
Appendix for “Mo0 States Mo0 Problems:
Emergency Stop Mechanisms from Observation”

A Proof of Eq. (5)

Lemma. Let M = hS,A, P,R,H, ⇢0i be a finite horizon, episodic Markov decision process, and
cM = (Ŝ,A, PŜ , RŜ , H, ⇢0) be a corresponding e-stop version of M . Given a reinforcement learning
algorithm A, the regret in M after running A for T timesteps in cM is bounded by

Regret(T) 
⌃
T

H

⌥
[J(⇡⇤)� J(⇡̂⇤)] + E⇡̂

⇤

cM [RT]� EA
cM [RT] (10)

where ⇡
⇤ and ⇡̂

⇤ are the optimal policies in M and cM , respectively

Proof. Let ⇡̂⇤ = argmax
⇡2⇧ JcM (⇡). Then beginning with the external regret definition,

RegretA
M
(T) = E⇡e

M
[RT]� EA

M
[RT] (11)

=
h
E⇡e
M

[RT]� E⇡̂
⇤

cM [RT]
i
+
h
E⇡̂

⇤

cM [RT]� EA
cM [RT]

i
+
h
EA

cM [RT]� EA
M

[RT]
i

(12)



h
E⇡e
M

[RT]� E⇡̂
⇤

cM [RT]
i
+
h
E⇡̂

⇤

cM [RT]� EA
cM [RT]

i
(13)



h
E⇡e
M

[RT]� E⇡̂
⇤

M
[RT]

i
+
h
E⇡̂

⇤

cM [RT]� EA
cM [RT]

i
(14)



⇠
T

H

⇡
[J(⇡e)� J(⇡̂⇤)] +

h
E⇡̂

⇤

cM [RT]� EA
cM [RT]

i
(15)

Eq. (13) follows by the definition of cM .

B Proof of Theorem 4.1

Theorem. Suppose cM is an e-stop variant of M such that Ŝ = {s|h(s) > 0} where h(s) denotes
the probability of hitting state s in a roll-out of ⇡e. Let ⇡̂⇤ = argmax

⇡2⇧ JcM (⇡) be the optimal
policy in cM . Then J(⇡̂⇤) � J(⇡e).

Proof. Let JcM (⇡) denote the value of executing policy ⇡ in MŜ . By the definition of MŜ ,

J(⇡) � JcM (⇡) 8⇡ (16)
JcM (⇡e) = J(⇡e) (17)

because ⇡e never leaves S⇡e (and thus never leaves Ŝ). Finally, by the definition of ⇡̂⇤ and the
realizability of ⇡e,

JcM (⇡̂⇤) � JcM (⇡e) (18)
Combining Eqs. (16) to (18) implies J(⇡̂⇤) > J(⇡e).

C Proof of Theorem 4.2

Theorem. Consider cM , an e-stop variation on MDP M with state spaces Ŝ and S, respectively.
Given an expert policy, ⇡e, let h(s) denote the probability of visiting state s at least once in an
episode roll-out of policy ⇡e in M . Then

J(⇡e)� J(⇡̂⇤)  H

X

s2S\Ŝ

h(s) (19)

where ⇡̂
⇤ is the optimal policy in cM . Naturally if we satisfy some “allowance,” ⇠, such thatP

s2S\Ŝ h(s)  ⇠ then J(⇡e)� J(⇡̂⇤)  ⇠H .

12

Proof. We proceed by analyzing the probabilities and expected rewards of entire trajectories ⌧ =
(⌧1, . . . , ⌧H), in M and cM . Let

µ(⌧) =
H�1X

t=1

E [R(⌧t, At, ⌧t+1)|⌧,⇡e] (20)

be the expected reward of a trajectory ⌧ and let pM (⌧) denote the probability of trajectory ⌧ when
following policy ⇡e in MDP M . Note that

h(s) =
X

⌧

pS(⌧)I{s 2 ⌧} (21)

Now,

J(⇡e)� J(⇡̂⇤)  JM (⇡e)� JcM (⇡̂⇤) (22)
 JM (⇡e)� JcM (⇡e) (23)

=
X

⌧

pS(⌧)µ(⌧)�
X

⌧

p
Ŝ
(⌧)µ(⌧) (24)



X

⌧

pS(⌧)µ(⌧)I{⌧ leaves Ŝ} (25)

 H

X

⌧

pS(⌧)I{⌧ leaves Ŝ} (26)

 H

X

⌧

pS(⌧)
X

s2S\Ŝ

I{s 2 ⌧} (27)

= H

X

s2S\Ŝ

X

⌧

pS(⌧)I{s 2 ⌧} (28)

= H

X

s2S\Ŝ

h(s) (29)

as desired.

