
Appendix for AttentionXML

Ronghui You1, Zihan Zhang1, Ziye Wang2, Suyang Dai1,
Hiroshi Mamitsuka4,5, Shanfeng Zhu1,3,∗

1 Shanghai Key Lab of Intelligent Information Processing, School of Computer Science,
2 Centre for Computational Systems Biology, School of Mathematical Sciences,

3 Shanghai Institute of Artificial Intelligence Algorithms and ISTBI,
Fudan University, Shanghai, China;

4 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan;
5 Department of Computer Science, Aalto University, Espoo and Helsinki, Finland

{rhyou18,zhangzh17,zywang17,sydai16}@fudan.edu.cn
mami@kuicr.kyoto-u.ac.jp, zhusf@fudan.edu.cn

A Examples of PLT in AttentionXML

Here we show PLTs we used in AttentionXML for three extreme-scale datasets:

1. For Amazon-670K with the number of labels L = 670, 091, we used a setting of H = 3
and K = M = 23 = 8, the number of nodes in each level of the PLT we used from top to
down is 1; 2,048(211); 16,384(214); 131,072(217) and 670,091, respectively.

2. For Wiki-500K with the number of labels L = 501, 008, we used a setting of H = 1 and
K = M = 26 = 64, the number of nodes in each level of the PLT we used from top to
down is 1; 8,192(213) and 501,008, respectively.

3. For Amazon-3M with the number of labels L = 2, 812, 281, we used a setting of H = 3
and K = M = 23 = 8, the number of nodes in each level of the PLT we used from top to
down is 1; 8,192(213); 65,536(216); 524,288(219) and 2,812,281, respectively.

B Algorithms

Algorithm 1 presents the pseudocode for compressing a deep PLT to a shallow one. The deep PLT
can be generated by a hierarchical KMeans (K=2) following Parabel [7]. Algorithm 2 presents the
pseudocode for getting labels of tree nodes for each sample. Algorithm 3 and Algorithm 4 presents
the pseudocode of training and prediction of AttentionXML, respectively.

C Related Work

Existing work for XMTC can be categorized into the following four types: 1) 1-vs-All, 2) Embedding-
based, 3) Tree-based, and 4) Deep learning-based methods.

C.1 1-vs-All Methods

1-vs-All methods, such as 1-vs-All SVM, train a classifier (e.g. SVM) for each label independently.
A clear weak point is that its computational complexity is very high, and the model size can be huge,
due to the extremely large number of labels and instances.

For reducing the complexity, PD-Sparse [12] and PPDSparse [11] are recently proposed by using
the idea of sparse learning. PD-Sparse trains a classifier for each label by a margin-maximizing
loss function with the L1 penalty to obtain an extremely sparse solution both in primal and dual,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Algorithm 1 Compressing into a shallow and wide PLT

Input: (a) Labels of training data {yi}Ntrain
i=1 ; (b) PLT T0; (c) K = 2c, H

Output: A compressed shallow and wide PLT T

1: S0 ← {parent nodes of leaves}
2: for h← 1 to H do
3: if h < H then
4: Sh ← {c-th ancestor node n of nodes in Sh−1}
5: else
6: Sh ← { the root of T0}
7: Th ← Th−1
8: for all nodes n ∈ Sh do
9: for all nodes n′ ∈ Sh−1 and node n is the ancestor of n′ in T do

10: Pa(n′)← n . Let node n be parent of node n′ in Th, Pa(n) means parent of n.
11: return TH

Algorithm 2 Getting labels of tree nodes

Input: (a) Labels of training data {yi}Ntrain
i=1 ; (b) PLT T

Output: Tree nodes labels {zi}Ntrain
i=1

1: for i← 1 to N do
2: for all node n in T do
3: zi,n ← 0

4: for j ← 1 to L do
5: if yi,j then
6: n← leaf node corresponding to label j in T
7: while n isn’t the root of T do
8: zi,n ← 1
9: n← Pa(n)

10: return {zi}Ntrain
i=1

Algorithm 3 Training of AttentionXML

Input: (a) Training data {xi, zi}Ntrain
i=1 ; (b) PLT T ; (c) Candidates number C;

