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A Deep Learning and Variational Inference
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Figure 5: (a) Generative model of a VAE/LVAE
with L = 3 stochastic variables, (b) VAE inference
model, (c) LVAE inference model, and (d) skip con-
nections among stochastic variables in the LVAE
where dashed lines denote a skip-connection. Blue
arrows indicate that there are shared parameters
between the inference and generative model.

The introduction of stochastic backpropagation
[36, 18] and the variational auto-encoder (VAE)
[24, 40] has made approximate Bayesian infer-
ence and probabilistic latent variable models
applicable to machine learning problems consid-
ering complex data distributions, e.g. natural
images, audio, and text. The VAE is a gen-
erative model parameterized by a neural net-
work ✓ and is defined by an observed variable
x that depends on a hierarchy of stochastic la-
tent variables z = z1, ..., zL so that: p✓(x, z) =
p✓(x|z1)p✓(zL)

QL�1
i=1 p✓(zi|zi+1). This is il-

lustrated in Figure 5a.

The distributions p✓(zi|zi+1) over the latent
variables of the VAE are normally defined as
Gaussians with diagonal covariance, whose pa-
rameters depend on the previous latent vari-
able in the hierarchy (with the top latent vari-
able p✓(zL) = N (zL; 0, I)). The likelihood
p✓(x|z1) is typically a Gaussian distribution for
continuous data, or a Bernoulli distribution for
binary data.

In order to learn the parameters ✓ we seek to maximize the log marginal likelihood over a training set:P
i log p✓(xi) =

P
i log

R
p✓(xi, zi)dzi. However, complex data distributions require an expressive

model, which makes the above integral intractable. In order to circumvent this, we use Variational
Inference [19] and introduce a posterior approximation q�(z|x), known as inference network or
encoder, that is parameterized by a neural network �. Using Jensen’s inequality we can derive the
evidence lower bound (ELBO), a lower bound to the integral in the marginal likelihood which is a
function of the variational approximation q�(z|x) and the generative model p✓(x, z):

log p✓(x) � Eq�(z|x)


log

p✓(x, z)

q�(z|x)

�
⌘ L(✓,�) . (3)

The parameters ✓ and � can be optimized by maximizing the ELBO with stochastic backpropagation
and the reparameterization trick, which allows using gradient ascent algorithms with low variance
gradient estimators [24, 40]. As illustrated in Figure 5b, in a VAE the variational approximation
is factorized with a bottom-up structure, q�(z|x) = q�(z1|x)

QL�1
i=1 q�(zi+1|zi), so that each latent

variable is conditioned on the variable below in the hierarchy. For ease of computation, all the factors
in the variational approximation are typically assumed to be Gaussians whose mean and diagonal
covariance are parameterized by neural networks.

Latent variable collapse in VAEs. A deep hierarchy of latent stochastic variables will result in a
more expressive model. However, the additional variables come at a price. As shown in [5, 30], we
can rewrite the ELBO (eq. (1)):

L(✓,�) = Eq�(z|x)


log

p✓(x, z<L|zL)
q�(z<L|x)

�
� Eq�(z<L|x) [KL[q�(zL|z<L)||p✓(zL))]] .

From the above, it becomes obvious that, during the optimization of the VAE, the top stochastic latent
variables may have a tendency to collapse into the prior, i.e. q�(zL|z<L) = p✓(zL) = N (zL; 0, I),
if the model p✓(x, z<L|zL) is powerful enough. This is supported by empirical results in [50, 2]
amongst others. The tendency has limited the applicability of deep VAEs in problems with complex
data distributions, and has pushed VAE research towards the extension of shallow VAEs with
autoregressive models, that allow capturing a lossy representation in the latent space while achieving
strong generative performances [14, 5]. Another research direction has focused on learning more
complex prior distributions through normalizing flows [39, 52, 23]. Our research considers instead
the original goal of building expressive models that can exploit a deeper hierarchy of stochastic latent
variables while avoiding variable collapse.
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Figure 6: A L = 3 layered BIVA with (a) the generative model, (b) bottom-up (BU) inference path,
(c) top-down (TD) inference path, and (d) variable dependency of the generative models where dashed
lines denote a skip-connection. Blue arrows indicate that the deterministic parameters are shared
within the generative model or between the generative and inference model.

