
recurse

A

interval

B	blocks

(a) Inner recursion

recurse

A B	blocks

interval

prefix suffix

(b) Outer recursion

Figure 3: Recursive scheme for semigroup range-sum.

A Proof of Theorem 4.7

We analyze the semigroup range-sum scheme in Section 3 of Chazelle and Rosenberg [1989], and
show that it can be implemented in O(m · ↵(m,n)) time.

The scheme, as shown in Algorithm 2, goes as follows. Let R(t, k) denote the largest value of n
such that for any m � n, there exists an algorithm that solves the range-sum problem on n variables
and m intervals, using kn preprocessing additions and t additions per interval. This gives a total of
kn+ tm additions. We will show that R(t, k) is an Ackermann function by showing the following:
if a = R(t, k � 3), b = R(t� 2, a), and n = ab, then R(t, k) � n.

It is worth mentioning that which constants we use (2 and 3 in this case) do not matter. Any fixed
constant will prove our claim. When we modify the algorithm later, it is enough to see that the
algorithm works for some fixed constants.

For the base case we have R(t, 1) � 2 and R(1, k) � 2. To show the inductive step we first describe
the preprocessing procedure (see preprocess in Algorithm 2). We split the n variables into b
contiguous blocks, each of size a. For each single block (lines 4 & 5), we compute its prefix and
suffix sums and store the results in d (lines 6-12). Next, we perform an inner recursion where we
preprocess each inner block of size a. Then, we treat the sum of each inner block as new variables,
and perform an outer recursion where we preprocess the single outer block of size b. We store the
preprocessed results from the recursive calls in d.

By the induction hypothesis, we know that during the preprocessing procedure, each inner block of
size a takes at most a · (k � 3) additions, and the outer block of size b takes at most b · a additions.
Furthermore, computing the prefix/suffix sums for each inner block takes at most 2n additions. Thus,
the total number of additions for preprocessing is at most ba(k�3)+ba+2n = (k�3)n+3n = kn.

Now we describe how to compute the sum of an interval using our preprocessed results. We start
at the topmost level of recursion. If the interval completely falls within an inner block, then we do
an inner recursion without performing any additions (Figure 3a). Otherwise, the interval straddles
multiple inner blocks. Since we have computed the prefix/suffix sums for each inner block, we can
shave off the edges of our interval using two additions. The remaining interval can be represented as
a sum of inner blocks, which we compute by performing an outer recursion (Figure 3b).

In the case of an inner recursion, we require t additions to fill the interval by induction. In the case of
an outer recursion, we require 2 additions to shave off the edges of the interval, and the remaining
sum can be computed using t� 2 additions by induction.

We have shown that if n  R(t, k � 3)R(t � 2, R(t, k � 3)), then we can solve the semigroup
range-sum problem on n variables and m � n intervals using kn preprocessing additions and t
additions per interval. Therefore R(t, k) grows as fast as an Ackermann function, so the total number
of required additions is O(m · ↵(m,n)).

In the rest of Algorithm 2, we spell out the algorithm in more detail. The subroutines inverse-ack
and ack compute the necessary parameters, and preprocess performs the recursive preprocessing of
the intervals. The subroutine solve-interval computes the sum of an interval using the recursive
scheme described above and shown in Figure 3. The details of these subroutines are not provided.

It remains to show that we can implement this scheme without any extra time overhead. That is, can
we find the sequence of additions to perform using O(m · ↵(m,n)) operations? The general strategy
is to precompute a mapping from interval sizes to inner recursion depth, so that given an interval we
can perform multiple consecutive inner recursions in one step.