Output: Trained Model AttentionXML1, AttentionXML2, ..., AttentionXMLH+1

1: H ← the height of T
2: for i← 1 to N do
3: c1i ← { children node n of the root of T}
4: for d← 1 to H + 1 do
5: if d > 1 then
6: for i← 1 to N do
7: for all node n ∈ cd−1i do
8: ẑi,n ← score predicted by AttentionXMLd−1 with xi

9: ẑi,n ← ẑi,n × ẑi,Pa(n)

10: sdi ← Top C nodes in cd−1i by zi from positive to negative and ẑi from large to small
11: cdi ← { All children nodes of sdi in T}
12: Initialize weights of AttentionXMLd with weights of AttentionXMLd−1
13: Train AttentionXMLd with {xi, zi, c

d
i }

Ntrain
i=1

14: return AttentionXML1, AttentionXML2, ..., AttentionXMLH+1

2

Algorithm 4 Prediction of AttentionXML
Input: (a) Test sample x; (b) PLT T ; (c) Candidates number C;
Output: Ranked predicted labels
1: H ← the height of T
2: c1 ← { All children nodes the root of T}
3: for d← 1 to H + 1 do
4: if d > 1 then
5: cd ← { All children nodes of sd−1 in T}
6: for all node n ∈ cd do
7: ẑn ← score predicted by AttentionXMLd with x
8: ẑn ← ẑn × ẑPa(n)

9: sd ← Top C nodes in cd by ẑ from large to small
10: return Ranked labels corresponding to sH+1

without sacrificing the expressive power of the predictor. PPDSparse [11] extends PD-Sparse, by
using efficient parallelization of large-scale distributed computing (e.g. 100 cores), achieving a better
performance than PD-Sparse.

As another state-of-the-art 1-vs-All method, DiSMEC [1], learns a linear classifier for each label
based on distributed computing. DiSMEC uses a double layer of parallelization to sufficiently exploit
computing resource (400 cores), implementing a significant speed-up of training and prediction.
Pruning spurious weight coefficients (close to zero), DiSMEC makes the model thousands of times
smaller, resulting in reducing the required computational resource to a much smaller size than those
by other state-of-the-art methods.

C.2 Embedding-based Methods

The idea of embedding-based methods is, since the label size is huge, to compress the labels
and use the compressed labels for training, and finally, compressed labels are decompressed for
prediction. More specifically, given n training instances (xi,yi)(i = 1, . . . , n), where xi ∈ Rd is a
d-dimensional feature vector and yi ∈ {0, 1}L is an L-dimensional label vector. Embedding-based
methods compress yi into a lower L̂-dimensional embedding vector zi by zi = fC(yi), where
fC is called a compression function. Then embedding-based methods train regression model fR
for predicting embedding vector zi with input feature vector xi. For a given instance with feature
vector xi, embedding-based methods predict its embedding vector zi by zi = fR(xi) and predict
label vector ŷi by ŷi = fD(zi) where fD is called a decompression function. A disadvantage is
that feature space X and label space Y are projected into a low dimensional space Z for efficiency.
As such, some information must be lost through this process, sometimes resulting in only limited
success.

The main difference among embedding-based methods is the design of compression function fC
and decompression function fD. For example, the most representative method, SLEEC [3], learns
embedding vectors zi by capturing non-linear label correlations, preserving the pairwise distance
between label vectors, yi and yj , i.e. d(zi, zj) ≈ d(yi,yj) if i is in the k nearest neighbors of
j. Regressors V are then trained to predict embedding label zi = Vxi, and a k-nearest neighbor
classifier (KNN) is used for prediction. KNN has high computational complexity, so SLEEC uses
clusters, into which training instances are embedded. That is, given a test instance, only the cluster
into which this instance can be fallen is used for prediction.

AnnexML [9] is an extension of SLEEC, solving the three problems of SLEEC: 1) clustering without
labels; 2) ignoring the distance value in prediction (since just KNN is used); and 3) slow prediction.
AnnexML generates a KNN graph (KNNG) of label vectors in the embedding space, addressing the
above problems, and improves both accuracy and efficiency.

