
A Label-noise learning, or noisy-label learning, that is the point

Note that the title of this paper is a question “are anchor points really indispensable in label-noise
learning” but not “are anchor points really indispensable in noisy-label learning”. Here, we explain
why in order to make sense it must be label-noise learning. At first glance, label-noise learning may
sound like we are learning the label noise, but this is exactly what we have implied in the title.

Generally speaking, the two names are synonyms of learning with noisy labels—this is the title of
[26] where the first statistically consistent learning method was proposed for training classifiers with
noisy labels. For the family of consistent learning methods, the estimation of the transition matrix T
is always necessary. In fact, any such method requires three components:

• a label corruption process parameterized by T ,
• an estimator of T , and
• a statistical or algorithmic correction using the estimated T .

As a result, T is also a target of learning, that is, the label noise is both a target to be learned and a
source from which we learn. This is learning with noisy labels, more than learning from noisy labels.

For the first component, we assume the class-conditional noise model [26, 30]; for the third compo-
nent, we rely on importance reweighting for learning with noisy labels [22]. Our novelty and major
contribution is the second component, where we relax a requirement in existing consistent learning
methods, namely we should have a certain amount of anchor points for estimating T accurately, so
that the correction using the estimated T can be performed well.

While it is necessary to estimate T for consistent learning methods, it is not the case for inconsistent
learning methods. For instance, sample selection methods try to remove mislabeled data, and label
correction methods try to fix the wrong labels of mislabeled data. None of them estimate T so that
none of them ever need the existence of anchor points.

Therefore, if we ask “are anchor points really indispensable in label-noise learning” where we are
learning, modeling or estimating the label noise, the answer was yes previously and is no currently.
Nevertheless, if we ask “are anchor points really indispensable in noisy-label learning” where some
inconsistent learning method is employed without estimating the label noise, the answer has already
been known to be no. That is the point.

B How consistent algorithms work

The aim of multi-class classification is to learn a hypothesis f that predicts labels for given instances.
Typically, the hypothesis is of the following form: f(x) = argmaxi2{1,2,...,C} gi(x), where gi(x) is
an estimate of P (Y = i|X = x). Let define the expected risk of employing f as

R(f) = E
(X,Y )⇠D[`(f(X), Y )]. (4)

The optimal hypothesis to learn is the one that minimizes the risk R(f). Usually, the distribution D
is unknown. The optimal hypothesis is approximated by the minimizer of an empirical counterpart
of R(f), i.e., the empirical risk

Rn(f) =
1

n

nX

i=1

`(f(xi), yi). (5)

The empirical risk Rn(f) is risk-consistent w.r.t. all loss functions, i.e., Rn(f) ! R(f) as n ! 1.
Note that in the main paper, we have treated the training sample {Xi, ¯Yi}ni=1

as iid variables to derive
the generalization bound.

If the loss function is zero-one loss, i.e., `(f(x), y) = 1{f(x) 6=y} where 1{·} is the indicator function
and that the predefined hypothesis class [25] is large enough, the optimal hypothesis that minimizing
R(f) is identical to the Bayes classifier [3], i.e.,

f⇢(x) = arg max

i2{1,2,...,C}
P (Y = i|X = x). (6)

Many frequently used loss functions are proven to be classification-calibrated [3, 34], which means
they will lead to classifiers having the same predictions as the classifier learned by using zero-one

13



loss if the training sample size is sufficiently large [42, 25]. In other words, the approximation, i.e.,
argminRn(f), could converge to the optimal hypothesis by increasing the sample size n and the
corresponding estimator is therefore classifier-consistent. Note that risk-consistent algorithm is also
classifier-consistent. However, a classifier-consistent algorithm may not be risk-consistent.

Given only the noisy training sample {(Xi, ¯Yi)}ni=1

, we have a noisy version of the empirical risk as

¯Rn(f) =
1

n

nX

i=1

`(f(Xi), ¯Yi). (7)

The learned g(X) can be used to approximate P (Ȳ|X). According to the definition of transition
matrix, we have that P (Ȳ|X) = T>P (Y|X), implying that if we let

¯h(X) = arg max

i2{1,2,...,C}
(T>g)i(X), (8)

minimizing

¯Rn(
¯h) =

1

n

nX

i=1

`(¯h(Xi), ¯Yi) (9)

by using only noisy data will lead to a classifier-consistent algorithm. In other words,
argmaxi2{1,2,...,C} gi(x) in the algorithm will converge to the optimal classifier for clean data
by increasing the noisy sample size. That’s why noise adaption layer has been widely used in deep
learning to modify the softmax function (i.e., g(x)) [9, 30, 38, 47].

If the transition matrix is invertable, the equation P (Y|X) = (T>
)

�1P (Ȳ|X) has been explored to
design risk-consistent estimator for R(f), e.g., [26, 30]. The basic idea is to modify the loss function
`(f(X), ¯Y ) to be ˜`(f(X), ¯Y ) such that for X and Y ,

E
¯Y [
˜`(f(X), ¯Y )] = `(f(X), Y ) (10)

and thus

E
(X,Y, ¯Y )

˜`(f(X), ¯Y ) = R(f). (11)

Specifically, let

L(f(X),Y) = [`(f(X), Y = 1), . . . , `(f(X), Y = C)]

> (12)

and
˜L(f(X), Ȳ) = [

˜`(f(X), ¯Y = 1), . . . , ˜`(f(X), ¯Y = C)]

>
= (T>

)

�1L(f(X), Ȳ). (13)

The losses ˜` will lead to risk-consistent estimator because

E
¯Y |Y [

˜L(f(X), Ȳ)] = T>
˜L(f(X), Ȳ) = L(f(X),Y). (14)

Risk-consistent algorithms are also classifier-consistent, but have some unique properties than
classifier-consistent algorithms, e.g., can be used to tune hyper-parameter. However, the current
risk-consistent estimators contain the inverse of transition matrix, making parameter tuning inefficient
and leading to performance degeneration. Our proposed risk-consistent estimator overcome the
aforementioned issues.

