(x1) = 1 and defining f̃(`) = f(`)/f

(`)
0 and g̃(`) = g(`)f

(`)
0 , and

fi = f(xi) and gj = g(yj), we have

‖log f̃(`) − log f‖∞ ≤ λ2`

(
D

ε
+ log

maxi f
(0)
i

mini f
(0)
i

)
.

(ii) The procedure SINKHORNKNOPP discussed in the paper and called in Algorithm 2, actually
output the vector v = ε log g(`) for sufficiently large `.

(iii) Referring to Section 4 in the paper, we recognize that the expressions on the right hand side
of (B.43) are precisely Tα(u(`))(x) and Tβ(v(`+1))(x) respectively.

C Lipschitz continuity of the gradient of Sinkhorn divergence with respect
to the Total Variation

In this section we show that the gradient of the Sinkhorn divergence is Lipschitz continuous with
respect to the Total Variation onM+

1 (X ).

We start by characterizing the relation between the Hilbert’s metric and the metric induced by the
norm ‖·‖∞.
Lemma C.1. Let f, f ′ ∈ C++(X ) and set u = ε log f and u′ = ε log f ′. Then

dH(f, f ′) ≤ 2 ‖log f − log f ′‖∞ or, equivalently dH(eu/ε, eu
′/ε) ≤ 2

ε
‖u− u′‖∞ . (C.1)

Moreover, let xo ∈ X , consider the sets A = {h ∈ C++(X ) | h(xo) = 1} and B = {w ∈
C(X ) | w(xo) = 0}. Suppose that f, f ′ ∈ A (or equivalently that u, u′ ∈ B). Then

1

2
dH(f, f ′) ≤ ‖log f − log f ′‖∞ ≤ dH(f, f ′). (C.2)

and
ε

2
dH(eu/ε, eu

′/ε) ≤ ‖u− u′‖∞ ≤ ε dH(eu/ε, eu
′/ε). (C.3)

Proof. We have

dH(f, f ′) = log max
x,y∈X

f(x)f ′(y)

f(y)f ′(x)

= log max
x∈X

f(x)

f ′(x)
+ log max

y∈X

f ′(y)

f(y)

= max
x∈X

log
f(x)

f ′(x)
+ max

y∈X
log

f ′(y)

f(y)

≤ 2 max
x∈X

∣∣∣∣log
f(x)

f ′(x)

∣∣∣∣
= 2 ‖log(f/f ′)‖∞
= 2 ‖log f − log f ′‖∞

and (C.1) follows. Suppose that f, f ′ ∈ A. Then

‖log f − log f ′‖∞ = max

{
log max

x∈X

f(x)

f ′(x)
, log max

x∈X

f ′(x)

f(x)

}
= max

{
log max

x∈X

f(x)f ′(x̄)

f(x̄)f ′(x)
, log max

x∈X

f(x̄)f ′(x)

f(x)f ′(x̄)

}
≤ max

{
log max

x,y∈X

f(x)f ′(y)

f(y)f ′(x)
, log max

x,y∈X

f(y)f ′(x)

f(x)f ′(y)

}
= dH(f, f ′),
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since f(xo)/f
′(xo) = f ′(xo)/f(xo) = 1. Therefore, (C.2) follows.

Lemma C.2. For every x, y ∈ R++ we have

|log x− log y| ≤ max
{
x−1, y−1

}
|x− y|. (C.4)

The following result allows to extend the previous observations on a pair f, f ′ to the corresponding
g = Aαf and g′ = Aαf

′.

Lemma C.3. Let xo ∈ X and K ⊂ C+(X ) the cone from Lemma B.8. Let f, f ′ ∈ K be such that
f(xo) = f ′(xo) = 1, and set g = Aαf and g′ = Aαf

′. Then,

‖log g − log g′‖∞ ≤ e
3D/ε ‖log f − log f ′‖∞ . (C.5)

Proof. It follows from (B.20) and Lemma C.2 that

|log g − log g′| =
∣∣∣ log

g

g′

∣∣∣ =
∣∣∣ log

Lαf
′

Lαf

∣∣∣ ≤ max
{
g′, g

}
|Lαf − Lαf

′|.

Therefore, since 1 ≤ ‖f‖∞ , ‖f ′‖∞, and recalling Lemma B.8 (v) and (B.4), we have

‖log g − log g′‖∞ ≤ max{‖g‖∞ , ‖g′‖∞} ‖Lαf − Lαf
′‖∞

≤ max{‖f‖∞ ‖g‖∞ , ‖f ′‖∞ ‖g
′‖∞} ‖Lαf − Lαf

′‖∞
≤ e2D/ε ‖f − f ′‖∞
= e2D/ε‖elog f − elog f ′‖∞.

Now, since f, f ′ ≤ eD/ε, we have log f, log f ′ ≤ D/ε. Thus, the statement follows by noting that
the exponential function is Lipschitz continuous on ]−∞,D/ε] with constant eD/ε.

We are ready to prove the main result of the section.