D Proof of Corollary 4.2.1

Corollary. Recall that ⇢⇡e(s) denotes the average state distribution following actions from ⇡e,
⇢⇡e(s) =

1
H

P
H�1
t=0 ⇢

t

⇡e
(s). Then

J(⇡e)� J(⇡̂⇤)  ⇢⇡e(S \ Ŝ)H2 (30)

Proof. Note that

h(s) = P

H�1[

t=0

(st = s)

!


H�1X

t=0

⇢
t

⇡e
(s) = H⇢⇡e(s) (31)

where the inequality follows from a union bound over time steps. Then

J(⇡e)� J(⇡̂⇤)  ⇢⇡e(S \ Ŝ)H2 (32)

as a consequence of Theorem 4.2.

E Proof of Theorem 5.1

Theorem. The e-stop MDP cM with states Ŝ in Algorithm 1 has asymptotic sub-optimality

J(⇡e)� J(⇡̂⇤)  (⇠ + ✏)H (33)

with probability at least 1 � |S|e
�2✏2n/|S|2 , for any ✏ > 0. Here ⇠ denotes our approximate

state removal “allowance”, where we satisfy
P

s2S\Ŝ ĥ(s)  ⇠ in our construction of cM as in
Theorem 4.2.

13

Proof. With Hoeffding’s inequality and a union bound,

P(8s, ĥ(s) > h(s)� ✏/|S|) = 1� P(9s, ĥ(s)  h(s)� ✏/|S|) (34)

� 1� |S|e
�2✏2n/|S|2 (35)

Note that the ĥ(s) values are not independent yet the union bound still allows us to bound the
probability that any of them deviate meaningfully from h(s). Now if ĥ(s) > h(s)� ✏/|S| for all s, it
follows that

⇠ �

X

s2S\Ŝ

h(s)�
✏

|S|
(|S|� |Ŝ|) �

X

s2S\Ŝ

h(s)� ✏ (36)

and so
P

s2S\Ŝ h(s)  ⇠ + ✏. By Theorem 4.2 we have that

J(⇡e)� J(⇡̂⇤)  (⇠ + ✏)H (37)

completing the proof.

F Imperfect e-stops in terms of ⇢̂⇡e(s)

While Theorem 5.1 provides an analysis for an approximate e-stopping algorithm, its reliance
on hitting probabilities does not extend nicely to continuous domains. Here we present a result
analogous to Theorem 5.1, but using ⇢̂⇡e(s) in place of ĥ(s). Unfortunately, we are not able to escape
a dependence on |S| with this approach however. Furthermore, we require that ⇡e always runs to
episode completion without hitting any terminal states, ie. the length of all ⇡e roll-outs is H .
Definition F.1. Let %(s) be a random variable denoting the average number of times ⇡e visits state s,

%(s) , |{t 2 1, . . . , H|⌧t = s}|

H
. (38)

Note that with n roll-outs, our approximate average state distribution is the same as the average of
the %’s:

⇢̂⇡e(s) ,
1

nH

nX

i=1

HX

t=1

I{⌧ (i)
t

= s} =
1

n

nX

i=1

%
(i)(s).

Theorem F.1. The e-stop MDP cM with states Ŝ resulting from running the ⇢̂⇡e version of Algorithm 1
with n expert roll-outs has asymptotic sub-optimality

J(⇡e)� J(⇡̂⇤) 

⇠ +

r
2 log(2|S|/�)

n

X

s2S

q
Vn(%(1:n)(s)) +

7|S| log(2|S|/�)

3(n� 1)

!
H

2 (39)

with probability at least 1� �. Here ⇠ denotes our approximate state removal “allowance”, where
we satisfy ⇢̂⇡e(S \ Ŝ)  ⇠ in our construction of cM , and Vn denotes the sample variance.