C.3 Tree-based Methods

Tree-based methods use the idea of (classical) decision tree. They generate a tree by recursively
partitioning given instances by features at non-terminal nodes, resulting in a simple classifier at each

3

leaf with only a few active labels. Also following the idea of random forest, most tree-based methods
generate an ensemble of trees, selecting (sampling) a feature subset randomly at each node of the
trees. A clear disadvantage of the tree-based method is the low performance, because selection at a
node of each tree is just an approximation.

The most representative tree-based method, FastXML [8], learns a hyperplane to split instances
rather than to select a single feature. In more detail, FastXML optimizes an nDCG (normalized
Discounted Cumulative Gain)-based ranking loss function at each node. An extension of FastXML is
PfastreXML [4], which keeps the same architecture as FastXML, and PfastreXML uses a propensity
scored objective function, instead of optimizing nDCG. Due to this objective function, PfastreXML
makes more accurate tail label prediction over FastXML.

Label tree-based methods are already described in the paper.

C.4 Deep learning-based Methods

Deep learning-based methods can be divided into two types: sequence-to-sequence (Seq2Seq)
learning (S2SL) and discriminative learning-based (DL) methods. As the DL methods are already
explained in Introduction, we here focus on S2SL methods. Pioneering approaches of S2SL are
MLC2Seq [6], SGM [10], and SU4MLC [5], all of which use an attention based Seq2Seq architecture
[2]. This architecture has the input with the representations of source text by an RNN encoder and
predicts the labels with another attention based RNN decoder. Also trainable attention parameters
in this architecture are the same for all labels (Note that AttentionXML has label-specific attention
parameters). The difference from MLC2seq is that SGM considers the label distribution at the last
time step in decoder, and SU4MLC uses higher-level semantic unit representations by multi-level
dilated convolution. Empirically MLC2Seq is demonstrated to outperform FastXML (tree-based
method) in terms of F1 measure. In contrast, SGM and SU4MLC have shown no comparative
performance advantages.

D Experiments and Results

D.1 Evaluation Metrics

We chose P@k (Precision at k) and N@k (normalized Discounted Cumulative Gain at k) as our
evaluation metrics for performance comparison, since both P@k and N@k are widely used for
evaluation methods for multi-labelclassification problems. P@k is defined as follows:

P@k =
1

k

k∑
l=1

yrank(l) (1)

where y ∈ {0, 1}L is the true binary vector, and rank(l) is the index of the l-th highest predicted
label. N@k is defined as follows:

DCG@k =

k∑
l=1

yrank(l)

log(l + 1)

iDCG@k =

min(k,||y||0)∑
l=1

1

log(l + 1)

N@k =
DCG@k

iDCG@k

(2)

N@k is a metric for ranking, meaning that the order of top k prediction is considered in N@k but not
in P@k. Note that P@1 and N@1 are the same. We also use PSP@k(propensity scored precision
at k) as our evaluation metric for performance comparison on "tail labels" [4]. PSP@k is defined as
follows:

PSP@k =
1

k

k∑
l=1

yrank(l)

prank(l)
(3)

where prank(l) is the propensity score [4] of label rank(l).