Theorem C.4 (Lipschitz continuity of the Sinkhorn potentials with respect to the total variation). Let
α, β, α′, β′ ∈ M+

1 (X ) and let xo ∈ X . Let (u, v), (u′, v′) ∈ C(X )2 be the two pairs of Sinkhorn
potentials corresponding to the solution of the regularized OT problem in (B.24) for (α, β) and
(α′, β′) respectively such that u(xo) = u′(xo) = 0. Then

‖u− u′‖∞ ≤ 2εe3D/ε ‖(α− α′, β − β′)‖TV . (C.6)

Hence, the map which, for each pair of probability distributions (α, β) ∈M+
1 (X )2 associates the

component u of the corresponding Sinkhorn potentials is 2εe3D/ε-Lipschitz continuous with respect
to the total variation.

Proof. The functions f = eu/ε and f ′ = eu
′/ε are fixed points of the maps Aβα and Aβ′α′ respec-

tively. Then, it follows from Theorem B.5 that

dH(f, f ′) = dH(Aβα(f),Aβ′α′(f
′))

≤ dH(Aβα(f),Aβ′α′(f)) + dH(Aβ′α′(f),Aβ′α′(f
′))

≤ dH(Aβα(f),Aβ′α′(f)) + λ2dH(f, f ′),

hence,

dH(f, f ′) ≤ 1

1− λ2
dH(Aβα(f),Aβ′α′(f)). (C.7)

Moreover, using (C.1), we have

dH(Aβα(f),Aβ′α′(f)) ≤ dH(Aβα(f),Aβ′α(f)) + dH(Aβ′α(f),Aβ′α′(f))

≤ dH(Aβ(g),Aβ′(g)) + λdH(Aα(f),Aα′(f))

≤ 2

∥∥∥∥log
Aβ(g)

Aβ′(g)

∥∥∥∥
∞

+ 2λ

∥∥∥∥log
Aα(f)

Aα′(f)

∥∥∥∥
∞
. (C.8)
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Now, note that by Lemma C.2∣∣∣∣ log
Aβ(g)

Aβ′(g)

∣∣∣∣ =

∣∣∣∣ log
Lβ′g

Lβg

∣∣∣∣ ≤ max{1/Lβg, 1/Lβ′g}|(Lβ′ − Lβ)g| (C.9)

and that, for every x ∈ X ,

[(Lβ′ − Lβ)g](x) =

∫
k(x, z)g(z) d(β − β′)(z)

= 〈k(x, ·)g, β − β′〉 ≤ ‖g‖∞ ‖β − β
′‖TV ,

(C.10)

and, similarly, [(Lβ − Lβ′)g](x) ≤ ‖g‖∞ ‖β − β′‖TV . Therefore, since 1/(Lβg) = Aβ(g) = f and
Lβ′g ≥ e−D/ε min g, it follows from Lemma B.8 (v) and (B.39) (applied to g) that∥∥∥∥log

Aβ(g)

Aβ′(g)

∥∥∥∥
∞
≤ max

{
‖f‖∞ ,

eD/ε

min g

}
‖g‖∞ ‖β − β

′‖TV ≤ e
2D/ε ‖β − β′‖TV . (C.11)

Analogously, we have ∥∥∥∥log
Aα(f)

Aα′(f)

∥∥∥∥
∞
≤ e2D/ε ‖α− α′‖TV . (C.12)

Putting (C.7), (C.8), (C.11), and (C.12) together, we have

dH(f, f ′) ≤ 2e2D/ε

1− λ2
(λ ‖α− α′‖TV + ‖β − β′‖TV ) . (C.13)

Now, note that since eD/ε ≥ 1

1

1− λ2
=

(eD/ε + 1)2

4eD/ε
≤ eD/ε. (C.14)

Finally, recalling (C.3), we have

‖u− u′‖∞ ≤ 2εe3D/ε ‖(α− α′, β − β′)‖TV , (C.15)

where ‖(α− α′, β − β′)‖TV = ‖α− α′‖TV + ‖β − β′‖TV is the total variation norm onM(X )2.

Corollary C.5. Under the assumption of Theorem C.4, we have

‖u− u′‖∞ + ‖v − v′‖∞ ≤ 2εe3D/ε(1 + εe3D/ε) ‖(α− α′, β − β′)‖TV . (C.16)

Proof. It follows from Theorem C.4 and Lemma C.3.

We finally address the issue of the differentiability of the Sinkhorn divergence. We first recall a few
facts about the directional differentiability of OTε briefly recalled in Section 2 of the main text. For a
more in-depth analysis on this topic we refer to [21, Proposition 2]. See also Proposition C.10.
Fact C.6. Let xo ∈ X , α, β ∈M+

1 (X ) and (u, v) ∈ C(X )2 be the pair of corresponding Sinkhorn
potentials with u(xo) = 0. The function OTε is directionally differentiable and the directional
derivative of OTε in (α, β) along a feasible direction (µ, ν) ∈ FM+

1 (X )2

(
(α, β)

)
(see Definition A.2)

is
OT′ε(α, β;µ, ν) =

∫
u(x) dµ(x) +

∫
v(y) dν(y) = 〈(u, v), (µ, ν)〉 . (C.17)

Let ∇OTε : M+
1 (X )2 → C(X )2 be the operator that maps every pair of probability distributions

(α, β) ∈M+
1 (X )2 to the corresponding pair of Sinkhorn potentials (u, v) ∈ C(X )2 with u(xo) = 0.

