
A Background Knowledge for Handwritten Equations Decipherment

In this section, we present the background knowledge of the Handwritten Equations Decipherment
tasks in Prolog language. Following the convention of logic programming, we use words starting with
capital letters and underline dash to represent variables, e.g., “Y”, “Pseudo_Label” and “_”; and
use numbers and words starting with lowercase to represent constant, predicate an function names,
e.g., “0”, “+” and “digit/1”, where the number behind the slash means the arity of the predicate or
function. The sentences initiated with “%” are inline comments.

Table 1: Background knowledge about equation structure.

% Define a single digit
digit(0).
digit(1).
% Recursively define digits
digits([D]) ––> [D], digit(D) .
digits([D|T]) ––> [D], !, digits(T), digit(D) .
digits(X) :- phrase(digits(X), X).

% Recursively define equations.
% Since the pseudo-labels may contain missing values (variables),.
% we define eq_args as non operator symbols (including variables).
eq_arg([D]) ––> [D], not(D == ’+’), not(D == ’=’) .
eq_arg([D|T]) ––>

[D], !, eq_arg(T), not(D == ’+’), not(D == ’=’) .
equation(eq(X, Y, Z)) ––>

eq_arg(X), [+], eq_arg(Y), [=], eq_arg(Z).
parse_eq(Pseudo_Labels, Eq) :-

phrase(equation(Eq), Pseudo_Labels).

Tab. 1 illustrates the background knowledge about digits and equation structures. The predicate
digit/1 defines the two numerical pseudo-labels (primitive concepts) “0” and “1”, the other two,
“+” and “=”, are defined in the Definitive Clause Grammar (DCG) rule of equation/1.

The predicates in red colour are recursive DCG rules, defining the pattern of corresponding concepts.
For example, the rules about digits/1 indicates that any list longer than 1 and constructed by digit
are “digits”.

The eq_arg/1 predicate simply defines what are the argument of equation/1. Because the input
pseudo-labels may contain missing values (i.e., the “incorrect” pseudo-labels that have been removed
by the learned heuristic δ function in Eq. 5), the argument could be any list composed by digit and
Prolog’s blank variable “_”, for example, “10010” and “_101_1”.

The DCG rule for equation/1 defines that any equation has the structure of eq(X,Y,Z), forming a
pseudo-label list “[X],[+],[Y],[=],[Z]”, in which X, Y and Z are instances of eq_arg/1.

The predicates in blue simply parses a list given corresponding concepts defined DCG rules, e.g.,
parse_eq/2 takes a list of pseudo-labels as input, and outputs the parsed equation structure
eq(X,Y,Z).

Parsing a sequence with DCG rules is also a kind of abduction, in which the DCG rules are background
knowledge, the input list is observation, and the parsed results are abduced explanations. Therefore,
there could be multiple parsing results. For example, parse_eq([A,B,C,D,E,F,G],Eq) will output
Eq=eq([A,B],[D],[F,G]) or eq([A],[C,D],[F,G]), where C and E are abduced to be “+” and
“=” in the first case; B and E are abduced to be “+” and “=” in the second case.

Tab. 2 shows the background knowledge about bit-wise calculation, which calculates the parsed
equation eq(X,Y,Z) and abduces the missing pseudo-labels in eq(X,Y,Z) as well as the missing
operation rules for defining “+”. In our implementation, the missing operation rules to be learned,
i.e. the ∆C is defined with “my_op/3”. For example, a complete rule set defining arithmetic

13

Table 2: Background knowledge about bit-wise calculation.

% Abductive bit-wise calculation with given pseudo-labels,
% this procedure abduces missing pseudo-labels together with
% unknown operation rules.
calc(Rules, Pseudo) :-

calc([], Rules, Pseudo).
calc(Rules0, Rules1, Pseudo) :-

parse_eq(Pseudo, eq(X,Y,Z)),
bitwise_calc(Rules0, Rules1, X, Y, Z).

% Bit-wise calculation that handles carrying
bitwise_calc(Rules, Rules1, X, Y, Z) :-

reverse(X, X1), reverse(Y, Y1), reverse(Z, Z1),
bitwise_calc_r(Rules, Rules1, X1, Y1, Z1),
maplist(digits, [X,Y,Z]).

% Recursively calculate back-to-front
bitwise_calc_r(Rs, Rs, [], Y, Y).
bitwise_calc_r(Rs, Rs, X, [], X).
bitwise_calc_r(Rules, Rules1, [D1|X], [D2|Y], [D3|Z]) :-

% Abduces ∆C (my_op/3) during the calculation.
abduce_op_rule(my_op([D1],[D2],Sum), Rules, Rules2),
% Handling carry
((Sum = [D3], Carry = []); (Sum = [C,D3], Carry = [C])),
bitwise_calc_r(Rules2, Rules3, X, Carry, X_carried),
bitwise_calc_r(Rules3, Rules1, X_carried, Y, Z).

binary addition that is going to be learned should contain my_op(0,0,[0]), my_op(0,1,[1]),
my_op(1,0,[1]) and my_op(1,1,[1,0]). However, in the experiments the ABL sometimes
output my_op(1,1,[1]), my_op(0,1,[0]), my_op(1,0,[0]) and my_op(0,0,[0,1]), which
flips the semantics of 0 and 1.