4

GMail Drive is a free third-party Windows Shell namespace extension (`` add-on '') for Google 's Gmail . GMail Drive is not supported by Google . It allows a user to access a virtual drive
stored in a Gmail e-mail account by causing the contents of the Gmail account to appear as a new network share on the user 's workstation . In order to use this add-on , the user needs
a Gmail e-mail account . The add-on enables the user to use the standard Windows desktop file copy and paste commands to transfer files to and from the Gmail account as if it were a
drive on the user 's computer . In order for GMail Drive to operate , the computer must be connected to the Internet and the user must have a Gmail account . A broadband connection
is preferable , though not necessary , as all operations are done through Gmail and consequently over the Internet . GMail Drive uses the inbox of the Gmail account to store files and
creates a virtual filesystem on top of the Gmail account , enabling the user to save and retrieve files stored on the Gmail account directly from inside Windows Explorer . GMail Drive
adds a new virtual drive to the computer under the My Computer folder , where the user can create new folders , copy and drag-and-drop files to , but does not give an actual drive
letter , such as C : , preventing its use in all DOS applications , and some older Windows applications . When the user creates a new file using GMail Drive , it generates an e-mail and
posts it to the Gmail account 's inbox . The e-mail appears in the normal Inbox folder when using the normal Gmail interface , and the file is attached as an e-mail attachment . GMail
Drive periodically checks the mail account (using the Gmail search function) to see if new files have arrived and to rebuild the virtual drive 's directory structures . Multiple computers
can connect to one Gmail account thus allowing GMail Drive to act as a multi-user file server . Consequently , restrictions on the Gmail service are also enforced when using GMail Drive .
For example , files larger than 20 MB can not be uploaded , as the maximum file size of Gmail attachments is 20 MB [1] . In the past , Gmail also prevented users from transferring
certain file types , such as an executable or ZIP archive . (Remark : It seems possible now to transfer those file types to a Gmail Drive .) Some users bypassed this restriction by renaming
the file extension or by putting it into a RAR or 7zip archive . A GNU software package named PHPGmailDrive even makes it possible to link different Gmail accounts together , and with
some manual changes you can have a Gmail Drive built out of several Gmail accounts . GMail Drive is an experimental package that depends on but is not provided by Google . Changes
in Google 's Gmail system may render GMail Drive temporarily or permanently inoperable . The current GMail Drive does not support accounts that are with Google Apps The Gmail
Program Policies do not explicitly ban GMail Drive , shell namespace extensions , or the use of Gmail storage space for files other than e-mail . [2] Nonetheless , immoderate use of
GMail Drive may trigger Google to temporarily suspend a Gmail account . [3]

Figure 1: Attention of a test instance (wiki entry: GMail Driver) to the label "gmail" in Wiki10-31K.

D.2 Performance Results

Table 1 shows the performance comparisons of AttentionXML and other seven state-of-the-art
methods over six benchmark datasets.

D.3 Impact of height and maximum cluster size

Table 2 shows how different maximum cluster sizes M(= K) effect the performance of Atten-
tionXML. For keeping the number of candidates, we use a corresponding C for different K. We
can see that the setting of a smaller M achieves a better performance on all datasets, especially on
"tail labels". Table 3 shows how different heights H effect the performance of AttentionXML. As
shown in Table 3, a smaller H achieves a better performance. However, a setting of a smaller M
and a smaller H needs more time cost. So choosing these hyper-parameters is a trade-off between
performance and time cost .

E Effectiveness of Attention

We show a typical case, to demonstrate the advantage of attention mechanism in AttentionXML. Fig.
1 shows a typical text example from test data of Wiki10-31K. One of its true labels is “gmail”, which
is ranked at the top by AttentionXML (while at the over 100th without multi-label attention). In
Fig. 1, each token is highlighted by its attention score to this label computed by AttentionXML. We
can see that AttentionXML gives high scores to “Gmail”, “e-mail” and “attachments”, which are all
relevant to the true label “gmail”. This result shows that the attention mechanism of AttentionXML
is effective for XMTC.

5

Table 1: Performance comparisons of AttentionXML and other competing methods over six bench-
mark datasets.

Methods P@1=N@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5
EUR-Lex

AnnexML 79.66 64.94 53.52 68.70 62.71 33.88 40.29 43.69
DiSMEC 83.21 70.38 58.73 73.73 67.96 38.45 46.20 50.25
ProXML 83.41 70.97 58.94 74.23 68.16 44.92 48.37 50.75

PfastreXML 73.13 60.16 50.54 63.51 58.71 41.68 44.01 45.73
Parabel 82.12 68.91 57.89 72.33 66.95 37.20 44.74 49.17
Bonsai 82.30 69.55 58.35 72.97 67.48 37.33 45.40 49.92

XML-CNN 75.32 60.14 49.21 63.95 58.11 32.41 36.95 39.45
AttentionXML-1 85.49 73.08 61.10 76.37 70.49 44.75 51.29 53.86
AttentionXML 87.12 73.99 61.92 77.44 71.53 44.97 51.91 54.86