Then (C.17) can be written as

OT′ε(α, β;µ, ν) = 〈∇OTε(α, β), (µ, ν)〉 . (C.18)

Remark C.7. In Fact C.6, the requirement u(xo) = 0 is only a convention to remove ambiguities.
Indeed, for every t ∈ R, replacing the Sinkhorn potential (u+ t, u− t) in Definition A.1 does not
affect (C.17).
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Fact C.8. Let β ∈M1
+(X ) and let ∇1OTε be the first component of the gradient operator defined

in Fact C.6. Then the Sinkhorn divergence function Sε(·, β) : M1
+(X )→ R in (7) is directionally

differentiable and, for every α ∈M1
+(X ) and every µ ∈ FM1

+(X )(α),

[Sε(·, β)]′(α;µ) = 〈∇1OTε(α, β)−∇1OTε(α, α), µ〉 .

So, one can define∇Sε(·, β) : M+
1 (X )→ C(X ) such that, for everyα ∈M1

+(X ),∇[Sε(·, β)](α) =
∇1OTε(α, β)−∇1OTε(α, α) and we have

[Sε(·, β)]′(α;µ) = 〈∇Sε(·, β), µ〉 . (C.19)

Finally, if k in (B.1) is a positive definite kernel, then the Sinkhorn divergence Sε(·, β) is convex.

We are now ready to prove Theorem 4 in the paper. We recall also the statement for reader’s
convenience.

Theorem 4. The gradient ∇OTε defined in Proposition 1 is Lipschitz continuous. In particular, the
first component∇1OTε is 2εe3D/ε-Lipschitz continuous, i.e., for every α, α′, β, β′ ∈M+

1 (X ),

‖u− u′‖∞ = ‖∇1OTε(α, β)−∇1OTε(α′, β′)‖∞ ≤ 2εe3D/ε (‖α− α′‖TV + ‖β − β′‖TV ),
(11)

where D = supx,y∈X c(x, y), u = Tβα(u), u′ = Tβ′,α′(u
′), and u(xo) = u′(xo) = 0. Moreover, it

follows from (8) that∇Sε(·, β) is 6εe3D/ε-Lipschitz continuous. The same holds for∇Bε.

Proof. The first part is just a consequence of Theorem C.4 and Fact C.6. The second part, follows
from the first part and Fact C.8.

Remark C.9. It follows from the optimality conditions (B.25) that, for every x ∈ supp(α) and
y ∈ supp(β),

1 =

∫
X
e

u(x)+v(y)−c(x,y)
ε dβ(y) and 1 =

∫
X
e

u(x)+v(y)−c(x,y)
ε dα(x),

hence, ∫
X
e

u⊕v−c
ε dα⊗ β = 1. (C.20)

Then, recalling the definition of OTε in (2) and that of its gradient, given above, we have

OTε(α, β) = 〈∇OTε(α, β), (α, β)〉 − ε. (C.21)

Since,∇OTε is bounded and Lipschitz continuous, it follows that OTε is Lipschitz continuous with
respect to the total variation.

We end the section by providing an independent proof of Fact C.6, which is based on Proposition A.8
and Corollary C.5.

Proposition C.10. The function OTε : M1
+(X )2 → R, defined in (2), is continuous with respect to

the total variation, directionally differentiable, and, for every (α, β) ∈M1
+(X )2 and every feasible

direction (µ, ν) ∈ FM1
+(X )2(α, β), we have

OT′ε(α, β;µ, ν) = 〈(u, v), (µ, ν)〉 , (C.22)

where (u, v) ∈ C(X )2 is any solution of problem (2).

Proof. Let g : C(X )2 ×M(X )2 → R be such that,

g((u, v), (α, β)) = 〈u, α〉+ 〈v, β〉 − ε 〈exp((u⊕ v − c)/ε), α⊗ β〉 . (C.23)

Then, for every (α, β) ∈M1
+(X )2,

OTε(α, β) = max
(u,v)∈C(X )2

g((u, v), (α, β)). (C.24)
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Thus, OTε is of the type considered in Proposition A.8. Let (u, v) ∈ C(X ). Then the function
g((u, v), ·) admits directional derivatives and, for every (α, β), (µ, ν) ∈M(X )2, we have

[g((u, v), ·)]′((α, β); (µ, ν))

=
〈
u− εeu

ε

∫
X
e

v−c(·,y)
ε dβ(y), µ

〉
+
〈
v − εe v

ε

∫
X
e

u−c(x,·)
ε dα(x), ν

〉
. (C.25)

Indeed, for every t > 0,

1

t

[
g((u, v),(α, β) + t(µ, ν))− g((u, v), (α, β))

]
=

1

t

[
〈u, α+ tµ〉+ 〈v, β + tν〉 − ε 〈exp((u⊕ v − c)/ε), (α+ tµ)⊗ (β + tν)〉

− 〈u, α〉 − 〈v, β〉+ ε 〈exp((u⊕ v − c)/ε), α⊗ β〉
]

