
Integer Discrete Flows and Lossless Compression:
Supplementary Material

Emiel Hoogeboom∗
UvA-Bosch Delta Lab

University of Amsterdam
Netherlands

e.hoogeboom@uva.nl

Jorn W.T. Peters∗
UvA-Bosch Delta Lab

University of Amsterdam
Netherlands

j.w.t.peters@uva.nl

Rianne van den Berg†
University of Amsterdam

Netherlands
riannevdberg@gmail.com

Max Welling
UvA-Bosch Delta Lab

University of Amsterdam
Netherlands

m.welling@uva.nl

A Additional background

A.1 Asymmetric Numeral Systems

Asymmetric Numeral Systems (ANS) [1] is a recent approach to entropy coding. The range-based
variant: rANS, is generally used as a faster replacement for arithmetic coding, because a state is only
represented by a single number and fewer mathematical operations are required [2].

The encoding function of rANS encodes a symbol s into a code c′ given the so far existing code c:
c′(c, s) = bc/lsc ·m+ (c mod ls) + bs, (1)

where m is a large integer that functions as the quantization denominator. Integers are chosen for ls
such that p(s) ≈ ls/m, where p(s) denotes the probability of symbol s. Each symbol is associated
with a unique interval [bs, bs + ls), where bs =

∑s−1
i=1 li, as depicted in Figure 1.

Figure 1: The unique sequences for each symbol

The decoding function needs to retrieve the encoded symbol s, and the previous state c from the
new code c′. First consider the term c′ mod m, which is equal to the last two terms of the encoding
function: c mod ls + bs. This term is guaranteed to lie in the interval [bs, bs + ls). Therefore, the
symbol can be retrieved by finding:

s(c′) = t s.t. bt ≤ c′ mod m < bt+1. (2)

Consequently with the knowledge of s, the previous state c can be obtained by computing:
c(c′, s) = ls · bc′/mc+ (c′ mod m)− bs. (3)

In practice, m is chosen as a power of two (for example 232). As such, multiplication and division
with m reduces to bit shifts and modulo m reduces to a binary masking operation.
∗Equal contribution
†Now at Google

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

B Lower Triangular Coupling

There exists a trade-off between the number of integer discrete coupling layers and the complexity of
the layers in IDF architectures, due to the gradient bias that is introduced by the rounding operation.
For this reason, it is desired to increase the flexibility of layers without increasing the number of
rounding operations. We introduce a multivariate coupling transformation called Lower Triangular
Coupling, which is specifically designed such that the number of rounding operations remains
unchanged. In practice, Lower Triangular Coupling does not offer significant improvements over
standard coupling layers, and they both attain 4.15 bits per dimension (standard ±0.009 and lower
triangular ±0.007), which is averaged over two runs with random weight initialization. The method
is presented below for completeness.

The transformation of xb is formed by multiplication with a strictly lower triangular matrix L which
is conditioned on xa:

zb = xb + bt(xa) + L(xa)xbe . (4)

The main trick is to round the sum of all transformations, such that no additional gradient bias is
introduced. This transformation is guaranteed to be invertible, and the inverse can be found with a
modified version of forward substitution:

x
(b)
i = z

(b)
i −

ti + i−1∑
j=1

Lij · x(b)
j

 , (5)

where x
(b)
i denotes the ith element of xb, and t and L are still conditioned on xa, however, this

notation is dropped for clarity. The continuous case can even be solved analytically by using the
inverse xb = (I+ L)−1 (zb − t).

In practice we restrict the computational cost on feature maps x, z ∈ Znc×h×w by parametrizing a
local triangular matrix. That is, the transformation can be computed in parallel spatially, and is defined
as: z(b):,vu = x

(b)
:,vu +

⌊
t:,vu + Lvux

(b)
:,vu

⌉
∀vu, where v, u denote spatial coordinates, Lvu ∈ Rcb×cb

and t are conditioned on x(a), and cb denotes the number of channels in x(b). Since the dimensions
of Lvu are small, relative to the neural networks parametrizing them, the inverse can be found in cb
iterations using spatially parallelized matrix operations.

C Quantizing a Continuous Flow

128 256 384
inverse bin size

0

2

4

6

8

bp
d

residual
quantized
continuous

Figure 2: Compression performance of a
quantized continuous flow model using differ-
ent bin sizes. The dashed line denotes the ana-
lytical bpd of the continuous model. The total
required bpd consists of both the quantized
latent z and the residual errors are encoded
separately using the FLIF format.

