Appendices

Organization. In Section|A, we analysis the issues in the proof of [Agrawal & Jia, 2017]. In Section
we give some basic lemmas (mainly concentration inequalities). Section |C|is devoted to the
missing proofs in the analysis of Theorem 1. At last, we present the proof of Corollary 1 in Section

A Mistake in the Analysis of Previous Work
In this section we mainly analysis the mistake in the proof of Lemma C.2 and Lemma C.1 [Agrawal
& Jia, 2017]. The lemma can be described as

Lemma 6 (Lemma C.2, Agrawal & Jia, 2017). Let p be the average of n independent multinoulli
trials with parameter p € A®. Let

Then Z < D+/ 21%(1/’)), with probability 1 — p.

We give a counter example as following. Suppose D = 2, p; = % foreach 1 <1 < S, then we have

7 = 5— )Ty = p— )T (v—1) = p—p)To =S |p; — L, and
Jax (p—p)fv = max (p—p)'(v—1) = max (p—p)'v > i1 i — 5, an

E[Z] = Y5 Ellp; — L|] = SE[|p1 — L|] due to symmetry of p. Therefore, E[Z] = SE[|p; — +[] >
(1 — £)™. On the other hand, if LemmaSHis right, by setting p = L we have E[Z] < /2182 | 1,
Letting S — oo, it follows that 1 = Slzlgo(l - %)" <2 ZI%L(”) + %, which is wrong when n. > 30.
Lemma 7 (Lemma C.1 [Agrawal & Jia, 2017). ] Let p ~ Dirichlet(mp). Let

7 = p—p) v
véféf%]s(p p) v

Then, Z < D M, with probability 1 — p.

Again, to build a counter example, let D = 2, p; = & forany i. E[Z] = SE[|p1 — 5| > 3(P(p1 <
35) + P(p1 > 55)). Note that p; ~ Beta(’g,m — 2). When m > 1 and S > m, the density

. B ¢ o e
function of p; is —F5m——7+—

B(%,m—1%)

that P(p1 < 55) > iP(55 < 1 < 35) = 3(1 = (P(p1 < 55) + P(1 > 3%))), and thus
P(p1 < 55) + P(p1 > 55) > +. Asaresult, E[Z] > &, which contradicts to Lemmalz Moreover,
we find that the mistake in their proof lies in the derivation

E[DY —Z|Z =z:2¢€ &) =E[DY —DE[Y, — Z|Z =z : z € &£,
E[DY, — DE[Y,] = (5 — p)"v|(p — p)"v]
E[DY, — p v|pTv] =0

for x € (0, 1), which is decreasing in x. Therefore, we have

Actually, {Z = z: 2 € &} S {Z = 2z : z = (p — p)T v} because given the value of Z = 2z,
it’s still unknown that which v is selected to maximize (p — p)Tv. More rigorously, we have
E[E[DY, — p*v|Z = 2,2z € £]|Z € &) = E[DY, — pTv|Z € £,] = pTv —E[pTv|Z € €] <0,
since (p — p)Tv > 0 conditioning on Z in &, (except for p = p). This contradicts to the analysis of
Lemma C.2 in [Agrawal & Jia, 2017], which says that E[DY, — pTv|Z = 2,2 € £,] = 0.

Therefore, the algorithm in [Agrawal & Jia, 2017] may not reach the regret bound of O(D+/SAT) .

B Some Basic Lemmas

In this section, we present some useful lemmas. Some of them are well known so that we omit the
proof.
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Lemma 8 (Azuma’s Inequality). Suppose {Xy}r=0.1,23,. is a martingale and | X411 — Xi| < c.
Then for all positive integers N and all positive t,

2

Xy —Xo|l>t) <2
P(|Xn — Xo| > 1) €$P(2N2)

Lett = ¢y/2N log(2/9), then P(| Xy — Xo| > t) <.
Lemma 9 (Bernstein Inequality). Ler { X} }r>1 be independent zero-mean random variables. Sup-
pose that | X | < M for all k. Then, for all positive t

(16)

t2
2(X k-1 EIX7] + 5M1)

n
P(| Y Xil > t) < 2eap(—
k=1

Lett = 2./> 1_ E[X?]log(2/8) + 2M log(2/6), then P(|>_1_, Xi| > t) < 4.

Lemma 10. Let p,, be the average of n independent multinomial trials with parameter p € A™.
Then, for any fixed vector u € R™, with probability 1 — 0, it holds that

V(p,u)y
n

). (17)

sp(u)y.

|(pr — ) u| < 2 +2

Proof. Givenu € R™ and p € A™, let { X}, }>1 bei.i.d. random variable s.t. P(Xy = u; —pTu) =
pi, Vk. Because E[X?] = V(p,u) and 1 3"/ | X\ = (p,, — p)T'w, according to LemmaEwe get
that

V(p,u)y

P(|(pr, — p) T ul > 2
(G — )"l 2 20/ =2 -

O

Lemma 11 (Freedman (1975)) Let (My,)n>0 be a martingale such that My = 0. Let V,
Sor_  E[(My, — My—1)?|Fy—1] for n > 0, where Fj, = o(My, Mo, ..., My). Then, for anyposmve
x and for any positive y,

’I’LLL‘2

P(M,, > nx,V, <ny) < exp(———
2(y + 52)

). (18)

Lemma 12. Suppose M is a flat MDP. Let h and p denote the optimal bias function and the optimal
average reward respectively. We run N steps under M and get a trajectory L of length N. Then we
have, no matter which action is chosen in each step, for each n € [N|, with probability 1 — ¢, it holds
that

|Z p)| < (217 + 1)sp(h). (19)