B Detailed Model Description

Generative model. The generative model (see Figure 6a) has a top-down path going from zL
through the intermediary stochastic latent variables to x. Between each stochastic layer there is a
ResNet block with M layers set up similarly to [45]. Weight normalization [46] is applied in all
neural network layers. In the generative model, the BU and TD units are not distinguished so we write
zi = (zBU

i , zTD
i ). We use fi,j to denote the neural network function (a function of generative model

parameters ✓) of ResNet layer j associated with stochastic layer i. The feature maps are written as
di,j . The generative process can then be iterated as zL ⇠ N (0, I) and i = L� 1, L� 2, . . . , 1:

di,0 = zi+1 (4)
di,j =< f✓i,j (di,j�1); di+1,j > for j = 1, ...,M (5)
zi = µ✓,i(di,M ) + �✓,i(di,M )⌦ ✏i , (6)

where dL,j = 0, <;> denotes concatenation of feature maps in the convolutional network and hidden
units in the fully connected network, ✏ ⇠ N (0, I) and µ(·) and �(·) are parameterized by neural
networks. To complete the generative model p(x|z) is written in terms of z1 and d1 through a ResNet
block f0.

Inference model. The inference model (see Figure 6b and 6c) consists of a bottom-up (BU) and top-
down (TD) paths such that bottom-up stochastic units only receive bottom-up information whereas
the top-down units receive both bottom-up and top-down information. The top-down path shares
parameters with the generative model. For each stochastic latent variable zi in i = 1, ..., L we use a
ResNet block with M layers and there are associated neural network functions gi,j , j = 1, . . . ,M
with parameters collectively denoted by �. The deterministic feature map of layer i, j is denoted by
d̃i,j :

d̃i,0 =

⇢
x i = 1

< zi�1; d̃i�1,M > otherwise
(7)

d̃i,j =< gi,j(d̃i,j�1); d̃i�1,j > for j = 1, ...,M , (8)

zBU
i = µBU

i (d̃i,M ) + �BU
i (d̃i,M )⌦ ✏BU

i (9)

where ✏ ⇠ N (0, I). Finally, to infer the top-down latent we use the bottom-up latent zTD
i inferred in

eq. (9) and pass them through the generative path eq. (5) for i = L� 1, L� 2, . . . , 2 to determine
di,M and

zTD
i = µTD

i (< d̃i,M ; di,M >) + �TD
i (< d̃i,M ; di,M >)⌦ ✏TD

i . (10)
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C Experimental Setup

Throughout all experiments, we follow the BIVA model description that is described in detail in
Appendix B and F.

Optimization. All models are optimized using Adamax [20] with a hyperparameter setting similar
to the one used in [23]. They are trained with a batch-size of 48 where the binary image experiments
are trained on a single GPU and the natural image experiments are trained on two GPUs (by splitting
the batch in 2 and then taking the mean over the gradients). For evaluation, we use exponential
moving averages of the parameters space, similar to [23, 45].

Binary image architecture. BIVA has L = 6 layers. The g�1 neural networks are defined by
M = 3, 64x5x5 (number of kernels x kernel width x kernel height) convolutional layers and an
overall stride of 2. Neural networks i = 2, ..., 6 are defined by four M = 3, 64x3x3 convolutional
layers. The final neural network, i = 6, applies a stride of 2. All stochastic latent variables are densely
connected layers of dimension 48, 40, 32, 24, 16, 8 for 1, ..., L respectively. We apply a dropout rate
of 0.5 for both the deterministic layers in the generative as well as the inference model.

Natural image architecture (32x32). BIVA has L = 15 layers. The g�1 neural networks are
defined by M = 3, 96x5x5 convolutional layers and an overall stride of 2. Neural networks
i = 2, ..., 15 are defined by M = 3, 96x3x3 convolutional layers. Neural networks 11 and 15 are
defined with a stride of 2. All stochastic latent variables are parameterized by convolutional layers
with 38, 36, 34, ..., 10 feature maps for 1, 2, 3, ..., L respectively. The kernel width and height of
the stochastic latent variables are defined similarly to the dimension of the subsequent output after
striding. We apply a dropout rate of 0.2 in the deterministic layers of the inference model.