To test the lossless compression performance of con-
tinuous flows, the latent space is quantized to a linear
spaced bins. Because the latent space is quantized,
the reconstructions may contain errors. To enable
lossless compression, FLIF is used to encode the er-
rors in reconstruction. Hence, given the quantized
latent variables and the reconstruction errors, the orig-
inal input can be obtained.

The performance of the quantized flow is shown in
Figure 2. When the bin size is large (1

128), encoding
the latent representation requires relatively few bits,
because the probability area is larger. However, the
residuals are higher, and require more bits to be mod-
elled. Analogously, when the bin size is small (1

512),
encoding the latent representation requires more bits,
but the residual can be modelled using fewer bits. Al-
though the bits required for the residual or the quan-
tized latents may be small individually, their sum is
always large. In total the quantized flow performs
poorly on lossless compression.

2

D Experimental details

D.1 Networks

The coupling and factor out layers are parametrized using neural networks. These networks are
DenseNets [3]. Specifically we use n = 512 intermediate channels and a depth d = 12. In contrast
with standard DenseNets, we do not use normalization layers. A single layer in the densenet consists
of:

Conv1×1→ ReLU→ Conv3×3→ ReLU,

D.2 IDF architecture

The exact architecture for experiments is specified in Table 1. All models are trained using Adamax
[5] with standard parameters. Furthermore, the learning rate is computed as: lr = lrbase · decayepoch.
We follow the preprocessing procedure for CIFAR10 as described in [6]. For ImageNet32 and
ImageNet64, we do use additional preprocessing. For the ER + BCa dataset, we employ random
horizontal and vertical flips during training.

Table 1: IDF architecture and optimization parameters for each experiment.
Dataset L D densenet depth densenet channels batchsize patchsize train examples lr decay epochs

CIFAR10 3 8 12 512 256 32 40000 0.999 2000
ImageNet32 3 8 12 512 256 32 1230000 0.99 100
ImageNet64 4 8 12 512 64 64 1230000 0.99 20
ER + BCa 4 8 12 512 50 80 114 0.99999 50000

In our implementation, instead of using integers in Z, we use the equivalent representation Z/256,
which we found to work better with standard weight initialization and optimization methods. Despite
the fact that this implementation does not use integers, it is functionally equivalent to the method
presented in the main text.

D.3 Dataset preparation

The dataset for CIFAR10 originally consists of 50000 train images and 10000 test images. We use
the last 10000 images for validation which results in 40000 train, 10000 validation and 10000 test
images. ImageNet32 and ImageNet64 originally contain approximately 1250000 train and 50000
validation images. The validation images are used solely for testing, and 20000 images are randomly
selected as a new validation set. This results in roughly 1230000 train, 20000 validation and 50000
test images.

The ER + BCa dataset [4] 3 is split into 114 train images and 28 test images such that specific patients
IDs only occur in one of the two sets. The test patient identifiers are:

8915 8959 9023 9081 9256 9382 10264 10301
12749 16532 12818 12871 12884 12908 12931 12949
13106 13459 13459 13617 13694 14154 14305 16661
17117 17643 25289 25617

D.4 Hardware and Software

The code for our experiments is implemented using PyTorch [7]. The model implementations are
based on the codebase released along with [9] whereas the rANS coder implementation was taken
from [8]. All experiments were run using 4 Nvidia GTX 1080Ti GPUs.

References
[1] Jarek Duda. Asymmetric numeral systems. arXiv preprint arXiv:0902.0271, 2009.

3http://andrewjanowczyk.com/wp-static/nuclei.tgz

3

[2] Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of huffman coding
with compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540, 2013.

[3] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[4] Andrew Janowczyk, Scott Doyle, Hannah Gilmore, and Anant Madabhushi. A resolution
adaptive deep hierarchical (radhical) learning scheme applied to nuclear segmentation of digital
pathology images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging
& Visualization, 6(3):270–276, 2018.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd Interna-
tional Conference on Learning Representations, ICLR, 2015.

[6] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, pages 10236–10245, 2018.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[8] James Townsend, Tom Bird, and David Barber. Practical lossless compression with latent
variables using bits back coding. 7th International Conference on Learning Representations,
ICLR, 2019.

[9] Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. Thirty-Fourth Conference on Uncertainty in Artificial
Intelligence, UAI, 2018.

4

	Additional background
	Asymmetric Numeral Systems

	Lower Triangular Coupling
	Quantizing a Continuous Flow
	Experimental details
	Networks
	IDF architecture
	Dataset preparation
	Hardware and Software