Moreover, suppose that the reward is bounded in [0, 1], n > 4~vsp(h)? and sp(h) > 10, then with
probability 1 — 20 it holds that

1> " (ri = p)| < 4v/nysp(h) + sp(h). (20)

i=1

Proof. Let My = hg, and M,, — My, _1 = hy, ., — hs, + 7 — pforn > 1. Then {M,, — Mo}n>0
is a martingale martingale difference sequence since E[hs, ., — hs, +1n — p|Frn-1] = >, Pla; =
a)[Ellhs, 1 = hs, + 710 = plFn-1,a0 = a] = 3, Play = a)(P] b — hs, + 75,0 —p) = 0.
Because |M,, — My,_1| < max, |P] b — hg, | < sp(h), Vo < nsp(h)?. Plugy = sp(h)?

and x = QI;f(h) into @) then @) follows easily. To prove (20), we need to provide a tighter

bound for V,,. For v € R®, we use v? to denote the Vector [v%, 03, ...,0%]T. Because V,, =
n 2 n 2 T

Zk:l E[(Mk - Mk—l) |]:k—1] = k=1 Sk akh’ ( Sk, akh) and Psk akh’ - h’sk = p - Tskaak’

we have that

Vn Z Sk, ak hg;\) + Z(Sp(h)|p - TSk,ak| + (p - rsk,ak)Q)'

k=1 k=1
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By the assumption the reward is bounded in [0, 1], we have p € [0,1] and |[p — 75, 4, | < 1. Let
= ey (PL g h? =02, ) =Va+hZ  —hZ forn>1and Xy = 0. It's clear { X, } >0 is
a martmgale difference sequence and | X; — Xx—1| < sp(h)?. According to Lemmal8| we have that

P(1X,| > /2nysp(h)?) <6
Then it follows that with probability 1 — 6, |V,,| < (v/2ny + 1)sp(h)? + n(2sp(h) + 1). When
n > 4vysp(h)? and sp(h) > 10, we get |V,,| < 4nsp(h). Again, plugging = = L?;:(h) and
y = 4sp( ) into (18), notlcmg that n > 16+ysp(h), we conclude that, with probability 1 — 24,

| >0 (i — p)| < 4/nysp(h) + sp(h O

We introduce a technical lemma which is actually an expansion of Lemma 19, [Jaksch et al., 2010]

Lemma 13. Suppose {x,,}}\_, is sequence of positive real number with 1 = 1 and x,, < Zz 1 T
forn=23,....N — 1. Then we have, for any 0 < a < 1,

N - ga N
SED ) PR
n=2 =1 n=1
Moreover, in the case o = 1, we have
N n—1 N
:clJern( z) "t < 1+210g(2xn)
n=2 =1 n=1

Proof. Let S,, = Zlgign x; for n > 1, then it follows 25,, > S, 41 forn € [N — 1]. By basic
calculus, when o« < 1, for n > 2 we have

1-—
Sp =S8 > (1—a)znS,* > 2— nSply
Note that S}=% = 1, we then have z; + Y0, 2,5, < 2 SV (S — glmey <
2% — 2< 2¢ 1— o
1—a™~N +1_17a§1a5
In the case o« = 1, for n > 2 we have
x Ty
log(S,,) —log(S,_1) > == > .
08(5,) ~ log(S,-1) > G > 5ot

Note that log(S1) = 0, we then have z; + Zg 2,871 < 14 2(log(S, — log(S1))) = 1+

21og(Sy). O

Applying Lemmato {Vk,s,a }k>1, we have that for any 0 < a < 1

Vk,s,a 2¢ —
() < N(T) l—o
Ek: max{Ng sq,1}* ~ 1 — a( sa)

Combining this inequality and Jenson’s inequality, we get that

Z 'Uk,s,a < 2 SA(l)lfa (21)

Pt max{Ng 54,1} ~ 1 —« SA
In the case o = 1, we also have
Vk,s,a T
— " < SA+2SAlog(— 22
Z maX{Nkﬁ’a,l} - + Og(SA) (22)

k,s,a

With a slightly abuse of notations, we use Ny 5 o to denote max{Ny,_ s 4, 1} in the rest of the paper
for simplicity.

C Missing Proofs in the Analysis of Theorem 1

In this section, we present the proofs of Lemma 1-5 and give a detailed proof of Theorem 1.
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C.1 Proof of Lemma 1

Let h € RS and p € R be fixed. We define a Markov process X with state space S. Let {Fi}1>1 be
the corresponding filtered algebra, i.e., F; = o (X1, ..., X¢). Let s1 be the initial state. For each state
s, there are some actions and each action a is equipped with a transition probability vector p, , and a
reward ., , = hs + p — pzah. In the ¢-th step, there is a policy 7;. We select an action according to
7, then execute it and reach the next state. We then have Ppt = Psy.as Tt = T4, 4] = Tt,a» Where p;
is transition probability and r} is the reward in current step.

Then it is clear {(s¢, St41,71)}7—; is measurable with respect to F,,. For any two different states
s, 8" € S, given a trajectory L = {(s¢, 141, 7}) }7=1, we define an indicator function I, o (L, 1) as
following:

Ift >n+1, Iy (L, t) = 0. Otherwise, let U = {i|s; € {s,s'},1 < i < ¢}. If U is empty,
I s (L,t) =0;else I o (L,t) = I[s;» = s] where i* be the maximal element of U .