= 〈u, µ〉+ 〈v, ν〉 − ε 〈exp((u⊕ v − c)/ε), α⊗ ν〉 − ε 〈exp((u⊕ v − c)/ε), µ⊗ β〉

− tε 〈exp((u⊕ v − c)/ε), µ⊗ ν〉 ,

hence

[g((u, v), ·)]′((α, β); (µ, ν))

= 〈u, µ〉+ 〈v, ν〉 − ε 〈exp((u⊕ v − c)/ε), α⊗ ν〉 − ε 〈exp((u⊕ v − c)/ε), µ⊗ β〉

and (C.25) follows. Thus, the function g is Gâteaux differentiable with respect to the second variable,
with derivative

D2g((u, v), (α, β)) =
(
u− εeu

ε

∫
X
e

v−c(·,y)
ε dβ(y), v − εe v

ε

∫
X
e

u−c(x,·)
ε dα(x)

)
= (u, v)− ε(eu

ε Lβe
v
ε , e

v
ε Lαe

u
ε ) ∈ C(X )2,

which is jointly continuous, since the maps (u, α) 7→ Lαe
u/ε and (v, β) 7→ Lβe

v/ε are continuous.
Moreover, it follows from Corollary C.5 that there exists a continuous selection of Sinkhorn potentials.
Therefore, it follows from Proposition A.8 that OTε is directionally differentiable and

OT′ε((α, β); (µ, ν)) = max
(u,v) solution of (C.24)

〈D2g((u, v), (α, β)), (µ, ν)〉 . (C.26)

However, if (u, v) is a solution of (C.24), it follows from the optimality conditions (B.25) that

e
u
ε

∫
X
e

v−c(·,y)
ε dβ(y) = 1 and e

v
ε

∫
X
e

u−c(x,·)
ε dα(x) = 1, (C.27)

hence

〈D2g((u, v), (α, β)), (µ, ν)〉 = 〈(u− ε, v − ε), (µ, ν)〉 = 〈(u, v), (µ, ν)〉 , (C.28)

where we used the fact that, since (µ, ν) = t(µ1 − µ2, ν1 − ν2) for some t > 0 and µ1, µ2, ν1, ν2 ∈
M1

+(X ), we have 〈1, µ〉 = t 〈1, µ1 − µ2〉 = 0 and 〈1, ν〉 = t 〈1, ν1 − ν2〉 = 0.

D The Frank-Wolfe algorithm for Sinkhorn barycenters

In this section we finally analyze the Frank-Wolfe algorithm for the Sinkhorn barycenters and give
convergence results. The following result is a direct consequence of Theorem B.10 and Fact C.6.

Theorem D.1. Let (ũ(`))`∈N be generated through Algorithm B.1 as in Theorem B.10. Then,

(∀ ` ∈ N) ‖ũ(`) −∇1OTε(α, β)‖∞ ≤ λ2`

(
D + maxX u

(0) −minX u
(0)

ε

)
, (D.1)

where u(`) = ε log f (`) and ũ(`) = u(`) − u(`)(xo).
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Therefore, in view of Fact C.8, Theorem D.1, and Proposition A.7, we can address the problem of
the Sinkhorn barycenter (9) via the Frank-Wolfe Algorithm A.1. Note that, according to Proposi-
tion A.7(ii), since the diameter ofM+

1 (X ) with respect to ‖·‖TV is 2, we have that the curvature of
Bε is upper bounded by

CBε
≤ 24εe3D/ε. (D.2)

Let k ∈ N and αk be the current iteration. For every j ∈ {1, . . . ,m}, we can compute∇1OTε(αk, βj)
and∇1OTε(αk, αk) by the Sinkhorn-Knopp algorithm. Thus, by (D.1), we find ` ∈ N large enough
so that ‖ũ(`)

j −∇1OTε(αk, βq)‖∞ ≤ ∆1,k/8 and ‖p̃(`) −∇1OTε(αk, αk)‖∞ ≤ ∆1,k/8 and we set

ũ(`) :=

m∑
j=1

ωj ũ
(`)
j − p̃

(`). (D.3)

Then,

‖ũ(`) −∇Bε(αk)‖∞ ≤
∆1,k

4
. (D.4)

Now, Frank-Wolf Algorithm A.1 (in the version considered in Proposition A.7(i)) requires finding

ηk+1 ∈ argmin
η∈M+

1 (X )

〈ũ(`), η − αk〉 (D.5)

and make the update
αk+1 = (1− γk)αk + γkηk+1. (D.6)

Since the solution of (D.5) is a Dirac measure (see Section 4 in the paper), the algorithm reduces tofind xk+1 ∈ X such that ũ(`)(xk+1) ≤ minx∈X ũ
(`)(x) +

∆2,k

2
αk+1 = (1− γk)αk + γkδxk+1

.
(D.7)

So, if we initialize the algorithm with α0 = δx0
, then any αk will be a discrete probability measure

with support contained in {x0, . . . , xk}. This implies that if all the βj’s are probability measures
with finite support, the computation of∇1OTε(αk, βj) by the Sinkhorn algorithm can be reduced to
a fully discrete algorithm, as showed in Proposition B.11. More precisely, assume that

(∀ j = 1, . . . ,m) βj =

n∑
i2=0

bj,i2δyj,i2 . (D.8)

and that at iteration k we have

αk =

k∑
i1=0

ak,i1δxi1
. (D.9)

Set

ak =

ak,0...
ak,k

 ∈ Rk+1, M0,k =

ak,0k(x0, x0)ak,0 . . . ak,0k(x0, xk)ak,k
...