12

Algorithm 2 semigroup-range-sum(I, w)

input: A sequence of intervals I = [a1, b1], . . . , [am, bm] on n variables with weights w =
[w0, . . . , wn�1] on the variables.
output: The sum of weights of variables for each interval.
preprocess(W, t, k):

1: a ack(t, k � 3) b ack(t� 2, a)
2: d ;
3: for i [0, b) do

4: s, e a · i , a · (i+ 1) // start, end of one inner block
5: A [ws, ..., we�1] // inner block
6: ps , qe�1 ws , we�1

7: for j from s+ 1 to e� 1 do // prefix gates: walk forward
8: pj pj�1 � wj

9: d d [{pj}
10: for j from e� 2 down to s do // suffix gates: walk backward
11: qj qj+1 � wj

12: d d [{qj}
13: d d [preprocess(A, t, k � 3)
14: Bi pe�1 // sum of inner block
15: B [B0, ..., Bb�1] // outer block
16: d d [preprocess(B, t� 2, a)
17: return d // preprocessed sums
main(I, w):

1: n,m number of variables, number of intervals
2: c inverse-ack(m,n)
3: d preprocess([w0, ..., wn�1], 2c, 3c)
4: for [ai, bi] in I do

5: ri solve-interval(ai, bi, 2c, 3c, d)
6: return [r1, . . . , rm]

The preprocessing step requires no additional overhead for finding the sequence of additions, as
shown in Algorithm 2; determining which addition to perform next only takes a constant amount of
time (assuming we optimize with tail recursion so we do not spend a non-constant amount of time
unwinding the stack). Similarly, when we need to perform an outer recursion during the processing
of one interval, we only require a constant amount of time to find the two additions (prefix and suffix
pieces in Figure 3b) and call the recursion. The problem arises when we need to perform an inner
recursion. Since an inner recursion does not actually performs additions, we are not allowed any
time at all to find and perform the proper recursive call. So if we perform multiple consecutive inner
recursions, we will end up doing a non-constant amount of work for a single addition.

As such, we will present a technique that performs multiple consecutive inner recursions, which we
will call a jump, in a constant amount of time. After a single jump, we will either perform an outer
recursion or hit a base case. In both cases, the scheme will immediately perform at least one addition,
so we can absorb the (constant) cost of the jump into the addition.

A.1 Jump Technique

Suppose we are at some level of outer recursions given by some value t. When we perform one inner
recursion, we go from level R(t, k) to level R(t, k � c) for some constant c. When we do a jump,
we need to go from level R(t, k) to level R(t, k � cj) for some j � 1. The details of the jumping
technique are then as follows. During preprocessing, for each value of t we record the sequence of
block sizes at1 = R(t, k � c) � at2 = R(t, k � 2c) � . . . � atbk/cc = R(t, k � bk/ccc). Then, for
each value s 2 [1, R(t, k)], we compute the smallest index i such that the block size ati is  s. We
denote this computed index i by pts. This step can be done in time O(R(t, k)+k): by considering the
values s 2 [1, R(t, k)] in decreasing order, the indices pts must be increasing in that order. So, we can
compute all the indices with a two-pointer walk with cost O(R(t, k) + k), which is negligible since

13

it is less than the original cost of precomputing the prefix and suffix sums at all the inner recursion
levels for this outer recursion level (i.e., all choices of the value k for this value of t).

Given an interval of size s at outer recursion level t, we can immediately find the value pts and pts � 1.
We claim that it suffices to look at inner recursion levels pts and pts � 1. Let e0 = R(t, k � ptsc) and
e1 = R(t, k � (pts � 1)c). By definition, we have that e0  s  e1.

• In the case that the interval falls completely within one block of size e1, we will perform
an outer recursion over level pts. We can visualize this scenario with Figure 3b, where A
corresponds to e0 and AB corresponds to e1.

• Otherwise, the interval straddles exactly two blocks of size e1 at the previous inner recursion
level (no more than two since e1 � s). We can express the interval as a summation of a
suffix sum over the first block and a prefix sum over the second block.

In both of the above scenarios, we skip the work of performing many inner recursive calls, and jump
directly to either an outer recursive call or to a base case. So for each addition, we only do a constant
amount of work, and the time complexity of solving the range-sum problem on n variables and m
intervals is O(m · ↵(m,n)).