Let L be the N-step trajectory of X and I, 4 () = I, +(L,t). Note that I, . (t) is a random
variable, and it only depends on {s, }!,_;, which is measurable with respect to F;_1. Let W; =
S I (u)(ry — hs, + hs,,, — p), then we have E[W;] = 0 and E[W; — W;_1|F;_1] = 0 for
t > 2. It follows that {W;}¥ , is a martingale with respect to {F}N,. Because |W; — W;_q| =
|IS,S’(t) (1} — hs, + Psppy — p*)| < max, ‘Is,S’ (t)(h5t+1 st, h)| < sp(h) and [W1] < sp(h), by
(16), we have that, for any n < N,

P(|W,,| > v/2N~sp(h) + sp(h)) < 4.
Then it follows that, with probability 1 — N§, for any n € [N],
[Wa| < v/2N7ysp(h) + sp(h).
Recall the notations in Definition 4, ts1(£) := min{min{¢t|s; = s}, N + 2},
ter (L) := min{min{t|s; = s',t > tsx (L)}, N +2},k > 1,
tsp(L) := min{min{t|s; = s,t > ter_1 (L)}, N + 2}, k > 2.
and c(s, s', £) := max{k|tex(L) < N + 1}. According to the definition of I, . (t), for any ¢ €

!/
[e(s, s, )],we have

(&

Wtec(/;)—l = Z( Z (’f’; - p) + hg — hs)

u=l tsy, (L)<t<te,(L)—1

Given an algorithm G, we can view G as a function which maps previous samples, policies and current
state to a policy in current state, and we use G; := G(s¢, (Su, T, Gy, Ty, su+1)u_ 1) to denote this
policy. By setting h = h*, p = p*, ps o = Ps o and my = G, we have rs o = hi+p* —p; ah* = rs s
since M is flat. It then follows that

(&

Wieo(c)-1 = Z( Z (re — p*) 4+ hy — hs).

u=1 ts, (L)<t<te,(L)—1
As we proved before, with probability 1 — N4, it holds that forany 1 <n < N,

[Wh| < /2N~vysp(h) + sp(h).

Because 1 < ts.(L) <te.(L)—1< Nforany 1l <c<c(s,s,L), Lemma 1 follows easily.

C.2 Proof of Lemma 2

Recall the definition of bad events.

V(Paoi b b
By = {3(3,a),5.t.|(Ps, PNT Y| > 2 (P, 1) +25p( 7) },

‘51

k,s,a Nk,s,a

By = {3(5, a,s'), s.t.|fj’s(fl)7s,

By = {| 3 (0" rea)| > 26HSVATY, S S v aregaa > 22HS\/AT7}

1<t<ty, k'<k sa
By, = {{(7*, P*,h*, p*)|r*is a deterministic optimal policy} N M = &'},
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B = Bl,k U Bg’k U Bg’k U B4$k and B = U1§k§K+lBk~
It’s easy to see that for each k, B ;, and B j indicate the events where the concentration inequalities
fail, and thus have a small probability. Suppose B occurs for each k' < k, we get that the regret

before the k-th episode does not exceed O(H SV AT) with high probability based on the analysis of
REGAL.C.

To show P(By 1) is small, we prove that, conditioned on Ny </« kBk, occurs, with high probability, 1t
holds that h* € H. Let 7* be a deterministic optimal policy. Note that if (5| . . 7) holds for any s, a, s’
with P’/(7) = P where P is the true transition model, we then have (7, P, h*, p*) € My, since @

holds due to the optimality of 7*. Putting all together, we can bound ]P’(B ) up to O(S3A%T)s.

Note that tx 1 — 1 =T, then Bx 4 is also well defined. Firstly, for each k, according to Lemma
. we have P(B; ;) < SA¢ directly.

To bound the probablhty of By, let (s, a) be fixed. Defining g(z) = [z,1— ] forx € [0, 1]. Then

we have |21 — 22| = \g(xl) —glwg)h = 3 {sup }2( g(x1) — g(z2))Ty for 1,25 € [0,1]. Tt
ye{—1,1
follows that P(|z; — x| > 2¢) <4  sup P((g(x1) — g(x2))Ty > €). Noting that V (g(z),y) <
ye{—1,1}2

4z for each y € {—1,1}2, according to Lemma 10| we have, for any y € {~1,1}?

Ak 4Ps7a,s'7 2’7
P((g(PL)) = 9(Poas)) ] = 2 + )<
Nk,s,a Nk,s,a

sas/V
sa‘i/|>2 Nk.s.a +

which means that ]P’(|P

s,a,s’

N ) < 44. Suppose that the event

{‘Ps(lfz)s’ = Psas| < 2\/H+ r , then we have
Iy P ’
|Ps(ljz)5/ - Ps,a,s" S 2 54,3 7 + i

Nk,s,a Nk,s,a

Sas’+2\/qua+Nks‘a Y
<2
Nksa Nk,s,a
PRy 3 4t
<oyt OV
Nk,s,a Nk,s,a Nk4

Therefore, P(Bs ) < 452 A6.
For k = 1, Bg:k and ng holds trivially. For & > 1, assuming ﬂkleBlc:k,, ﬂkllegk,,
ﬂlgk/<kng, and ﬁlgk/<kng, hold. We start to bound P(By ). Note that ng_l ensures

that
D) vksaregsa < 22HS\/ATy (23)
1<k'<k s,a

Note that if we replace the reward function r, , by r;a = T'g,q + 1€Ys,q, the MDP M will be flat.
According to Lemma 1, we have

C(Sas/vﬁtk—l)

| Z Z (T's;,a; +7€9s;.0, —P*) — (5,8, Ly, 1) (V2Tv+1)H (24)
=1 ts; <j<te;—1
with probability 1 — 7. Combining and (24), we get that
(5,5 Loy 1)
\ Z Z (s;,0;,—P ) —c(s, 8", L, —1) < (V2T~y+1)H+22HS /AT~ (25)
i=1 ts;<j<te;—1