. . .
...

ak,kk(xk, x0)ak,0 . . . ak,kk(xk, xk)ak,k

 ∈ R(k+1)×(k+1)

(D.10)
and, for every j = 1 . . . ,m,

bj =

bj,0...
bj,n

 ∈ Rn+1, Mj,k =

ak,0k(x0, yj,0)bj,0 . . . ak,0k(x0, yj,n)bj,n
...

. . .
...

ak,kk(xk, yj,0)bj,0 . . . ak,nk(xk, yj,n)bj,n

 ∈ R(k+1)×(n+1).

(D.11)
Then, run Algorithm B.2, with input ak, ak, and M0,k to get (e(`), h(`)), and, for every j = 1, . . . ,m,
with input ak, bj , and Mj,k to get (f

(`)
j , g

(`)
j ). So, we have,

(∀ ` ∈ N)


h(`+1) =

ak
M>0,ke

(`)
, e(`+1) =

ak
M0,kh(`+1)

(∀ j = 1, . . . ,m) g
(`+1)
j =

bj

M>j,kf
(`)
j

, f
(`+1)
j =

ak

Mj,kg
(`+1)
j

.
(D.12)
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Then, according to Proposition B.11, for every ` ∈ N, we have

(∀x ∈ X )



e(`)(x)−1 =

k∑
i2=0

k(x, xi2)h
(`−1)
i2

ak,i2 ,

p(`)(x) = ε log e(`)(x) = −ε log

k∑
i2=0

k(x, xi2)h
(`−1)
i2

ak,i2

p̃(`)(x) = p(`)(x)− p(`)(xo).

(D.13)

and, for every j = 1, . . . ,m,

(∀x ∈ X )



f
(`)
j (x)−1 =

n∑
i2=0

k(x, yi2)g
(`−1)
j,i2

bj,i2 ,

u
(`)
j (x) = ε log f

(`)
j (x) = −ε log

n∑
i2=0

k(x, yi2)g
(`−1)
j,i2

bj,i2

ũ
(`)
j (x) = u

(`)
j (x)− u(`)

j (xo).

(D.14)

Since the ũ(`)
j ’s and u(`)

j ’s, and p̃(`) and p(`), differ for a constant only, the final algorithm can be
written as in Algorithm D.1. We stress that this algorithm is even more general than Algorithm 2
since, in the computation of the Sinkhorn potentials and in their minimization, errors have been taken
into account.

Algorithm D.1 Frank-Wolfe algorithm for Sinkhorn barycenter
Let α0 = δx0

for some x0 ∈ X . Let (∆1,k)k∈N, (∆2,k)k∈N ∈ RN
+ be such that (2∆1,k + ∆2,k)/γk

is nondecreasing. Define

for k = 0, 1, . . .

run Algorithm B.2 with input ak, ak,M0,k till λ2`D/ε ≤ ∆1,k

8 → h ∈ Rk+1

compute p via (D.13) with h

for j = 1, . . .m⌊
run Algorithm B.2 with input ak, bj ,Mj,k till λ2`D/ε ≤ ∆1,k

8 → gj ∈ Rn+1

compute uj via (D.14) with gj

set u =
∑m
j=1 ωjuj − p

find xk+1 ∈ X such that u(xk+1) ≤ minx∈X u(x) +
∆2,k

2
αk+1 = (1− γk)αk + γkδxk+1

.

We now give a final converge theorem, of which Theorem 5 in the paper is a special case.
Theorem D.2. Suppose that β1, . . . , βm ∈ M1

+(X ) are probability measures with finite support,
each of cardinality n ∈ N. Let (αk)k∈N be generated by Algorithm D.1. Then, for every k ∈ N,

Bε(αk)− min
α∈M1

+(X )
Bε(α) ≤ γk24εe3D/ε + 2∆1,k + ∆2,k (D.15)

Proof. It follows from Theorem A.5, (D.2), and Proposition A.7, recalling that diam(M1
+(X )) =

2.

E Sample complexity of Sinkhorn potential

In the following we will denote by Cs(X ) the space of s-differentiable functions with continuous
derivatives and by W s,p(X ) the Sobolev space of functions f : X → R with p-summable weak
derivatives up to order s [1]. We denote by ‖·‖s,p the corresponding norm.
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The following result shows that under suitable smoothness assumptions on the cost function c, the
Sinkhorn potentials are uniformly bounded as functions in a suitable Sobolev space of corresponding
smoothness. This fact will play a key role in approximating the Sinkhorn potentials of general
distributions in practice.

Theorem E.1 (Proposition 2 in [23]). Let X be a closed bounded domain with Lipschitz boundary in
Rd ([1, Definition 4.9]) and let c ∈ Cs+1(X ×X ). Then for every (α, β) ∈M+

1 (X )2, the associated
Sinkhorn potentials (u, v) ∈ C(X )2 are functions in W s,∞(X ). Moreover, let xo ∈ X . Then there
exists a constant r > 0, depending only on ε, s and X , such that for every (α, β) ∈ M+

1 (X )2 the
associated Sinkhorn potentials (u, v) ∈ C(X )2 with u(xo) = 0 satisfies ‖u‖s,∞ , ‖v‖s,∞ ≤ r.