A.2 Padding

There remains one complication: the last block in a call to the preprocess function may have a
different size from the rest of the blocks. For example, in Figure 3, if n is not a multiple of A, then the
last block will have size less than A. To fix this without complicating the preprocessing algorithm, we
simply pad the last block so that it is the same size as all other blocks. We also make sure that when
we do an outer recursion, we only pad the original blocks as opposed to padding the padded blocks
from the previous recursion level. This detail ensures that the cost of padding does not compound
over multiple outer recursions. Altogether, the padding technique at most doubles the memory cost
of the entire algorithm.

B Proof of Theorem 5.2

Take any set of m intervals, with m = n. For simplicity we will let the m intervals be on n � 2
variables (in the range [2, n� 1] instead of [1, n], by increasing n by 2 and shifting all intervals one
step to the right) so that the intervals do not touch the endpoints.

First we construct prefix gates p1 = x1 and pk = pk�1 ⌦ xk, 8k > 1 in a chain-like fashion, and
suffix gates sn = xn, sk = sk+1 ⌦ xk, 8k < n in a chain-like fashion. Then for each interval [ai, bi],
construct the gate Gi = pai�1 ⌦ sbi+1. Next, let g be the circuit G1 � . . . � Gm � pn � s1 (see
Figure 4). We are attaching the pn and s1 gate to ensure that g mentions all n variables, and that the
smoothing-gate algorithm retains all prefix/suffix gates.

Since g mentions all n variables, each gate Gi also needs to mention all n variables to satisfy
the smoothness property. By the construction of Gi, it is missing exactly the variables Xi =
[Xai , . . . , Xbi]. We will show that running a smoothing-gate algorithm on g implicitly solves the
semigroup range-sum problem on those intervals, by mapping the summation operation in the
semigroup range-sum problem to the ⌦-gates in our circuits. Note that the circuit g is indeed
decomposable and edge-contracted.

Consider a smooth and decomposable circuit h that is the output of running a smoothing-gate
algorithm on g. By Definition 4.3, there exists a bijection B from g to a subcircuit of h after edge-
contraction. Let S denote the graph of this subcircuit before edge-contraction: we call S the skeleton

graph (see Figure 5). We make the two following observations.

First, we consider the gates B(Gi) for all i. In the skeleton graph S, there exists a path from B(g) to
B(Gi), a path from B(Gi) to B(pai�1) and a path from B(Gi) to B(sbi+1). We denote the set of
gates on these paths (excluding the endpoints) over all i as T . We observe that a gate in T must have
exactly one child in S, otherwise S cannot be edge-contracted into a circuit that is isomorphic to g.

Since each �-gate in T has exactly one child that is in the skeleton graph S, we can modify h by
disconnecting all other children (which do not belong to S) from these �-gates, and edge-contracting

14

g

pn

p3

p2

p1

xn

x3

x2

x1

s1

s2

s3

sn

x1

x2

x3

xn

G1 G2 Gm

Figure 4: A decomposable circuit g constructed based on input intervals. Edges are solid if the parent
is a ⌦-gate, and edges are dashed if the parent is a �-gate. In this example the input intervals are
{[3, 3], [2, 3], [2, 2]}.

these �-gates. We note that this operation preserves smoothness and decomposability of h, so each
child of B(g) still mentions all n variables.

Second, we observe that the gate B(pk) for any k cannot mention a variable outside of the range
[1, k]. Otherwise, the circuit rooted at B(pn) would implicitly contain a ⌦-gate that multiplies that
variable with itself, thus violating the decomposability property. A similar argument applies to the
gates B(sk): they cannot mention a variable outside of the range [k, n].

Let G0
i denote the (unique) child of B(g) that is an ancestor of B(Gi). Recall that for any i, G0

i has
the gates B(pai�1) and B(sbi+1) as descendants. Furthermore, G0

i does not have any other gate
in {B(pj) : 8j} [{B(sj) : 8j} as a descendant, otherwise it would either multiply two copies
of variable 1 or multiply two copies of variable n, and violate the decomposability property. We
now remove the set of edges in h that goes from some gate in T [{B(Gj) : 8j} to some gate in
{B(pj) : 8j} [{B(sj) : 8j}. By the above observations, the gate G0

i must now mention exactly the
variables [ai, bi]. See the transition from Figure 5 to Figure 6 as an example.