Furthermore, ng also implies that |Zl§k,<k Zs’a Vk,s,a(p* — Ts,a)| < 26HS\/AT~, then it
follows (D1 <ps oy Ir)|pr — p*| < 26HS\/AT~ where I}, is the length of the £’-th episode and

15



T . .
P = maigtﬁtk—l l: Ty i the average reward before the k-th episode. Therefore, we have that
1<k/<k "k’>

c(s,8", Loy —1)
| Z Z (rs_j,aj - ﬁk) - C(S, S/, ‘Ctk—l)(s:,s/|
i=1 ts; <j<te;—1
c(s,s’,ﬁtk_l) (26)
< | Z Z (TS]‘,G]‘ _p*)_C(svs/aﬁtk*1)5:,5’|+|( Z lk/)(ﬁk_p*”
=1 ts; <j<te;—1 1<k'<k

< (V2Tv+1)H +48HS~/ AT~

which means that A* € H in the beginning of the k-th episode.

The last step is to prove | that (5), (6) and (7) hold for P’(r) = P with high probability. (5) holds
evidently because of 32 .- According to the L; norm concentration inequality [Weissman et al,.

2003], we see that P(| P, , — PSUZ)| <\ /¥ 125y ~) < 4, thus (6) is satisfied. In order to prove (7) holds
for P’ = P with high probability, by using Lemma twice, we have that for each (s, a)

: V(P h*)y | Hy
P, — PN <2 oL 2
|( ) s,a) ‘ — Nk;)&a + Nk757a
H(k * * H(k *
o [VEL by VP h) ~ VP W)y Hy
o Nk,s,a Nk,s,a Nk,s,a
~ 2 04 i0d
o [VER by |V RL RSy
o Nk s,a Nk,e,a Nk,s,a
V(P h)y Hy HA?/
<2 12 10
- Nk s,a * Nk,s a * 5/4

holds with probability 1 — 24. Therefore, ]P’(Bfk) (T +35A)s.

On the other side, note that Ny </ < B, ensures that {(7*, P*,h*, p*)|n* € O}y N My # @. It

means that p(7;) > p*. Following the proof of Theorem 2 [Bartlett and Tewari, 2009], we get that
when 7" > Alog(T)

S () < ISl (P = POLH + | Y ol (P - D

1<t<t—1 k k

/ 125
Z Vk,s,a i 2T
k,s,a
< 18HS\/ AT~
with probability 1 — 2ATd. Moreover, note that
Yo regsa= D, (0 —r)t D (bl =PI 27)
1<t<t—1 1<t<t,—1 1<t<t),—1
By Azuma’s inequality (Lemma (8], we have that
| > (b, =PI, h7)| < 2H +\/2TvH (28)

1<i<t

holds for any 1 < ¢ < T with probability 1 — T'6. Assuming (27) and (28) hold forany 1 <t < T,
noticing that regs , > 0 for any (s, a), we have

| Y regeal < I8HS\/ATy +2H + /2TvH < 22HS+\/AT~

1<t<tp—1

16



and

LY el <l Y regaal H1 Y (h, — PL, b < 26HS /AT

1<t<tp—1 1<t<tp—1 1<i<t

At last, we conclude that when Ng>1BY ), Nir>1BS . Mi<w <k BS), and Ni<p <x B, hold,
P(Bsy) < (24T + T)5.
Putting all together we have

P(B) < (K +1)(2AT +8S?A + 2T < (6AT + 125? A)S Alog(T)s
when T > Alog(T) and SA > 4.

C.3 Proof of Lemma 3
Lemma 14. LetV =", ZS@ V5,0V (Ps,a, hiy) and W =", (Dy.. For any C' > 0, we have

P(|V| < C,|W| > KH + (4H + 2V C0)y) < 25

Proof. Let Xy, =Y 1 (PT hi — his, .., ) Where (Sy,, ag,, Tk, Sk, ) is the i-th sample in

Sk,i Qk,i
the k-th episode. We use I to denote the length of the k-th episode. Let e,, = max{k|ty < n}
and Z, = Z”:_ll Xpaw + Xepn—t., +1. Let Fy = o(Z1, ...,Zn). It’s easy to see E[Z, 41 —
Z |-F] [Xen n+2—te, Xen,n+1 te, |-Fn] = 0if €n = €En+l, and E[ n+l — Zn|-/rn] -

E[Xe, . 1|Fa] = 0 otherwise. Therefore, {Z }n>1 is a martingale with respect to {F,, },>1. On
the other hand, it’s easy to see | Z,,+1 — Z,| < H, We then apply Lemma.to {Zn}nz1 withn =T,

nx = (2v/C + 4H)~ and ny = C, and obtain that
P(Zr > 2V/Cy +4H~,|V| < C) <6
Atlast, because |W — Zr| = | ) —hks, + b5, ., | < KH, we conclude that,

P(|V| < C,|W| > KH + (4H + 2V C)y) < 2.
O

Note that Oy = v} (P, — I)The = S0 (P, i — his,) = S0 (PL b — his,y,) —
Phsy + Prsy .- Let X, = 7 (PE o hi — hys,.,). Now it suffices to show that
TH