In the original statement of [23, Proposition 2] the above result is formulated for c ∈ C∞(X ) for
simplicity. However, as clarified by the authors, it holds also for the more general case c ∈ Cs+1(X ).

Lemma E.2. Let X ⊂ Rd be a closed bounded domain with Lipschitz boundary and let u, u′ ∈
W s,∞(X ). Then the following holds

(i) ‖uu′‖s,∞ ≤ m1 ‖u‖s,∞ ‖u′‖s,∞,

(ii) ‖eu‖s,∞ ≤ ‖eu‖∞ (1 + m2 ‖u‖s,∞),

where m1 = m1(s, d) and m2 = m2(s, d) > 0 depend only on the dimension d and the order of
differentiability s but not on u and u′.

Proof. (i) follows directly from Leibniz formula. To see (ii), let i = (i1, . . . , id) ∈ Nd be a
multi-index with |i| =

∑d
`=1 i` ≤ s and note that by chain rule the derivatives of eu

Di eu = eu Pi

(
(Dju)j≤i

)
,

where Pi is a polynomial of degree |i| and j ≤ i is the ordering associated to the cone of non-negative
vectors in Rd. Note that P0 = 1, while for |i| > 0, the associated polyomial Pi has a root in zero (i.e.
it does not have constant term). Hence

‖eu‖s,∞ ≤ ‖e
u‖∞

(
1 + |P |

(
(
∥∥Diu

∥∥
∞)|i|≤s

) )
,

where we have denoted by P =
∑

0<|i|≤s Pi and by |P | the polynomial with coefficients corre-
sponding to the absolute value of the coefficients of P . Therefore, since

∥∥Diu
∥∥
∞ ≤ ‖u‖s,∞ for any

|i| ≤ s, by taking

m2 = |P |
(

(1)|i|≤s

)
,

namely the sum of all the coefficients of |P |, we obtain the desired result. Indeed note that the
coefficients of P do not depend on u but only on the smoothness s and dimension d.

Lemma E.3. Let X ⊂ Rd be a closed bounded domain with Lipschitz boundary and let xo ∈ X .
Let c ∈ Cs+1(X × X ), for some s ∈ N. Then for any α, β ∈ M+

1 (X ) and corresponding pair of
Sinkhorn potentials (u, v) ∈ C(X )2 with u(xo) = 0, the functions k(x, ·)eu/ε and k(x, ·)ev/ε belong
to W s,2(X ) for every x ∈ X . Moreover, they admit an extension toH = W s,2(Rd) and there exists
a constant r̄ independent on α and β, such that for every x ∈ X∥∥k(x, ·)eu/ε

∥∥
H,
∥∥k(x, ·)ev/ε

∥∥
H ≤ r̄ (E.1)

(with some abuse of notation, we have identified k(x, ·)eu/ε and k(x, ·)ev/ε with their extensions to
Rd).

Proof. In the following we denote by ‖·‖s,2 = ‖·‖s,2,X the norm of W s,2(X ) and by ‖·‖H =

‖·‖s,2,Rd the norm of H = W s,2(R). Let x ∈ X . Then, since u − c(x, ·) ∈ W s,∞(X ) and

33



‖u‖s,∞ ≤ r, it follows from Lemma E.2 that∥∥k(x, ·)eu/ε
∥∥
s,∞ =

∥∥e(u−c(x,)̇)/ε∥∥
s,∞

≤
∥∥e(u−c(x,)̇)/ε∥∥

∞(1 + m2 ‖u− c(x, ·)‖s,∞)

=
∥∥k(x, ·)eu/ε

∥∥
∞(1 + m2 ‖u− c(x, ·)‖s,∞)

≤
∥∥eu/ε∥∥∞(1 + m2(r + ‖c‖s,∞))

≤ eD/ε(1 + m2(r + ‖c‖s,∞)),

where we used the fact that Di[c(x, ·)] = (Dic)(x, ·). This implies∥∥k(x, ·)eu/ε
∥∥
s,2
≤ |X |1/2eD/ε(1 + m2(r + ‖c‖s,∞))

where |X | is the Lebesgue measure of X . Now, we can proceed analogously to [23, Proposition 2],
and use Stein’s Extension Theorem [1, Theorem 5.24],[51, Chapter 6], to guarantee the existence of a
total extension operator [1, Definition 5.17]. In particular, there exists a constant m3 = m3(s, 2,X )
such that for any ϕ ∈W s,2(X ) there exists ϕ̃ ∈W s,2(Rd) such that

‖ϕ̃‖H = ‖ϕ̃‖s,2,Rd ≤ m3 ‖ϕ‖s,2,X = m3 ‖ϕ‖s,2 . (E.2)

Therefore, we conclude∥∥k(x, ·)eu/ε
∥∥
H ≤ m3|X |1/2eD/ε(1 + m2(r + ‖c‖s,∞)) =: r̄. (E.3)

The same argument applies to k(x, ·)ev/ε with the only exception that now, in virtue of Corollary B.9,
we have ‖ev/ε‖∞ ≤ e2D/ε. Note that r̄ is a constant depending only on X , c, s and d but it is
independent on the probability distributions α and β.