Wiki10-31K
AnnexML 86.46 74.28 64.20 77.14 69.44 11.86 12.75 13.57
DiSMEC 84.13 74.72 65.94 76.96 70.33 10.60 12.37 13.61
ProXML 85.25 76.53 67.33 78.66 71.77 17.17 16.07 16.38

PfastreXML 83.57 68.61 59.10 72.00 64.54 19.02 18.34 18.43
Parabel 84.19 72.46 63.37 75.22 68.22 11.69 12.47 13.14
Bonsai 84.52 73.76 64.69 76.27 69.37 11.85 13.44 14.75

XML-CNN 81.42 66.23 56.11 69.78 61.83 9.39 10.00 10.20
AttentionXML-1 87.05 77.78 68.78 79.94 73.19 16.20 17.05 17.93
AttentionXML 87.47 78.48 69.37 80.61 73.79 15.57 16.80 17.82

AmazonCat-13k
AnnexML 93.54 78.36 63.30 87.29 85.10 51.02 65.57 70.13
DiSMEC 93.81 79.08 64.06 87.85 85.83 51.41 61.02 65.86
ProXML 89.28 74.53 60.07 82.83 80.75 61.92 66.93 68.36

PfastreXML 91.75 77.97 63.68 86.48 84.96 69.52 73.22 75.48
Parabel 93.02 79.14 64.51 87.70 85.98 50.92 64.00 72.10
Bonsai 92.98 79.13 64.46 87.68 85.92 51.30 64.60 72.48

XML-CNN 93.26 77.06 61.40 86.20 83.43 52.42 62.83 67.10
AttentionXML-1 95.65 81.93 66.90 90.71 89.01 53.52 68.73 76.26
AttentionXML 95.92 82.41 67.31 91.17 89.48 53.76 68.72 76.38

Amazon-670K
AnnexML 42.09 36.61 32.75 38.78 36.79 21.46 24.67 27.53
DiSMEC 44.78 39.72 36.17 42.14 40.58 26.26 30.14 33.89
ProXML 43.37 38.58 35.14 40.93 39.45 30.31 32.31 34.43

PfastreXML 39.46 35.81 33.05 37.78 36.69 29.30 30.80 32.43
Parabel 44.91 39.77 35.98 42.11 40.33 26.36 29.95 33.17
Bonsai 45.58 40.39 36.60 42.79 41.05 27.08 30.79 34.11

XML-CNN 33.41 30.00 27.42 31.78 30.67 17.43 21.66 24.42
AttentionXML-1 45.66 40.67 36.94 43.04 41.35 29.30 32.36 35.12
AttentionXML 47.58 42.61 38.92 45.07 43.50 30.29 33.85 37.13

Wiki-500K
AnnexML 64.22 43.12 32.76 54.30 52.23 23.98 28.31 31.35
DiSMEC 70.21 50.57 39.68 61.77 60.01 27.42 32.95 36.95

PfastreXML 56.25 37.32 28.16 47.14 45.05 32.02 29.75 30.19
Parabel 68.70 49.57 38.64 60.57 58.63 26.88 31.96 35.26
Bonsai 69.26 49.80 38.83 60.99 59.16 27.46 32.25 35.48

AttentionXML-1 75.07 56.49 44.41 67.81 65.77 30.05 37.31 41.74
AttentionXML 76.95 58.42 46.14 70.04 68.23 30.85 39.23 44.34

Amazon-3M
AnnexML 49.30 45.55 43.11 46.79 45.27 11.69 14.07 15.98

PfastreXML 43.83 41.81 40.09 42.68 41.75 21.38 23.22 24.52
Parabel 47.42 44.66 42.55 45.73 44.54 12.80 15.50 17.55
Bonsai 48.45 45.65 43.49 46.78 45.59 13.79 16.71 18.87

AttentionXML-1 49.08 46.04 43.88 47.17 45.91 15.15 17.75 19.72
AttentionXML 50.86 48.04 45.83 49.16 47.94 15.52 18.45 20.60

6

Table 2: Performance comparisons of different M = K(with corresponding C) for AttentionXML.