Zk Zs,a U,Ig75,aV(PS,a7 hk) - O(
[#1,...,25]T. Note that

Z ka s,aV (Ps,a, b)) = Z ka,s,a(Pg:ahi - ((Plé,s,a)Thk)Q)
k s,a

) w.h.p.. Let 2% denote the vector [22,...,2%]T for z =

(29)
+ Z Z Uk,s,a(P];,&a - PS@)Th’f(P/;,s,a + PS,G)Thk'
By the definition of hy, we have that (P,Q)S@)Thk — hi.s = pr — Ts,o. Then we obtain that,
| Z vk,s,a(Pg:ahz - ((Pk s a Thk )= Z Uk,s,a Pj:ah2 | + | Z h hk s T Pk — TS,H)Q‘
k,s,a k,s,a k,s,a
<UD vksa(PIAR) = B2 1+ 1) (or = 7o) @his + ok — To.a)]
k,s,a k,s,a
<Y OksalPLAE =)+ Y vksaRH +1)
k,s,a k,s,a
(30
According to Lemma , we have that, with probability 1 — ¢
Z Vk,s,a(PL 7 — < \/2TvH? + KH? (31)

k,s,a
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Combining (30) and (31), we have that, with probability 1 — 4, it holds that
| vksa(PLahR = (Phoa)"hi)?)| < V2TYH? + KH? + T(2H + 1) (32)

k,s,a
Assuming the good event G occurs, the second term in (29) can be bounded by
4H? Y ks UVkis,ar/ Nk . Combining this with (ig) we obtain that, with probability 1 — 4, it
holds that

Z Z Ok.s.aV (Psarhi) < /2TvH? + KH? + T(2H + 1)) + 4V2H?S\/ATy  (33)

The dominant term is the right hand side of (33)) is 27°H when T is large enough. Specifically, when
T > S?AH?y, we have Zs’a Vk.s.aV (Ps,a,hi) < 12TH.

Let C = 12T H in Lemma[14] then it follows that
P(|> Ok > KH+ (4H + 2V12TH)y < P Y vk 0.0V (Paas hie) > 12TH)+
k s,a

k

PO vksaV (Poa hi) 12TH,| > O] > KH + (4H + 2V12TH)7)

k s,a k
< 36.

C.4 Proof of Lemma 4

Lemma 15. When T > H2S2 A, with probability 1 — 6, it holds that 3", , NSV (Pyq,h*) <
A9TH

Proof. Noting that Pgah* =R} +p* —7rsq —TEGs,q, We have

ZNS“V varh*) = Z N (P p2 = (P],h7)?)
_ ZN(T) PT h*2 h*2 +ZN(T) regs.a +7’s,a o p*)(P;Z:ah* + ht)

< «/2T7H2 +KH?>+2HY N{reg,,+2TH
’ (34)
with probability 1 — 6. By definition of BS |, we have Y, , N\&'reg, o < 22HS\/AT7. By
combining this inequality with , when T > H?2S2 A~, we have

> NDV(Pya,h*) < 2TH + H*(445+/ AT + /2T + K) < 49TH

holds with probability 1 — 9. O
Assuming (34) holds, we have that

% Psa,h / /
gvksa nga Z Psa,h kasa nga

<22y \/Ns(,];)V(Ps,a, h)
s,a

(35)
< 2\/25A4~ ZNsa Paa,h*)
< 21/SAHT~.
Here the first inequality is by Lemmaw1th a = 1, the second inequality is Jenson’s inequality and

(34) implies the last inequality. Obviously, Lemma 4 follows by Lemma T3]
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C.5 Proof of Lemma 5

Note that if we replace the reward r; , by s, + 7€gs o, then the MDP M would be a flat MDP.

According to Lemma 1, we have that, with probability 1 — S?7'6, for any ¢ < T and two different
states s, s’, it holds that

o(s,5' L1y)

| Z Z (ri +7€gs, .0, — p*) — (8,8, Ly, )0 (V2Tv+1)H

k=1 tsp<i<ter(L)—1
At the same time, Bfk implies l| is true for t = t;,. Then we have

o(s,5',L1y)

> > (ri — pr) — c(5,8", Lo, )0k.s.sr| < (/2T + 1)H + 48H S/ AT~

k=1 tsp<i<ter(L)—1

Because ng oceurs, (t — 1)|p* — pr| < 26HSVATy and Y1y _p, 7€Gs,sa, < 22HS/ATH.
Let Ni s a5 = Zlgtﬁtk—l I[sy = s,a; = a, s441 = §']. Because |[a—b| < |a+c|+|b+d|+]|c|+]|d|,
by letting

c(s,s",Le,)
a= > (ri —p") —c(s,8", L4,)07 o1
k=1  tsp<i<ten(L)—1
(5.5 Loy )
’
b= E (ri - p*) - 0(37 S 7£tk)6k7375l’
k=1  ts,<i<ten(L)—1
c(s,s",Le,) c(s,8",Ley.)
c= E E T€9s;,a:> d= E E (P* 7[)16)?
k=1  ts,<i<ten(L)—1 k=1  ts,<i<ten(L)—1

we have that

|Nk757a’5/(6k7573/ — (5;51” < |C(S, Sl,ﬁtk)((sk_’s’sl — 5:75/)‘ < 2(\/2T’}/ + 1)H -+ 96HS\/AT’)/

and

p(k) |(5k 5,8’ — (5;5/”

szk’s’az . Nis.a
_ W \/Nksas/ (Ok,s,5 — 870 (36)

< KS? \/2(\/2T7 +1)H +96H S/ AT~
<11KS?AiH2Ti~i,

where the first inequality holds because >, _ , K,’Z‘; < ksallmi(s) =al < KS.

