
A Proof of submodularity

Nemhauser et al. [25] show that if a function is submodular, then a greedy algorithm like algorithm 1
is 1 − 1/e-approximate. Here, we show that aBatchBALD is submodular.

We will show that aBatchBALD satisfies the following equivalent definition of submodularity:

Definition A.1. A function f defined on subsets of Ω is called submodular if for every set A ⊂ Ω and
two non-identical points y1, y2 ∈ Ω \ A:

f (A ∪ {y1}) + f (A ∪ {y2}) ≥ f (A ∪ {y1, y2}) + f (A) (14)

Submodularity expresses that there are "diminishing returns" for adding additional points to f .

Lemma A.2. aBatchBALD(A, p(ωωω)) := I(A ; ωωω) is submodular for A ⊂ Dpool.

Proof. Let y1, y2 ∈ Dpool, y1 , y2. We start by substituting the definition of aBatchBALD into (14) and
subtracting I(A ; ωωω) twice on both sides, using that I(A ∪ B ; ωωω) − I(B ; ωωω) = I(A ; ωωω | B):

I(A ∪ {y} ; ωωω) + I(A ∪ {x} ; ωωω) ≥ I(A ∪ {x, y} ; ωωω) + I(A ; ωωω) (15)
⇔ I(y ; ωωω | A) + I(x ; ωωω | A) ≥ I(x, y ; ωωω | A). (16)

We rewrite the left-hand side using the definition of the mutual information I(A ; B) = H(A)−H(A |B)
and reorder:

I(y ; ωωω | A) + I(x ; ωωω | A) (17)
=H(y1 | A) +H(y1 | A)︸                     ︷︷                     ︸

≥H(y1,y2 |A)

− (H(y1 | A,ωωω) +H(y2 | A,ωωω))︸                               ︷︷                               ︸
=H(y1,y2 |A,ωωω)

(18)

≥H(y1, y2 | A) −H(y1, y2 | A,ωωω) (19)
= I(x, y ; ωωω | A), (20)

where we have used that entropies are subadditive in general and additive given y1 y y2 | ωωω. �

Following Nemhauser et al. [25], we can conclude that algorithm 1 is 1 − 1/e-approximate.

B Connection between BatchBALD and BALD

In the following section, we show that BALD approximates BatchBALD and that BatchBALD
approximates BALD with acquisition size 1. The BALD score is an upper bound of the BatchBALD
score for any candidate batch. At the same time, BatchBALD can be seen as performing BALD with
acquisition size 1 during each step of its greedy algorithm in an idealised setting.

B.1 BALD as an approximation of BatchBALD

Using the subadditivity of information entropy and the independence of the yi given ωωω, we show
that BALD is an approximation of BatchBALD and is always an upper bound on the respective
BatchBALD score:

aBatchBALD
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
(21)

=H(y1, ..., yb | x1, ..., xb,Dtrain) −Ep(ωωω|Dtrain)
[
H(y1, ..., yb | x1, ..., xb,ωωω,Dtrain)

]
(22)

≤

b∑
i=1

H(yi | xi,Dtrain) −
b∑

i=1

Ep(ωωω|Dtrain)
[
H(yi | xi,ωωω,Dtrain)

]
(23)

=

b∑
i=1

I(yi ; ωωω | xi,Dtrain) = aBALD
(
{x1, ..., xb} , p(ωωω | Dtrain)

)
(24)
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B.2 BatchBALD as an approximation of BALD with acquisition size 1

To see why BALD with acquisition size 1 can be seen as an upper bound for BatchBALD performance
in an idealised setting, we reformulate line 3 in algorithm 1 on page 4.

Instead of the original term aBatchBALD
(
An−1 ∪ {x} , p(ωωω | Dtrain)

)
, we can equivalently maximise

aBatchBALD
(
An−1 ∪ {x} , p(ωωω | Dtrain)

)
− aBatchBALD

(
An−1, p(ωωω | Dtrain)

)
(25)

as the right term is constant for all x ∈ Dpool \ An−1 within the inner loop, which, in turn, is equivalent
to

= I(y1, ..., yn−1, y ; ωωω | x1, ..., xn−1, x,Dtrain) − I(y1, ..., yn−1 ; ωωω | x1:n−1Dtrain) (26)
= I(y ; ωωω | x, y1, ..., yn−1, x1:n−1,Dtrain) (27)

once we expand An−1 = {x1, ..., xn−1}. This means that, at each step of the inner loop, our greedy
algorithm is maximising the mutual information of the individual available data points with the model
parameters conditioned on all the additional data points that have already been picked for acquisition
and the existing training set. Finally, assuming training our model captures all available information,

≥ I(y ; ωωω | x,Dtrain ∪ {(x1, ỹ1), ...., (xn−1, ỹn−1)}) (28)
=aBALD

(
{x} , p(ωωω | Dtrain ∪ {(x1, ỹ1), ...., (xn−1, ỹn−1)})

)
, (29)

where ỹ1, ..., ỹn−1 are the actual labels of x1, ..., xn. The mutual information decreases asωωω becomes
more concentrated as we expand its training set, and thus the overlap of y andωωω will become smaller
(in an information-measure-theoretical sense).