Natural image architecture (64x64). BIVA has L = 20 layers. The g�1 and g�2 neural networks
are defined by M = 3, 64x7x7 and 64x5x5 convolutional layers respectively with a stride of 2 in
each. Neural networks i = 3, ..., 11 are defined by M = 3 64x3x3 convolutional layers. Neural
network 11 is defined with a stride of 2. Neural networks i = 12, ..., 20 are defined by M = 3,
128x3x3 convolutional layers and network 20 has a stride of 2. All stochastic latent variables are
parameterized by convolutional layers with 20, 19, 18, ..., 1 feature maps for 1, 2, 3, ..., L respectively.
The kernel width and height of the stochastic latent variables are defined similarly to the dimension
of the subsequent output after striding. We apply a dropout rate of 0.2 in the deterministic layers of
the inference model.

D Modeling Complex 2D Densities
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Table 6: Potentials defining the target densities p(z) = e�U(z)

Z .

Problem. [31] showed that Variational Auto-Encoders can fit complex posterior distributions for
the latent space using the inference model q�(z|x), parameterized as a fully factorized Gaussian
and p(x) being a simple diagonal Gaussian. In table 6, we define complex non-Gaussian densities
using a potential model U(Z), as described in [39]. While modeling such distributions remains
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within the reach of an adequately complex Variational Autoencoder, optimizing such a model remains
challenging.

Objective. Similarly to [31], we choose p(x) to be an isotropic Gaussian and we model the target
density using the top stochastic variable: p(zL) = eU(z)

Z . This results in the following bound:

logZ ≥ Eqφ(x,z)

[
U(zL) + log

pθ(x|z1)

qφ(x)
+

L−1∑
i=1

log
pθ(zi|zi+1)

qφ(zi,TD|zi+1, x)qφ(zi+1|zi,BU , x)

]
. (11)

Experimental Setup. We test BIVA against the VAE and LVAE models using the same number
of stochastic variables, hence the models use the same number of intermediate layers. All models
are implemented using 5 stochastic layers, MLPs with one hidden layer of size 128 and with
residual connections. The chosen architecture is voluntary kept minimal, therefore the task remains
challenging for all models.

We train all models for 1e4 iterations using the Adamax optimizer. We use batch sizes of size 512.
The potential is linearly annealed from 0.1 to 1 during 5e3 steps. In order to avoid posterior collapse,
0.5 freebits are applied to each stochastic layer. The learning rate is linearly increased from 1e−5 to
3e−3 and exponentially annealed back to 1e−5.

In order to measure the quality of the posterior density, we estimate KL(q(zL)||p(zL)) using 1e6

posterior samples evaluated using a grid of size (−2, 2)2 with a resolution of 100× 100. Each model
is trained 100 times for each density.

Results. According to the approximate KL(q(zL)||p(zL)), we found that BIVA tends to learn a
posterior that lies closer to the target density. Figure 7 shows that BIVA often learns more complex
features than the baseline models, which posteriors remain closer to the modes. Figure 7 reveals
that LVAE is able to find solutions that are competitive with the best BIVA samples according to
KL(q(zL)||p(zL)). However, this happens very rarely whereas BIVA has a more robust optimization
behaviour.

Figure 7: Distribution of the KL(q(zL)||p(zL))) estimate for each model, each target density p(zL)
and for different initial random seeds. We collected 100 runs for each model and for each density. We
found that BIVA behaves more consistently and often yield better approximations than the baseline
models.

E Initial Results on Text Generation Tasks

Optimizing generative models coupled with autoregressive models is a difficult task. Such coupling
causes the posterior to collapse, and the latent variables are ignored. Nonetheless, autoregressive
components remain a cornerstone of the generative models for text [2, 48, 49]. In order to enforce
the model to use the latent variable, previous efforts aimed at weakening the decoder using powerful
regularizing tricks, such as word dropout [2]. We investigate the use of BIVA in the context of
sentence modeling without weakening the decoder. We show that it allows optimizing the latent
variables more effectively, resulting in a higher measured KL when compared to the RNN-VAE [2]
and the Hybrid VAE [48].

Dataset. We use the Bookcorpus dataset [60] of sentences of maximum 40 words, no preprocessing
is performed and sentences are tokenized using the white spaces. We defined a vocabulary of 20000
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Figure 8: Target densities p(zL) and the median posterior distributions q(zL) for each model according
to KL(q(zL)||p(zL))) out of 100 runs for each model and for each density.