C.6 Detailed Proof of Theorem 1

According to Lemma 2, the probability of bad event is bounded by (6 AT + 1252 A)S Alog(T) when
T > Alog(T) and SA > 4. We then consider to bound the regret when the good event occurs. We
present more rigorous analysis compared to the proof sketch in Section 5.2. Recall that

Ry =vf (p"1 = i) <o (pl — 1) = v (P, — 1)" hy,
= 0F (P = I)Thi +0f (Py — P)Th* + 0} (P, — B) T hi +0f (Py — Po)T (hi — h*);

@, R O @,
V(Ps.a, h*)y H~
< E 2 . 2
@k = - ’Uk,s,a( Nk,s7a + Nk7s,a ; (37)
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v ¢ pk) / . (k) | 145y
V(Ps’a ’ hk) - V(Ps#l’ " ) = Z \/4HP3 a,s’ ‘6]%5»5' s, s’| + 4H* Nkﬁs,a . (38)

Plugging (38) into (TT), we get that

- V(P i)y H~ HA3/4
(k) — S,a
@k <Y ksala(Nksa PE) k) = vk s (2 N 125——+10 N7
s,a s,a 's,a
(k * 1
V(Ps ash Hpsas’|5k7575l *55,5/|7 8H Si~3/4 H~y H~3/4
< ;”Uk sa (2 N e Z N + N7 Tl 10 N
85 39) 85
Based on , B, and the fact |6y s o — 67 ;| < 2H, we have that
@ = va (0 = Poa)T (i = hx 1= 1"+ R31) kasaZ (PE) )~ Poas) (00— Srss’)
s,a,s' Y 37 4’}/ /
— 5 s.s’ — 5* /
Ni.s.a + Nisa + Ns/4 )| k,s, 5,8 ‘
2HPY) (600 — 02| | 0SHy 8S H~3/4
Nk,s,a Nk,s,a 2/4
(40)
Taking sum of RHS of (37), (39) and (@0), based on the fact S > 1 we obtain that
(k) * 4
V(Ps a,h*)’Y SH’Y HPsas"(sk;S’S' _55 s’h/ SH/V?)/ )
+ + < Vk,s,a| 4 d +20 47 s , 496
D+ 0Ok + @y ; k, ( Nis.a N s.a ; N s.a Nl::/s4a
(41)

According to (D ([) Lemma[ Lemma @and Lemma[ we obtain that when T' > S® AH?v and
S A > 4, with probability at least 1 — 2053 A%T log(T')4, it holds that

T)=) Rp < KH+ (4H +2VTH)y
k

0 26
Nksa Nksa Nk.s,a + N3/4

s’ k,s,a

(k) *
V Ps avh* SH HPS as’|6kx575/ - 55 s’h/ SH 3/4
+ka”( (Poas )7 o SHY oy a. : gl )

k,s,a
3

< KH + (4H + 2VTH)~y + 84\/SAHT~ +TTKS? A4HT4 1

+ 208 H~(1 + 2SAlog(T)) + 20885 A1 T4 H% = O(VSATH).
(42)
Let §; = 20S3A%T log(T)6. When T > {S'2A3H? H?S Ak, HSAlog(T)?k, H2S? log(T)r}

4053 AT log(T) )
01

where x = log( , with probability 1 — §;, we have that

4052 A%Tlog(T)

R(T) < 490\/SATHlog( 5 ).

The selection of p;: Let py (S, A, H,log(})) = 641og(%))? (S4A4H6 SYAYH* + SSA2HS) +
SYZASH® + 100.  When T > pi(S,A H,log(3)) and S,A > 20, we have
that T > SYZA’H? and W > VT > S8log(%)max{S?A%H3 S3AH3} >

max{H2SAr, HSAlog(T)*k, H2S? log(T)x}, since 8SA >

2 Tog(D) g (D) Therefore,

log(T)
T > max{S*2A3H? H?SAx, HSAlog(T)*k, H2S? log(T)k}.
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D  Proof of Corollary 1

In this section we consider to learn MDPs with finite diameter. According to Theorem 1, in order
to reach an O(\/ DS AT) upper bound for the regret, it suffices to provide a real number H such
that sp(h*) < H < D within o(+/T) steps. For a transition model P, we use P(*¥) to denote the
transition model satisfying that Ps(f;y) = P, , when s # z, and Ps(ff;y) = lyﬂ when s = z, Va. Let

D,,= min T7T. ,then we try tolearn D,, directly.
e T:S—A 4 =y y zy Y

In Algorithm [3, when we start from x, we target to reach y as soon as possible by employing
a UCRL2-like algorithm. Once we reach y, we change the target to achieve x. Let mdp(P,r)
denote the MDP with transition model P and reward function . We maintain the two learning
process separately, so they are corresponding to running two independent learning processes, which
learn mdp(P%®) 1,)) and mdp(P®¥),1,) respectively. Based on Algorithm we can get a close

approximation for D, within Ti steps. Without loss of generality, we assume T7 isan integer.

Lemma 16. When T > (136D*S+\/A7)8, for any © # y € S, let (Dyy, Dys) be the output
of Algorithm E with (TY/*, 8, ,%) as the input, then with probability 1 — 8SAT26, it holds that
|Dyy — Day| < 1and|Dyy — Dyl < 1.

Proof of Corollary 1. Obviously, an MDP with finite diameter is weak-communicating. We run
Algorithm E for all s # & with Ty = T'/* and §; = § (without loss of generality, we as-
sume that 73 is an integer.). Denote the output of Algorithm [3 with input (IV/4,8,s,s') as
(f)ss/,f)s/s). Let H = ma;chs/ + 1. According to Lemma (16, sp(h*) < max Dy <

H < D + 2 with probability 1 — 8S3AT>5. We then execute Algorithm 1 with H = H
for T — S(S — 1)T'% steps. Since the total number of time steps for performing Algorithm

E is at most S27T'1, the regret in the first stage is at most S2T%, According to Theorem 1,
when T > 2max{(136D3SV Ak)8, S12A3D? DS Alog*(T)k, D?S Ak, D*>S%log(T)x} where

K= log(%ﬁ”og(n), the regret can be bounded as
3A2Tlog(T
R(T) < 491\/SATD(zog(S60g()).
,with probability 1 — d, the regret is at most 491 \/SATD log(%) . O

The selection of ps: Let po(S, A, D, log(3)) = 4(136D3SV/A)16(85A4)% + log($)510'°. When
T > ps(S, A, D, log(5)) and S, A, D > 20, {ryitozemys = VT > 2(136D°SVA)(8SA)* >

’ Tog(1)* log

2(136D3SVAR)® . K 30 /A8
W, since 85 A Z m. Therefore, T Z max{2(136D S AH‘,) 5

2(D3SvA)16} = 2max{(136 D3SV/Ar)®, S12 A3 D?, DS Alog?(T)k, D>S Ak, D?>S? log(T)k} .