Sobolev spaces and reproducing kernel Hilbert spaces. Recall that for s > d/2 the space H =
W s,2(Rd), is a reproducing kernel Hilbert space (RKHS) [53, Chapter 10]. In this setting we denote
by h : X ×X → R the associated reproducing kernel, which is continuous and bounded and satisfies
the reproducing property

(∀x ∈ X )(∀ f ∈ H) 〈f, h(x, ·)〉H = f(x). (E.4)

We can also assume that h is normalized, namely, ‖h(x, ·)‖H = 1 for all x ∈ X [53, Chapter 10].

Kernel mean embeddings. For every β ∈ M+
1 (X ), we denote by hβ ∈ H the Kernel Mean

Embedding of β inH [35, 43], that is, the vector

hβ =

∫
h(x, ·) dβ(x). (E.5)

In other words, the kernel mean embedding of a distribution β corresponds to the expectation of
h(x, ·) with respect to β. By the linearity of the inner product and the integral, for every f ∈ H, the
inner product

〈f, hβ〉H =

∫
〈f, h(x, ·)〉 dβ(x) =

∫
f(x) dβ(x), (E.6)

corresponds to the expectation of f(x) with respect to β. The Maximum Mean Discrepancy (MMD)
[35, 46, 47] between two probability distributions β, β′ ∈M+

1 (X ) is defined as

MMD(β, β′) = ‖hβ − hβ′‖H . (E.7)

In the case of the Sobolev spaceH = W s,2(Rd), the MMD metrizes the weak-∗ topology ofM+
1 (X )

[47, 48].

A well-established approach to approximate a distribution β ∈M+
1 (X ) is to independently sample a

set of points x1, . . . , xn ∈ X from β and consider the empirical distribution βn = 1
n

∑n
i=1 δxi . The

following result shows that βn converges to β in MMD with high probability. The original version of
this result can be found in [46], we report an independent proof for completeness.
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Lemma E.4. Let β ∈ M+
1 (X ). Let x1, . . . , xn ∈ X be indepedently sampled according to β and

denote by βn = 1
n

∑n
i=1 δxi

. Then, for any τ ∈ (0, 1], we have

MMD(βn, β) ≤
4 log 3

τ√
n

(E.8)

with probability at least 1− τ .

Proof. The proof follows by applying Pinelis’ inequality [39, 42, 55] for random vectors in Hilbert
spaces. More precisely, for i = 1, . . . , n, denote by ζi = h(xi, ·) ∈ H and recall that ‖ζi‖ =

‖h(x, ·)‖ = 1 for all x ∈ X . We can therefore apply [42, Lemma 2] with constants M̃ = 1 and
σ2 = supi E‖ζi‖2 ≤ 1, which guarantees that, for every τ ∈ (0, 1]∥∥∥∥∥ 1

n

n∑
i=1

[
ζi − E ζi

]∥∥∥∥∥
H

≤
2 log 2

τ

n
+

√
2 log 2

τ

n
≤

4 log 3
τ√

n
, (E.9)

holds with probability at least 1 − τ . Here, for the second inequality we have used the fact that
log 2

τ ≤ log 3
τ and log 3

τ ≥ 1 for every τ ∈ (0, 1]. The desired result follows by observing that

hβ =

∫
h(x, ·) dβ(x) = E ζi (E.10)

for all i = 1, . . . , n, and

hβn
=

1

n

n∑
i=1

h(xi, ·) =
1

n

n∑
i=1

ζi. (E.11)

Therefore,

MMD(βn, β) = ‖hβn
− hβ‖H =

∥∥∥∥∥ 1

n

n∑
i=1

[
ζi − E ζi

]∥∥∥∥∥
H

, (E.12)

which combined with (E.9) leads to the desired result.

Proposition E.5 (Lipschitz continuity of the Sinkhorn Potentials with respect to the MMD). Let
X ⊂ Rd be a compact Lipschitz domain and c ∈ Cs+1(X × X ), with s > d/2. Let α, β, α′, β′ ∈
M+

1 (X ). Let xo ∈ X and let (u, v), (u′, v′) ∈ C(X )2 be the two Sinkhorn potentials corresponding
to the solution of the regularized OT problem in (B.24) for (α, β) and (α′, β′) respectively such that
u(xo) = u′(xo) = 0. Then

‖u− u′‖∞ ≤ 2ε̄re3D/ε (MMD(α, α′) + MMD(β, β′)) , (E.13)

with r̄ from Lemma E.3. In other words, the operator ∇1OTε : M+
1 (X )2 → C(X ), defined in

Fact C.6, is 2ε̄re3D/ε-Lipschitz continuous with respect to the MMD.