PARAMETERS � log p(x) KL PPL
Results with autoregressive components, no dropout
LSTM 15.0M = 41.49 � 36.28
RNN-VAE [2], L1 , WARMUP 23.7M  42.09 1.61 38.21
RNN-VAE [2], L1 , FINETUNED 23.7M  42.41 5.13 39.26
HYBRID VAE [48], L1 , FINETUNED 23.7M  42.24 4.67 38.70
BIVA L=7, L1 , FINETUNED 23.0M  42.34 10.15 39.04
Results without autoregressive components, no dropout
HYBRID VAE [48], L1 , FINETUNED 15.0M  54.53 14.10 112.1
BIVA L=7 FINETUNED, L1 14.0M  54.13 15.33 108.3

Table 7: Test performances on the BookCorpus with 1 importance weighted sample (sentences
limited to 40 words). The RNN-VAE and Hybrid VAE are are trained and evaluated from our own
implementation.

words and filtered out the sentences that contain non-indexed tokens. We randomly sampled 10000
sentences for testing and used the remaining 56M sentences for training.

Models. We couple BIVA with an LSTM decoder, using the output of the convolutional model as
an input sequence for the auto-regressive model. We compare our model against a LSTM language
model [17], the RNN-VAE [2], and the Hybrid VAE [48], which couples a convolutional architecture
with an LSTM decoder. We also perform experiments without using autoregressive components.

All LSTM models are parameterized by 1024 units and we use embeddings of dimension 512. This
results in an RNN-VAE model with 23.7M parameters and we limit the other models to use the same
total number of parameters. This results in using a limited number of stochastic layers for the BIVA
and small a small number of kernels of 128.
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Training. We trained the models for 5 epochs with an initial learning rate of 2e�3 using the Adamax
optimizer. We used batches of size 512 and used only one stochastic sample. We train all latent
variable models using the freebits method from [23] with an initial KL budget of 30 nats distributed
equally over the stochastic variables and we incrementally decrease the freebits value on plateau. We
also train the RNN-VAE baseline using the deterministic warmup method [2, 50] for comparison.

Likelihood and latent variables usage. We report the test set results in table 7 and test samples in
8 and reconstructions in table 9. While BIVA without the autoregressive decoder is not competitive
with an LSTM language model, we observe that replacing the LSTM inference model by a BIVA
model allows exploiting the latent space more actively, which results in a higher measured KL than
the RNN-VAE and Hybrid VAE baselines.

BIVA+LSTM RNN-VAE

he said . “ two .
i tried to think of something to say to him , but he was already on his way back to the house . “ you do n’t have to do this . ”
it sounded as if he was going to say something . the light from the lamp was dim , but the light was dim and the room was dark .
“ and that ’s why you ’re coming . ” or a nuclear bomb , or something .
“ what ? ” “ the baby ? ”
she swallowed . “ you ’re not going to kill me . ”
“ i want you . ” she was n’t going to .
glancing up , i saw the way he was staring at me with a look of pure hatred . “ i guess we could have been more careful , ” he said .
i need a favor . ” there are some things that are not good .
he did n’t . “ you ’re a good man .
you ’re not dead . i had n’t been able to get it out .
i stood , and he followed . “ you ’re going to have to be careful , ” he said .
“ can i sit on the couch and talk ? ” it ’s not a bad idea .
“ it was n’t until i was fifteen , i was n’t in the mood to be around . he asked .
i looked down at my lap . “ this is a bad idea , ” he said , his voice a little hoarse .
the smile disappeared . “ i ’m sure he ’s in love with you .
it was hard to tell which one was more of a rock . as he stepped out of the car , he saw the man standing in the doorway , his eyes wide and his face pale .
i ’m not sure it ’s a good idea . .
the first two . “ no .
he was there . “ in the meantime , i need to get some sleep , ” i said .
“ all of you , ” joe said . i was n’t .
he did n’t care if he was n’t a vampire . did i want to talk to you ?
her mouth curved up , then she nodded . “ i want to hear you say it . ”
just tell me what you want in the end . the train was already in the driveway .
and again . “ good .
the other man ’s voice was hoarse and ragged . i just needed to get out of here , and i needed to get out of here .
i had n’t known that was a bad idea , but i had n’t been able to get it out of my head . “ this is a good idea .
your brother is the most important thing to me . “ hey . ”
you dont need to go to the police , right ? she took a deep breath and let it out .
there was a long silence . then he kissed her .
i looked up . i felt a warm hand on my shoulder and a warm smile spread across my face .
he nodded , and he looked at me , and i could tell he was thinking about it . “ he ’s dead . ”
“ hang on , baby . at the time , i was going to have to get out of the house .
we had to be close to the city , and we could n’t afford to be here . he was so close to the edge of the bed .
you know , it would be better if you were n’t so stupid . ” “ i do n’t know .
excuse me ? “ i do n’t have a choice . ”
you know how much i love you , too . i know i ’m not going to let him touch me , but i do .
a woman ’s voice , a voice that was familiar . i could n’t see the face of the man who ’d just been in the doorway .
i have a very important business to attend to , and i ’m going to have to make a decision . in the end , we all know that we are not going to be able to get out of this .
they sat on the small wooden table in the center of the room . “ yes .
“ it ’s fine . ” “ what are you doing here ? ”
she felt a rush of relief . so the only thing that mattered was that he was here .
maria , he says . neither of them spoke .
what ? from now on , you will be able to get out of here .
“ it does n’t seem like a lot to me , ” he said . the thought of having to kill him made him want to kill her .
he ’d told her everything . the other two were staring at me , their eyes wide .
“ she ’s in shock . i did n’t want to be a part of it , but i was n’t going to let it go .
“ after all , ” he murmured , “ i ’m going to go get the rest of the stuff . ” “ i do n’t want to talk about it .
and then , finally , she ’d done it . she looked at him , her eyes wide .
her words were a whisper , but it was n’t enough . “ that ’s what you ’re going to do .