D.1 Proof of Lemmal[l6l

In Algorithm E, we maintain two learning process. We use I, ,,(¢) to indicate whether the ¢-th step
is contained by the first process. For ¢ > Ty + 1, we set Lc,y(t) = 0. Let M; be the MDP with

transition probability P(*¥) and reward 1,, and (M, p™1) denote the optimal bias function and the
optimal average reward of M, respectively. In the same way we define My, h(?) and p(?) according
to transition probability P(¥*) and reward 1,,.

For the first process, the regret R(1) = D A<t<Ty Ty (H)=1 M + ZlgthU,s,,H:y,Im,y(t):l(P(l) -
1) = (¢ + EW)p® — kO where t) = 37,5 L y(t) and kY = [{t < Tyls;1 =
y, I, (t) = 1}|. We aim to prove that with probability 1 — p for some p € (0, 1), it holds that

IR1| < 34DS\/ATy. (43)

SWe use 1, to denote the vector v satisfying vs = I[s = y], Vs.
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Because p1) = o1 +1’ assuming (14_3) holds, we have |k(1) — Dyy| < % VALY On the other
side, we define ncig Sicrer, (1= Loy (), k@ = [{t < Tylsis1 =z, 1,,(t) = 0}, and thus
Ro = (t?) + k@)p) — ) Assuming

|R2| < 34DS\/ ATy (44)
holds, it follows that|k(2) ya| < 68D SD-SYATOY Noticing that |6V —k?)| < 1and tV)+¢?) = Ty,
we derive that k(1 > 2T° and k() > T" Therefore we get that

| o < 68D°S VAT, _ 136D°S\/Ay
(1) zyl = L) = VT
1 68D%S\/AT, 136D3S\/A7
‘ﬁ yr‘ k(g) = /*TO .
Because /T, > 136D3S5+/A~, we conclude that |£(<—11)) — Dgy| < 1and |% — Dy,| < 1 with

probability 1 — 2p.
Theorem?2 in [Jaksch et al., 2010] provides a solid foundation to prove (43 holds with high probability.
Following the analysis of this theorem, we have some lemmas below.

Lemma 17. Let X1, X, ... be i.i.d. discrete random variables with support X. Let I, € {0,1}
be random variables in {0,1} for n = 1,2,.... Assume that for each n, X,, is independent of

{I,....; In}. Let a, = min{i > 1| 22:1 I; > k}. Forany k > 1, if ai, < oo with probability 1, then
the joint distribution of (X, , ..., Xa, ) is the same as the joint distribution of (X1, ..., Xj,), which
means Xg,, ..., Xq, are i.i.d. random variables.

Proof. When k = 1, for each 7 > 1, conditioning on a; = i, the distribution of X, is the same
as the distribution of X, since X; is independent of (X1, ..., X;—_1, 1, ..., I;). Because ax < oo
with probability 1, then we have P(X,, = z) = Y .2 Plax = {)P(X; = z) = P(X; = x)
for any x € X. For n > 2, we assume that this lemma holds for ¥ = n — 1. In the same way
we have that for any x € X, P(X,, = z|a1,a2,....,an, X1,...; Xa,—1) = P(X1 = z). It then
follows that for any (z1,...,x,) € A", P(X,, = 21,..., Xa, = Tpn) = P( Xy, =21, ..., X0, _, =
Jﬁn_l)P(Xa" = xn‘Xal = T, ---7Xan,1 = xn—l) = P(Xal = .’1,‘1,...,Xan71 = xn_l)IP’(Xl =
xy) = II?_;P(X; = ;). Then the conclusion follows by induction. O

Lemma 18. With probability 1 — in any episode, the true transition probability P is in P.

GOT"’

Proof. Because the rewards {7 4 }ses,qc.4 are assumed to be known in the beginning, it suffices to

145 Alog(2ATy /o)

_py <
make sure [P , — Ps,q|1 < (N (0 1)

To apply Lemma |17, we have to make sure a;, < oo with probability 1 for V& < Tj. Butit’s
easy to see that, if we let I, = I, ,(t(n,s,a)) for n < T where t(n, s, a) is the first time (s, a)
is visited for n times (if the visit number of (s, a) is less than n, we set ¢(n,s,a) = Ty + 1 and
I, =I;y,(To+1) =0). For Ty +1 < n < 2T, we set I,, = 1, then it follows a;, < 2T} for
Vk < Tp. Note that I, ,(¢) is a function of the random events before the ¢-th round, and thus I, , (t)
is obviously independent of subsequent states (s;y1, S¢+2,-..). Whenn > Ty + 1, I,, is independent
of all other random variables. As a result, for any k£ < T}, the conclusion of Lemma|_h01ds for
PMJ, Ps,a72, ...and Iy, I, ..., where Pé i e R¥ is the result of the i-th try of executing a in s.