Methods P@1=N@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5
Amazon-670K, H = 2

K = 8, C = 160 45.74 40.92 37.12 43.26 41.53 29.32 32.50 35.18
K = 16, C = 80 45.13 40.35 36.60 42.64 40.95 28.90 32.02 34.67
K = 32, C = 40 44.72 39.98 36.15 42.29 40.52 28.80 31.79 34.22
K = 64, C = 20 44.06 39.00 35.07 41.32 39.43 28.36 30.92 33.06
K = 128, C = 10 42.96 37.69 33.51 39.99 37.85 27.27 29.46 31.17

Wiki-500K, H = 1
K = 64, C = 15 75.07 56.49 44.41 67.81 65.77 30.47 37.27 41.69
K = 128, C = 8 74.88 56.16 43.93 67.46 65.21 30.16 36.92 41.05
K = 256, C = 4 74.26 55.06 42.30 66.29 63.39 30.22 35.87 38.95

Amazon-3M, H = 3
K = 8, C = 160 49.08 46.04 43.88 47.17 45.91 15.15 17.75 19.72
K = 16, C = 80 48.63 45.64 43.45 46.76 45.48 15.02 17.59 19.50

Table 3: Performance comparisons of different H for AttentionXML on Amazon-670K.

Methods P@1=N@1 P@3 P@5 N@3 N@5 PSP@1 PSP@3 PSP@5
Amazon-670K, K = 8, C = 160

H = 2 45.74 40.92 37.12 43.26 41.53 29.32 32.50 35.18
H = 3 45.66 40.67 36.94 43.04 41.35 29.30 32.36 35.12
H = 4 45.29 40.47 36.73 42.83 41.13 28.88 32.08 34.79

Table 4: Performance comparisons (P@5) of AttentionXML with different H on EUR-Lex, Wiki10-
31K and AmazonCat-13K. H = 0 means without a PLT.

AttentionXML H EUR-Lex Wiki10-31K AmazonCat-13K
No PLT 0 61.10 68.78 66.90
Shallow 2 60.88 67.27 66.28

Deep 4 60.54 65.89 65.46

References

[1] R. Babbar and B. Schölkopf. DiSMEC: distributed sparse machines for extreme multi-label
classification. In Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, pages 721–729. ACM, 2017.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for extreme multi-
label classification. In Advances in Neural Information Processing Systems, pages 730–738,
2015.

[4] H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 935–944. ACM,
2016.

[5] J. Lin, Q. Su, P. Yang, S. Ma, and X. Sun. Semantic-unit-based dilated convolution for multi-
label text classification. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4554–4564, 2018.

[6] J. Nam, E. L. Mencía, H. J. Kim, and J. Fürnkranz. Maximizing subset accuracy with recurrent
neural networks in multi-label classification. In Advances in Neural Information Processing
Systems, pages 5413–5423, 2017.

[7] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned label trees for
extreme classification with application to dynamic search advertising. In Proceedings of the

7

2018 World Wide Web Conference on World Wide Web, pages 993–1002. International World
Wide Web Conferences Steering Committee, 2018.

[8] Y. Prabhu and M. Varma. FastXML: A fast, accurate and stable tree-classifier for extreme
multi-label learning. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 263–272. ACM, 2014.

[9] Y. Tagami. AnnexML: approximate nearest neighbor search for extreme multi-label classifi-
cation. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 455–464. ACM, 2017.

[10] P. Yang, X. Sun, W. Li, S. Ma, W. Wu, and H. Wang. SGM: sequence generation model for multi-
label classification. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 3915–3926, 2018.

[11] I. E. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. PPDsparse: a parallel
primal-dual sparse method for extreme classification. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 545–553. ACM,
2017.

[12] I. E.-H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. Dhillon. PD-Sparse: a primal and dual
sparse approach to extreme multiclass and multilabel classification. In International Conference
on Machine Learning, pages 3069–3077, 2016.

8

	Examples of PLT in AttentionXML
	Algorithms
	Related Work
	1-vs-All Methods
	Embedding-based Methods
	Tree-based Methods
	Deep learning-based Methods

	Experiments and Results
	Evaluation Metrics
	Performance Results
	Impact of height and maximum cluster size

	Effectiveness of Attention