Table 8: Samples decoded from the prior of the BIVA with LSTM decoder and baseline RNN-VAE.
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F Semi-Supervised Learning

When defining BIVA for semi-supervised classification tasks we follow the approach described
for the M2 model in [22]. In addition to BIVA, described in detail in Appendix B, we introduce
a classification model q�(y|x, zBU

<L) in the inference model, where y is the class variable, and a
Categorical latent variable dependency in the generative model.

Inference model. For the classification model we introduce another deterministic hierarchy with
an equivalent parameterization as d̃i,1, ..., d̃i,M . We denote the hierarchy d̃C

i,1, ..., d̃
C

i,M . The forward-
pass is performed by:

d̃C
i,0 =

⇢
x i = 1

d̃C

i�1,M otherwise
(12)

d̃C
i,j =< gC

�i,j
(d̃C

i,j�1); z
BU
i > for j = 1, ...,M (13)

y = gC

�i,M+1
(d̃C

i,M ) , (14)

where gC

�i,M+1
is a final densely connected neural network layer, of the same dimension as the number

of categories, and a Softmax activation function. The inference model is thereby factorized by:

q�(z, y|x) = q�(zL|x, y, zBU
<L)q�(y|x, zBU

<L)
L�1Y

i=1

q�(z
BU
i |x, zBU

<i)q�,✓(z
TD
i |x, y, zBU

<i, z
BU
>i, z

TD
>i) . (15)

Generative model. For each stochastic latent variable, z, and the observed variable x in the
generative model, as well as the TD path of the inference model, we add a conditional dependency on
a categorical variable y:

p✓(x, y, z) = p✓(x|z, y)p✓(zL)p✓(y)
L�1Y

i=1

p✓(zi|z>i, y) . (16)

Evidence lower bound. In a semi-supervised learning problem, we have labeled data and unlabeled
data which results in two formulations of the ELBO. The ELBO for labeled data points is given by:

log p✓(x, y) � Eq�(z|x,y))


log

p✓(x, y, z)

q�,✓(z|x, y)

�
⌘ �F(✓,�) . (17)

Since the classification model is not included in the above definition of the ELBO we add a classifica-
tion loss term (a categorical cross-entropy), equivalent to the approach in [22]:

F̄(✓,�) = F̄(✓,�)� ↵ · Eq(z<L|x)[log q�(y|x, zBU
<L)] , (18)

where ↵ is a hyperparameter that we define as in [31]. For the unlabeled data points, we marginalize
over the labels:

log p✓(x) � Eq�(z,y|x)


log

p✓(x, y, z)

q�,✓(z, y|x)

�
⌘ �U(✓,�) . (19)

The combined objective function over the labeled, (xl, yl), and unlabeled data points, (xu), are
thereby given by:

J (✓,�) =
X

xl,yl

F̄(✓,�;xl, yl) +
X

xu

U(✓,�;xu) . (20)
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G Additional Results

Table 10: Test log-likelihood on dynamically binarized MNIST for different number of importance
weighted samples. The finetuned models are trained for an additional number of epochs with no free
bits, � = 0.