Proof. We follow the same structure as in the proof of Theorem 5.1, but use an empirical Bernstein
bound in place of Hoeffding’s inequality. We know from Theorem 4 of Maurer and Pontil [18] that,
for each s,

⇢̂⇡e(s)  ⇢⇡e(s)�

 r
2Vn(%(1:n)(s)) log(2|S|/�)

n
+

7 log(2|S|/�)

3(n� 1)

!
(40)

with probability no more than �/|S|. It follows that it will hold for every s 2 S with probability at
least 1� �. In that case we underestimated the true ⇢-mass of any subset of the state space S by at
most r

2 log(2|S|/�)

n

X

s2S

q
Vn(%(1:n)(s)) +

7|S| log(2|S|/�)

3(n� 1)
(41)

and so by Theorem 4.2 we have the desired result.

14

G Experimental details

All experiments were implemented with Numpy and JAX [6]. NuvemFS (https://nuvemfs.com)
was used to manage code and experimental results. Experiments were run on AWS.

Our code and results are available on GitHub at https://github.com/samuela/e-stops.

Figure 5: Our FrozenLake-v0 environment. The agent starts in the upper left square and attempts to
reach the goal in the lower right square. Tiles marked with “H” are holes in the lake which the agent
can fall in and recover with only probability 0.01. The optimal state-value function is overlaid.

G.1 Value iteration

We ran value iteration on the full environment to convergence (tolerance 1e�6) to establish the optimal
policy. We calculated the state hitting probabilities of this policy exactly through an interpretation
of expert policy roll-outs as absorbing Markov chains. These hitting probabilities were then ranked
and states were removed in order of their rank until there was no longer a feasible path to the goal
(J(⇡) = 0). The number of floating point operations (FLOPs) used was calculated based on 4 |S|

2
|A|

FLOPs per value iteration update:

1. For each state s and each action a, calculating the expected value of the next state. (|S||A|

dot products of |S|-vectors.)

2. Multiplying those values by �.

3. Adding in the expected rewards for every state-action-state transition.

4. Calculating the maximum for each state s and each action a over |S| possible next state
outcomes.

G.2 Policy gradient methods

We ran value iteration on the full environment to convergence (tolerance 1e � 6) to establish the
optimal policy. We estimated the state hitting probabilities of this policy with 1,000 roll-outs in
the environment. Based on this estimate of ⇢⇡e(s) we replaced the least-visited 50% of states with
e-stops.

We ran both Q-learning and Actor-Critic across 96 trials (random seeds 0-95) and plot the median
performance per states seen. Error bars denote one standard deviation around the mean and are
clipped to the maximum/minimum values. We ran iterative policy evaluation to convergence on the
current policy every 10 episodes in order to calculate the cumulative policy reward as plotted.

In order to accommodate the fact that two trials may not have x-coordinates that align (episodes may
not be the same length), we linearly interpolated values and plot every 1,000 states seen.

15

https://nuvemfs.com
https://github.com/samuela/e-stops

G.3 DDPG

Continuous results were trained with DDPG with � = 0.99, ⌧ = 0.0001, Adam with learning rate
0.001, batch size 128, and action noise that was normally distributed with mean zero and standard
deviation 0.1. The replay buffer had length 220 = 1, 048, 576. The actor network had structure

• Dense(64)
• ReLU
• Dense(64)
• ReLU
• Dense(action_shape)
• Tanh

and the critic network had structure

• Dense(64)
• ReLU
• Dense(64)
• ReLU
• Dense(64)
• ReLU
• Dense(1)

We periodically paused training to run policy evaluation on the current policy (without any action
noise).

Plotting and error bars are the same as in the deterministic experiments.

16

	Introduction
	Related Work
	Problem setup
	Incorporating e-stop interventions
	The sample complexity and asymptotic sub-optimality trade-off
	Perfect e-stops
	Imperfect e-stops

	Learning from observation
	Empirical study
	Discrete environments
	Continuous environments

	Types of support sets and their tradeoffs
	Conclusions
	Acknowledgements
	Proof of eq:tradeoff
	Proof of thm:perfect
	Proof of thm:imperfect
	Proof of cor:stationary
	Proof of thm:empirical-epsilon-estop
	Imperfect e-stops in terms of e(s)
	Experimental details
	Value iteration
	Policy gradient methods
	DDPG