Because Ns(la) (t) < Ty, according to Lemma the distribution of PS(Q( t) is the same as the distri-

. N .. .. . . .
bution of m Zi:“’i"( ) Ps i, where P , 1, Ps 42, ... are 1.i.d. distributed obeying multinomial

distribution with parameter P Based on the analysis in Lemma 17 [Jaksch et al., 2010], we conclude

that with probability 1 — 60T6’ , for any ¢t < T, and any (s, a), it holds that

|Psa_

)

H(1 (t)| < 14SA10g(2ATO/50)
TN max{NE (1), 13
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Lemma 19. Let P], denote the transition model of the optimal extended MDP in the k-th episode, and
uy, denote the optimal bias function of mdp(P,1,). Then we have sp(uy) < Dy 1= sup,2,D,.

Proof. Firstly, it’s easy to see that uy , > uy, . for any z € S. Assume that there exists z such that
Uk,y — Uk,z > Dy > D.,. We can design a nonstationary policy to achieve better value for uy .:
in the first, we start from z following some policy to reach y as quickly as possible. Because the
true transition model P € P in each episode, we can reach y within D, steps in expectation. After
reaching y, we follow the original optimal policy. Let R;(s) be the optimal ¢-step accumulative reward
starting from s and p be the corresponding optimal average reward. According to the definition of
optimal bias function, we have lin; oo Rt (2) —pt = ug,. > lims oo Ri—p., (y) —pt > Up,y—D.y.
Therefore, sp(uy) < max,{uky — Uk} < Dsy. O

According to the derivation in Section 4 [Jaksch et al., 2010], we have that

R(mdp(P™Y), 1), To) < 1Y of (P = D) ug| <[> of (P = I) | + \ka — Pr)uy|
k k

5 8T; 8T 2AT
< Dy/ 2T 1og(=2) + DSAlogy (=) + (2D4/ 148 log(===2) + 2)(vV2 + VT
2 50 SA 50
s (45)

holds with probability 1 — 2T0 5 Tor/7  60TT
Remark: We can prove (45) holds with high probability for all ¢ < T} in the same way. As a result,
we conclude that, with probability 1 —3SATZ4, for any ¢ < Ty, it holds that R(mdp(P@¥) 1,),t) <
34DS/ATyy.

With a slight abuse of notations Wwe use regs,q to denote the single step regret for mdp(P(g” ¥) 1 v)-

Noting that sp(h(1)) = T D < D, according to (IBI) in LemmaM for any ¢ < T it holds that
R(mdp(P™ Z regs, 0, > —2v/ToyD — D > —34DS~/ATyy

with probability 1 — &. Therefore, we conclude that with probability 1 — 4SATZ4, it holds that
|R(mdp(P®¥),1,),t)| < 34DS+\/ATy for any t < T.
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Algorithm 3 LD: Learn the Diameter
Input: Ty, g,z #y €S
t < 1,1, ,(t) <0, tl(i) 1, tl(i) «— 1, w(l)(s),w(Q)(s) < arbitrary policy, Vs;
N+ 0NEL @) 0, N L) < 0, NELL@0) « 0 PE) (1) + 0.8
Vs, a,s';
if current state is not x then
) 1,
else
r®) 1,
end if
fort=1,2,... 7Ty do
if () = 1, then
I, () < 0O;
if 3(s,a), s... NOJ () > 2N ()Y or t = 1 then
th e t;

<P ={p r _ pQ 145A10g(2ATy /80)
update P as: P = {P'|V(s,a),| P, , s.a (B < e N (0) 17

(t) < 0,

Py  argmax p(mdp(Q9), 1,,));
QeP

71 « optimal policy for mdp(P{"* 1,);
end if
Execute 71 (s;), get 7y = r(*) (54, a;) and transits to s, 1;
if St+1 =T then
i+l = 1,
end if
else
I 4(t) < 1;
if 3(s, a), s.t. N2 () > 2N (117) or t = 0 then
£ t;
<P ={p r _ p@ 145A10g(2ATy /80)
update P as: P = {P'|V(s,a),|P; , — Ps.a (t)|1 < (N (0) 1]
P, < arg max p(mdp(Q¥™), 1,));
QeP

7(?) < optimal policy for Mb;
end if
Execute 7(2) (s¢), getry = r(t)(st, a) and transits to s¢11;
if s;4+1 = y then
r+l) — 1,
end if
end if
Update:

Ns(la) (t+1)= Z§=1 I[s; = s,a; = a,r) = lz];Ns(?a)(t) = Z§=1 I[s; = s,a; = a,rY) =

Yy
NG+ 1) =0 Mlse = s,a0 = a, 5001 = 8,70 = LEND) (6 41) = S0, Ils =
s,a; = a, 8041 = 8,7 = 1,];
N
A(1) _ Ns,a.s’(t+1) . A(Q)
Piaw(t+1) = max{N{)(t+1),1} 7" 505
end for

Return:(

2
N;:YS,(H-I)

(t+1)= max{ N2 (t+1),1}

{tlre=1y }| H{tlre=1z}| )

[{t|si=y,rE=D=1,}|" [{t|s;=z,rt-D=1,}]

24



	Introduction
	Related Work
	Main Contribution

	Preliminaries
	Algorithm Description
	Framework of UCRL2
	Tighter Confidence Set by Evaluating the Optimal Bias Function

	Main Results
	Analysis of EBF (Proof Sketch of Theorem 1) 
	Probability of Bad Events
	Regret when the Good Event Occurs

	Conclusion
	Mistake in the Analysis of Previous Work
	Some Basic Lemmas
	Missing Proofs in the Analysis of Theorem 1
	Proof of Lemma 1
	 Proof of Lemma 2
	 Proof of Lemma 3
	 Proof of Lemma 4
	 Proof of Lemma 5
	 Detailed Proof of Theorem 1

	 Proof of Corollary 1
	 Proof of Lemma 16