� log p(x)
Results with autoregressive components
DRAW+VGP [53] < 79.88
IAFVAE [23]  79.10
VLAE [5]  78.53
Results without autoregressive components
IWAE [4]  82.90
CONVVAE+HVI [47]  81.94
LVAE [50]  81.74
DISCRETE VAE [42]  80.04

BIVA, L1  80.60
BIVA, L1e3  78.49
BIVA FINETUNED, L1  80.06
BIVA FINETUNED, L1e3  78.41

Table 11: Test log-likelihood on dynamically binarized OMNIGLOT for different number of impor-
tance weighted samples. The finetuned models are trained for an additional number of epochs with
no free bits, � = 0.

� log p(x)
Results with autoregressive components
DRAW [13] < 96.50
CONVDRAW [12] < 91.00
VLAE [5]  89.83
Results without autoregressive components
IWAE [4]  103.38
LVAE [50]  102.11
DVAE [42]  97.43

BIVA, L1  95.90
BIVA FINETUNED, L1  93.54
BIVA FINETUNED, L1e3  91.34

Table 12: Test log-likelihood on statically binarized Fashion MNIST for different number of impor-
tance weighted samples. The finetuned models are trained for an additional number of epochs with
no free bits, � = 0.

� log p(x)
BIVA, L1  94.05
BIVA FINETUNED, L1  93.54
BIVA FINETUNED, L1e3  87.98

20



Table 13: Test log-likelihood on ImageNet 32x32 for different number of importance weighted
samples.

BITS/DIM
With autoregressive components
CONVDRAW [12] < 4.10
PIXELRNN [57] = 3.63
GATEDPIXELCNN [56] = 3.57
Without autoregressive components
REALNVP [9] = 4.28
GLOW [21] = 4.09
FLOW++ [16] = 3.86

BIVA, L1  3.98
BIVA, L1e3  3.96

(a) L1 (bits/dim). (b) log p✓(x|z) (bits/dim).

Figure 9: Convergence plot on CIFAR-10 training for the LVAE with L = 15, the LVAE+ with L =
15, the LVAE+ with L = 29, and BIVA with L = 15. (a) shows the convergence of the 1 importance
weighted ELBO, L1, calculated in bits/dim. (b) shows the convergence of the reconstruction loss. The
discrepancy between (a) and (b) is explained by the added cost from the stochastic latent variables,
the Kullback-Leibler divergence KL[p(z)||q(z|x)].
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Figure 10: 64x64 CelebA samples generated from a BIVA with increasing levels of stochasticity in
the model (going from close to the mode to the full distribution). In each column the latent variances
are scaled with factors 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. Images in a row look similar because they use the
same Gaussian random noise ✏ to generate the latent variables. BIVA has L = 20 stochastic latent
layers connected by three layer ResNet blocks.
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(a) �2 = 0.01 (b) �2 = 0.1

(c) �2 = 0.5 (d) �2 = 1.0

Figure 11: BIVA N (0,�2) generations with varying �2 = 0.01, 0.1, 0.5, 1.0 for (a), (b), (c) and (d)
respectively. We follow the same generating procedure of Figure 10. BIVA has L = 20 stochastic
latent variables and is trained on the CelebA dataset, preprocessed to 64x64 images following [27].
BIVA achieves a L1 = 2.48 bits/dim on the test set. Close to the mode of the latent distribution there
is very little variance in generated natural images. When we loosen the samples towards the full
distribution, �2 = 1, we can see how the generated images are adopting different styles and contexts.
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Figure 12: BIVA L = 20 generations (right) from fixed z>i given an input image (left), for different
layers throughout the stochastic variable hierarchy (from left to right i = 12, 14, 16, 17, 18, 19). The
model is trained on CelebA, preprocessed to 64x64 images following [27]. z>i are fixed by passing
the original image through the encoder, after which zi are sampled from the prior. When generating
from a higher zi (columns) it is shown how the model has more freedom to augment the input images.
BIVA achieves a L1 = 2.48 bits/dim on the test set.
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Figure 13: BIVA N (0, I) generations on a model trained on CIFAR-10. BIVA has L = 15 stochastic
latent variables and achieves a 3.08 bits/dim on the test set. The images are still not as sharp and
coherent as the PicelCNN++ [45] (3.08 vs. 2.92), however, it does achieve to find coherent structure
resembling the categories of the CIFAR-10 dataset.
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