This shows that every step n of the inner loop in our algorithm is at most as good as retraining
our model on the new training setDtrain ∪ {(x1, ỹ1), ...., (xn−1, ỹn−1)} and picking xn using aBALD with
acquisition size 1.

Relevance for the active training loop. We see that the active training loop as a whole is computing a
greedy 1−1/e-approximation of the mutual information of all acquired data points over all acquisitions
with the model parameters.

C Sampling of configurations

We are using the same notation as in section 3.3. We factor p(y1:n |ωωω) to avoid recomputations and
rewrite H(y1:n) as:

H(y1:n) = Ep(ωωω) Ep(y1:n |ωωω)
[
− log p(y1:n)

]
(30)

= Ep(ωωω) Ep(y1:n−1 |ωωω) p(yn |ωωω)
[
− log p(y1:n)

]
(31)

= Ep(ωωω) Ep(y1:n−1 |ωωω) Ep(yn |ωωω)
[
− log p(y1:n)

]
(32)

To be flexible in the way we sample y1:n−1, we perform importance sampling of p(y1:n−1 |ωωω) using
p(y1:n−1), and, assuming we also have m samples ŷ1:n−1 from p(y1:n−1), we can approximate:

H(y1:n) = Ep(ωωω) Ep(y1:n−1)

[
p(y1:n−1 |ωωω)

p(y1:n−1)
Ep(yn |ωωω)

[
− log p(y1:n)

]]
(33)

= Ep(y1:n−1) Ep(ωωω) Ep(yn |ωωω)

[
−

p(y1:n−1 |ωωω)
p(y1:n−1)

logEp(ωωω)
[
p(y1:n−1 |ωωω) p(y1:n |ωωω)

]]
(34)

≈ −
1
m

m∑
ŷ1:n−1

∑
ŷn

1
k
∑
ω̂ωω j

p(ŷ1:n−1 | ω̂ωω j) p(ŷn | ω̂ωω j)

p(ŷ1:n−1)
log

1
k

∑
ω̂ωω j

p(ŷ1:n−1 | ω̂ωω j) p(ŷn | ω̂ωω j)

 (35)

= −
1
m

m∑
ŷ1:n−1

∑
ŷn

(
P̂1:n−1P̂T

n

)
ŷ1:n−1,ŷn(

P̂1:n−11k,1

)
ŷ1:n−1

log
(

1
k

(
P̂1:n−1P̂T

n

)
ŷ1:n−1,ŷn

)
, (36)

where we store p(ŷ1:n−1 | ω̂ωω j) in a matrix P̂1:n−1 of shape m × k and p(ŷn | ω̂ωω j) in a matrix P̂n of shape
c × k and 1k,1 is a k × 1 matrix of 1s. Equation (36) allows us to cache P̂1:n−1 inside the inner loop of
algorithm 1 and use batch matrix multiplication for efficient computation.
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D Ablation study on Repeated MNIST

To better understand the effect of redundant data points on BALD and BatchBALD, we run the
RMNIST experiment with an increasing number of repetitions. The results can be seen in figure 10.
We use the same setup as in section 4.1. BatchBALD performs the same on all repetition numbers
(100 data points till 90%). BALD achieves 90% accuracy at 120 data points (0 repetitions), 160 data
points (1 repetition), 280 data points (2 repetitions), 300 data points (4 repetitions). This shows that
BALD and BatchBALD behave as expected.

Figure 10: Performance of BALD on Repeated MNIST for increasing amount of repetitions. We see
that BALD performs worse as the number of repetitions is increased, while BatchBALD outperforms
BALD with zero repetitions.

E Additional results for Repeated MNIST

We show that BatchBALD also outperforms Var Ratios [11] and Mean STD [21].

Figure 11: Performance on Repeated MNIST. BALD, BatchBALD, Var Ratios, Mean STD and
random acquisition with acquisition size 10 and 10 MC dropout samples.
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F Example visualisation of EMNIST

Figure 12: Examples of all 47 classes of EMNIST

G Entropy and class acquisitions including random acquisition

Figure 13: Performance on EMNIST. Batch-
BALD consistently outperforms both random ac-
quisition and BALD while BALD is unable to
beat random acquisition.

Figure 14: Entropy of acquired class labels
over acquisition steps on EMNIST. BatchBALD
steadily acquires a more diverse set of data points
than BALD.

Figure 15: Histogram of acquired class labels on EMNIST. BatchBALD left and BALD right. Classes
are sorted by number of acquisitions. Several EMNIST classes are underrepresented in BALD and
random acquisition while BatchBALD acquires classes more uniformly. The histograms were created
from all acquired points at the end of an active learning loop
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