Proof. Let f = eu/ε and g = ev/ε. By relying on Lemma E.3 we can now refine the analysis in
Theorem C.4. More precisely, we observe that in (C.10) we have

[(Lβ′ − Lβ)g](x) =

∫
k(x, z)g(z) d(β − β′)(z)

=

∫
〈k(x, ·)g, h(z, ·)〉H d(β − β′)(z)

= 〈k(x, ·)g, hβ − hβ′〉H
≤ ‖k(x, ·)g‖H ‖hβ − hβ′‖H
≤ r̄ MMD(β, β′),

where in the first equality, with some abuse of notation, we have implicitly considered the extension
of k(x, ·)g toH = W s,2(Rd) as discussed in Lemma E.3. The rest of the analysis in Theorem C.4
remains invaried, eventually leading to (E.13).

It is now clear that Theorem 6 in the paper is just a consequence of Lemma E.4 and Proposition E.5.
We give the statement of the theorem for reader’s convenience.
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Theorem 6 (Sample Complexity of Sinkhorn Potentials). Suppose that c ∈ Cs+1(X × X ) with
s > d/2. Then, there exists a constant r = r(X , c, d) such that for any α, β ∈ M+

1 (X ) and any
empirical measure β̂ of a set of n points independently sampled from β, we have, for every τ ∈ (0, 1]

‖u− un‖∞ = ‖∇1OTε(α, β)−∇1OTε(α, β̂)‖∞ ≤
8ε re3D/ε log 3

τ√
n

(17)

with probability at least 1− τ , where u = Tβα(u), un = Tβ̂α(un) and u(xo) = un(xo) = 0.

We finally provide the proof of Theorem 7 in the paper.

Theorem 7. Suppose that c ∈ Cs+1(X ×X ) with s > d/2. Let n ∈ N and β̂1, . . . , β̂m be empirical
distributions with n support points, each independently sampled from β1, . . . , βm. Let αk be the
k-th iterate of Algorithm 2 applied to β̂1, . . . , β̂m. Then for any τ ∈ (0, 1], the following holds with
probability larger than 1− τ

Bε(αk)− min
α∈M+

1 (X )
Bε(α) ≤

64r̄εe3D/ε log 3m
τ

min(k,
√
n)

. (18)

Proof. Let B̂ε(α) =
∑m
j=1 ωjSε(α, β̂j). We apply Theorem 6 independently for each distribution

β̂j and then take the intersection bound between all these separate events. Then, for every k ∈ N, and
with probability larger than 1− τ , we have

‖∇B̂ε(αk)−∇Bε(αk)‖∞ ≤
m∑
j=1

ωj‖∇[Sε(·, β̂j)](αk)− Sε(·, βj)](αk)‖∞

=

m∑
j=1

ωj‖∇1OTε(αk, β̂j)−∇1OTε(αk, βj)‖∞

≤
8ε re3D/ε log 3m

τ√
n

=
∆1

4
,

where

∆1 :=
32ε re3D/ε log 3m

τ√
n

.

Now, let γk = 2/(k + 2). Since Algorithm 2 is applied to β̂1, . . . β̂m, we have

δxk+1
∈ argmin
M1

+(X )

〈∇B̂ε(αk), ·〉 and αk+1 = (1− γk)αk + γkδxk+1
.

Therefore, it follows from Theorem A.5, Proposition A.7 (with ∆1,k = ∆1 and ∆2,k = 0), and
Theorem 4 that, with probability larger than 1− τ , we have

Bε(αk)− min
M1

+(X )
Bε ≤ 6ε̄re3D/εdiam(M1

+(X ))2γk + ∆1diam(M1
+(X )).

The statement follows by noting that diam(M1
+(X )) = 2.

36



F Additional experiments

Sampling of continuous measures: mixture of Gaussians. We perform the barycenter of 5 mix-
tures of two Gaussians µj , centered at (j/2, 1/2) and (j/2, 3/2) for j−0, . . . , 4 respectively. Samples
are provided in Figure 6. We use different relative weights pairs in the mixture of Gaussians, namely
(1/10, 9/10), (1/4, 3/4), (1/2, 1/2). At each iteration, a sample of n = 500 points is drawn from
µj , j = 0 . . . , 4. Results are reported in Figure 7.

Fig. 6: Samples of input measures

Fig. 7: Barycenters of Mixture of Gaussians

Large scale discrete measures: meshes. We perform the barycenter of two discrete measures with
support in R3. Meshes of the dinosaur are taken from [44] and rescaled by a 0.5 factor. The internal
problem in Frank-Wolfe algorithm is solved using L-BFGS-B SciPy optimizer. Formula of the
Jacobian is passed to the method. The result is displayed in Figure 8.

Propagation. We extend the description on the experiment about propagation in Section 6. Edges E
are selected as follows: we created a matrix D such that Dij contains the distance between station at
vertex i and station at vertex j, computed using the geographical coordinates of the stations. Each
node v in V , is connected to those nodes u ∈ V such that Dvu ≤ 3. If the number of nodes u that
meet this condition is less than 5, we connect v with its 5 nearest nodes. If the number of nodes u
that meet this condition is more than 10, we connect v with its 10 nearest nodes. Each edge euv is
weighted with ωuv := Duv. Since intuitively we may expect that nearer nodes should have more
influence in the construction of the histograms of unknown nodes, in the propagation functional we
weight Sε(ρv, ρu) with use exp(−ωuv/σ) or 1/ωvu suitably normalized.

Fig. 8: True barycenter (left), result of our algorithm (right)
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