
Supplementary: Cross Domain Transferability of Adversarial Perturbations

We further validate the significance of RCE compared to CE in terms of three criterion: accuracy,
logits difference and transfer to unseen classes (see Figure 1). For the test on unseen classes, we
divide ImageNet into two mutually exclusive sets (500 classes each), named IN1 and IN2. VGG16
and ResNet50 are trained on IN1 & IN2 from scratch. We also compare our method with GAP [16]
in Sec. 1 to demonstrate superiority of our approach. In Sec. 2, we visually demonstrate the effect
of training time and Gaussian kernel size of the generated adversaries. Finally, in Sec. 3, we show
adversaries produced by different generators as well as demonstrate attention shift on adversarial
examples.
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Figure 1: (a) shows Top-5 accuracy of adversaries (lower is better), (b) shows normalized l2 difference b/w
logits of adversarial and benign examples (higher is better) while (c) shows transferability to unseen classes. In
each caseRCE performs significantly better than CE . ImageNet val. 50k images are used in (a) and (b) while
25k validation images of IN1 and IN2 are used in (c) and (d).

1 Comparison with GAP [16]

Perturbation Attack VGG-16 VGG-19 Inception-v3
Fool Rate (↑) Top-1 (↓) Fool Rate (↑) Top-1 (↓) Fool Rate (↑) Top-1 (↓)

l∞ ≤ 7

GAP 66.9 30.0 68.4 28.8 85.3 13.7
Ours-Paintings 95.31 4.29 96.84 2.94 97.95 1.86
Ours-Comics 99.15 0.97 98.58 1.33 98.90 1.0
Ours-ImageNet 98.57 1.32 98.71 1.24 91.03 8.4

l∞ ≤ 10

GAP 80.80 17.7 84.10 14.6 98.3 1.7
Ours-Paintings 99.58 0.4 99.61 0.38 99.65 0.33
Ours-Comics 99.83 0.16 99.76 0.22 99.72 0.26
Ours-ImageNet 99.75 0.24 99.80 0.21 99.05 0.89

l∞ ≤ 13

GAP 88.5 10.6 90.7 8.6 99.5 0.5
Ours-Paintings 99.86 0.16 99.83 0.16 99.8 0.18
Ours-Comics 99.88 0.12 99.86 0.13 99.83 0.17
Ours-ImageNet 99.87 0.13 99.86 0.15 99.67 0.13

Table 1: Comparison between GAP [16] and our method. Untargeted attack success rate (%) in terms
of fooling rate (higher is better) and Top-1 accuracy (lower is better) is reported on 50k validation
images. Each attack is carried out in a white-box setting.

2 Effect of Training Time and Gaussian Kernel Size

Figures 2 and 3 show the evolution of generative adversaries as the number of epochs increases. At
initial epochs, adversaries are more smoother and more transferable against adversarially trained
models. On the other hand, as training progress, generator converges to a solution with locally strong
patterns that are more transferable to naturally trained models.

Figures 4 and 5 show the effect of Gaussian smoothing. As the kernel size increases, transferability
of adversaries decreases.
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Figure 2: Evolution of adversaries produced by generator as the training progress. Adversaries found
at initial training stages e.g., at epoch #1 are highly transferable against adversarially trained models
while adversaries found at later training stage e.g., at epoch #10 are highly transferable against
naturally trained models. Generator is trained against Inc-v3 on Paintings dataset. First row shows
unrestricted adversaries while second row shows adversaries after valid projection (l∞ ≤ 10).
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Figure 3: Evolution of adversaries produced by generator as the training progress. Adversaries found
at initial training stage e.g., at epoch #1 are highly transferable against adversarially trained models
while adversaries found at later training stage e.g., at epoch #10 are highly transferable against
naturally trained models. Generator is trained against Inc-v3 on Paintings dataset. First row shows
unrestricted adversaries while second row shows adversaries after valid projection (l∞ ≤ 10).

3 Examples

Figure 6 demonstrates the attention shift on generative adversarial examples produced by our method.
Figures 7, 8, 9 and 10 show examples of different clean images and their corresponding adversaries
produced by different generators.
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Figure 4: Evolution of adversaries produced by generator as the size of Gaussian kernel increases.
Adversaries start to lose their effect as the kernel size increase. The optimal results against adversari-
ally trained models are found at kernel size of 3. First and second rows show unrestricted adversaries
before and after smoothing, while third row shows adversaries after valid projection (l∞ ≤ 10).
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Figure 5: Evolution of adversaries produced by generator as the size of Gaussian kernel increases.
Adversaries start to lose their effect as the kernel size increase. The optimal results against adversari-
ally trained models are found at kernel size of 3. First and second rows show unrestricted adversaries
before and after smoothing, while third row shows adversaries after valid projection (l∞ ≤ 10).
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Figure 6: Illustration of attention shift for ResNet-152. We use [32] to visualize attention maps
of clean (1st row) and adversarial (2nd row) images. Adversarial images are obtained by training
generator against ResNet-152 on Paintings dataset.
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Original Images

Target model: VGG-16, Distribution: Paintings, Fooling rate: 99.58%

Target model: VGG-16, Distribution: Comics, Fooling rate: 99.8%

Target model: VGG-16, Distribution: ImageNet, Fooling rate: 99.7%

Figure 7: Untargeted adversaries produced by generator (before and after projection) trained against
VGG-16 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set to
l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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Original Images

Target model: VGG-19, Distribution: Paintings, Fooling rate: 99.6%

Target model: VGG-19, Distribution: Comics, Fooling rate: 99.76%

Target model: VGG-19, Distribution: ImageNet, Fooling rate: 99.8%

Figure 8: Untargeted adversaries produced by generator (before and after projection) trained against
VGG-19 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set to
l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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Original Images

Target model: Inc-v3, Distribution: Paintings, Fooling rate: 99.65%

Target model: Inc-v3, Distribution: Comics, Fooling rate: 99.72%

Target model: Inc-v3, Distribution: ImageNet, Fooling rate: 99.04%

Figure 9: Untargeted adversaries produced by generator (before and after projection) trained against
Inception-v3 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set
to l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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Original Images

Target model: ResNet-152, Distribution: Paintings, Fooling rate: 98.0%

Target model: ResNet-152, Distribution: Comics, Fooling rate: 94.18%

Target model: ResNet-152, Distribution: ImageNet, Fooling rate: 99.0%

Figure 10: Untargeted adversaries produced by generator (before and after projection) trained against
ResNet-152 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set
to l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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