We now show how to extract the variables in each interval [a, b] using the following relabelling
scheme to remove all remaining �-gates. First we remove all edges leading into G0

1, . . . , G
0
m. Each

of these m gates is still decomposable and smooth for the set of variables in its respective interval.
Then for every �-gate p in the circuit, take one of its input wires and reroute a copy of it to each
gate that p feeds into. Each remaining ⌦-gate is now the product of one literal for each variable that
was mentioned by its corresponding gate in the original circuit. These variables may be positive or
negative literals, but we do not care about the polarity. We only need, for example, that if a ⌦-gate
mentioned variables X1, X3, X5, then it is now a product of a literal of X1, a literal of X3, and a
literal of X5.

After this operation, G0
i is now exactly the product of all the variables in [ai, bi]. By setting the inputs

to the circuits to be the value of the weights in the range-sum problem, and evaluating the circuits
treating ⌦ as addition, the value to which each gate G0

i evaluates is the requested sum for the i-th
interval. So, the circuit describes a sequence of additions to compute the sum of each interval. We
then apply Theorem 5.1, which implies that the bound of ⌦(m · ↵(m,n)) applies to the size of the
output circuit h.

15

B(g)

B(pn)

B(p3)

B(p2)

B(p1)

xn

x3

x2

x1

B(s1)

B(s2)

B(s3)

B(sn)

x1

x2

x3

xn

B(G1) B(G2) B(Gm)

t1 t2

t3

t4 t5

h

o1 o2

o3 o4

o5 o6

t1 t2

t3

t4 t5

Figure 5: A smooth and decomposable circuit h that is the output of a smoothing-gate algo-
rithm on g. The skeleton graph S is shown in red, and the set of gates T are circled in blue.
We proceed by taking each �-gate in T and removing their edges to children that are not in S.
This removes the edge (t3, o3). Next, we remove the set of edges that goes from some gate in
T [{B(Gj) : 8j} to some gate in {B(pj) : 8j} [{B(sj) : 8j}. This removes the edges
(t1, B(p1)), (t2, B(sn)), (t3, B(p2)), (B(Gm), B(s3)). The gates t1 and t3 have no more children,
so we prune them away. After this process, we get the circuit shown in Figure 6.

16

B(g)

B(pn)

B(p3)

B(p2)

B(p1)

xn

x3

x2

x1

B(s1)

B(s2)

B(s3)

B(sn)

x1

x2

x3

xn

G0
1 B(G2) B(Gm)

t2

G0
2 G0

m

h

o1 o2

o4

o5 o6

Figure 6: The output circuit h implicitly contains a scheme for obtaining the sum of every input
interval, thereby solving the semigroup range-sum problem using O(|h|) additions.

C Proof of Theorem 6.1

Recall from Lemma 4.5 that the set of missing variables of each parent-child pair forms at most
two intervals with respect to the in-order traversal of the vtree. The idea now is that propagating the
partial derivative to each interval amounts to a range increment, i.e., increasing each variable in the
interval by a constant. The naive algorithm takes quadratic time to do this for all intervals, but we can
perform all range increments in linear time [Garg].

Consider an integer n, a set of m intervals [a1, b1], . . . , [am, bm] (1  ai  bi  n), and m numeric
constants c1, . . . , cm. For each integer 1  j  n, we wish to compute the sum sj =

L
i:j2[ai,bi]

ci.
That is, if j belongs to some interval [ai, bi], then we increase sj by ci. The trick is to keep track of
delta variables �1, . . . , �n. For each interval [ai, bi], we increase �ai by ci and decrease �bi+1 by ci.
Finally, we output s1 = �1 and sj = sj�1 � �j , j > 1. This process, which corresponds to Lines
11-14 and 16-17 in the top-down subroutine of Algorithm 1, can be done in time O(m).

17

	Introduction
	Background
	Smoothing
	Smoothing Algorithm
	Lower Bound
	Computing All-Marginals
	On Retaining Structuredness
	Experiments
	Conclusion
	Proof of Theorem 4.7
	Jump Technique
	Padding

	Proof of Theorem 5.2
	Proof of Theorem 6.1