The calc/2 takes a list of pseudo-labels as input, and outputs the possible ∆C Rules and the missing
pseudo-labels that have been removed by the δ function. calc/3 function is a more flexible version
of calc/2, which is able to take some already abduced operation rules Rules0 in to consideration.

The bitwise_calc/5 defines the abductive bit-wise calculation process. Given an initialised
operation rule set Rules0 (usually the empty ruleset “[]” according to calc/2), it abduces the
consistent operation rule set Rules1 with revised pseudo-labels X, Y and Z. Firstly, it calls the
reverse/2 predicate to reverse the equation arguments, then calls the reverse bit-wise calculation
predicate bitwise_calc_r/5 to complete the abduction, and finally check if the abduced pseudo-
label forms legitimate digits.

The bitwise_calc_r/5 predicate calculates X+Y to Z bit by bit. It terminates when X or Y runs
out of digits and fails if there exists no consistent operation rules with pseudo-labels. During the
calculation, it calls the predicate abduce_op_rule/3 from the Abductive Logic Program (shown in
Tab. 3) to abduce consistent operation rules. It also allows 1-digit carry in its calculation.

Tab. 3 defines the Abductive Logic Program (ALP) for the logical abduction in our handwritten
equation decipherment tasks.

abduce/2 is ABL’s main predicate for making abduction. Given a set of examples that has been
interpreted by the perception machine learning model (and with the learned δ function marking
out the incorrect pseudo-labels), abduce/2 will try to abduce a ∆C and the revised pseudo-labels
consistent with all the background knowledge and the labels about the target concept of the examples.

The abduce/3 predicate processes examples sequentially. By abductively calculating the examples
one-by-one, it not along abduces the missing pseudo-labels in each example, but also continuously
put consistent bit-wise operation rule in ∆C by calling the calc/3 predicate defined in Tab. 2.

14

Table 3: The Abductive Logic Program for handwritten equation decipherment.

% Main predicate for peforming abduction
% “Examples” are the pseudo-labels of a set of examples,
% “Delta_C” is the abduced ∆C.
abduce(Examples, Delta_C) :-

abduce(Examples, [], Delta_C).
abduce([], Delta_C, Delta_C).
abduce([E|Examples], Delta_C0, Delta_C1) :-

calc(Delta_C0, Delta_C2, E),
abduce(Exs, Delta_C2, Delta_C1).

% Getting an existed (already abduced) operation rule from history.
abduce_op_rule(R, Rules, Rules) :-

member(R, Rules).
% Abduce a new rule.
abduce_op_rule(R, Rules, [R|Rules]) :-

op_rule(R),
% integrity constraints.
valid_rules(Rules, R).

% Integrity Constraints on operation rule set, forbidding
% redundant rules and inconsistent rules.
valid_rules([], _).
valid_rules([my_op([X1],[Y1],_)|Rs], my_op([X],[Y],Z)) :-

not([X,Y] = [X1,Y1]),
not([X,Y] = [Y1,X1]),
valid_rules(Rs, my_op([X],[Y],Z)).

valid_rules([my_op([Y],[X],Z)|Rs], my_op([X],[Y],Z)) :-
not(X = Y),
valid_rules(Rs, my_op([X],[Y],Z)).

% Abducing single operation rule.
op_rule(my_op([X],[Y],[Z])) :- digit(X), digit(Y), digit(Z).
op_rule(my_op([X],[Y],[Z1,Z2])) :- digit(X), digit(Y), digits([Z1,Z2]).

The abduce_op_rule/3 called by bitwise_calc_r/5 can abduce one operation rule in each call.
Before doing the abduction, it first returns an already abduced operation rule R in Rules and let
bitwise_calc_r/5 to determine if it is consistent with current calculation. If a history R already
meets the requirement then it does nothing; otherwise it will try to abduce a my_op/3 rule defined by
op_rule/1 and return it to the calculation process of bitwise_calc_r/5.

During the abduction process, abduce_op_rule/3 will call an integrity constraint valid_rules/2
to test if the newly abduced R is consistent with previously abduced rule set Rules. Basically, the
integrity constraint says that:

1. No redundant operation rules, i.e., there shouldn’t be two separate rules defining the same
operation X+Y;

2. No conflict operation rules according to the commutative law, i.e., X+Y=Y+X.

B Errors cases of ABL in the experiments

The failures of ABL-based systems are mostly caused by perception errors. Fig. 11 shows one of the
failure examples in the RBA task:

The ground-truth symbols in the equation is “110010+11100110=100011000”, but the perceived
result by ABL is “110010+11100110110001=000”, causing a classification failure. After examined

15

Figure 11: An example of the wrongly predicted equations during test.

the experimental results, we found that almost all of the learned operation rule sets ∆t
C (relational

features) are correct, and the equation classification errors are only caused by the incorrectly perceived
pseudo-labels. In fact, Fig. 8b has shown that the performance of ABL relies much on perception
accuracy. More interestingly, according to the human volunteers, the failures made by them are
majorly caused by reasoning errors, i.e. the difficulties in finding consistent operation rules, which is
opposite to ABL.

16