C Proof of Theorem 1

We have defined

¯Rn,w(
ˆT +�T, f) =

1

n

nX

i=1

g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi), (15)

where f(X) = argmaxi2{1,...,C} gi(X). Let S = {(X
1

, ¯Y
1

), . . . , (Xn, ¯Yn)}, Si
=

{(X
1

, ¯Y
1

), . . . , (Xi�1

, ¯Yi�1

), (X 0
i,
¯Y 0
i ), (Xi+1

, ¯Yi+1

), . . . , (Xn, ¯Yn)}, and

�(S) = sup

�T,f
(

¯Rn,w(
ˆT +�T, f)� ES [

¯Rn,w(
ˆT +�T, f)]). (16)

14



Lemma 1 Let � ˆT and ˆf be the learned slack variable and classifier respectively. Assume the
learned transition matrix is valid, i.e., ˆTij +�

ˆTij � 0 for all i, j and ˆTii +�

ˆTii > ˆTij +�

ˆTij for
all j 6= i. For any � > 0, with probability at least 1� �, we have

E[ ¯Rn,w(
ˆT +�

ˆT , ˆf)]� ¯Rn,w(
ˆT +�

ˆT , ˆf)  E[�(S)] + CM

r
log 1/�

2n
. (17)

Detailed proof of Lemma 1 is provided in Section C.1.

Using the same trick to derive Rademacher complexity [4], we have

E[�(S)]  2E
"
sup

�T,f

1

n

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

#
, (18)

where �
1

, . . . ,�n are i.i.d. Rademacher random variables.

We can upper bound the right hand part of the above inequality by the following lemma.

Lemma 2

E
"
sup

�T,f

1

n

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

#
 E

"
sup

f

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#
. (19)

Note that Lemma 2 is not an application of Talagrand Contraction Lemma [20]. Detailed proof of
Lemma 2 is provided in Section C.2.

Recall that f = argmaxi2{1,...,C} gi is the classifier, where g is the output of the softmax function,
i.e., gi(X) = exp (hi(X))/

PC
k=1

exp (hk(X), i = 1, . . . , C, and h(X) is defined by a d-layer
neural network, i.e., h : X 7! Wd�d�1

(Wd�1

�d�2

(. . .�
1

(W
1

X))) 2 RC , W
1

, . . . ,Wd are the pa-
rameter matrices, and �

1

, . . . ,�d�1

are activation functions. To further upper bound the Rademacher
complexity, we need to consider the Lipschitz continuous property of the loss function w.r.t. to h(X).
To avoid more assumption, We discuss the widely used cross-entropy loss, i.e.,

`(f(X), ¯Y ) = �
CX

i=1

1{ ¯Y=i} log(gi(X)). (20)

We can further upper bound the Rademacher complexity by the following lemma.

Lemma 3

E
"
sup

f

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#
 CLE

"
sup

h2H

1

n

nX

i=1

�ih(Xi)

#
, (21)

where H is the function class induced by the deep neural network.

Detailed proof of Lemma 3 is provided in Section C.3.

Note that E
⇥
suph2H

1

n

Pn
i=1

�ih(Xi)
⇤

measures the hypothesis complexity of deep neural networks,
which has been widely studied recently [27, 2, 10, 28]. Specifically, [10] proved the following theorem
(Theorem 1 therein).

Theorem 2 Assume the Frobenius norm of the weight matrices W
1

, . . . ,Wd are at most M
1

, . . . ,Md.
Let the activation functions be 1-Lipschitz, positive-homogeneous, and applied element-wise (such as
the ReLU). Let x is upper bounded by B, i.e., for any x 2 X , kxk  B. Then,

E
"
sup

h2H

1

n

nX

i=1

�ih(Xi)

#
 B(

p
2d log 2 + 1)⇧

d
i=1

Mip
n

. (22)

Theorem 1 follows by combining Lemmas 1, 2, 3, and Theorem 2.

15



C.1 Proof of Lemma 1

We employ McDiarmid’s concentration inequality [7] to prove the lemma. We first check the bounded
difference property of �(S), e.g.,

�(S)� �(Si
)  sup

�T,f

1

n

 
g
¯Yi
(Xi)`(f(Xi), ¯Yi)

((

ˆT +�T )>g)
¯Yi
(Xi)

�
g
¯Y 0
i
(X 0

i)`(f(X
0
i),

¯Y 0
i )

((

ˆT +�T )>g)
¯Y 0
i
(X 0

i)

!
. (23)

Before further upper bounding the above difference, we show that the weighted loss is upper bounded
by CM . Specifically, we have assume the learned transition matrix is valid, i.e., ˆTij+�Tij � 0 for all
i, j and ˆTii +�Tii > ˆTij +�Tij for all j 6= i. Thus gȲ (X)

((

ˆT+�T )

>g)Ȳ (X)

 1/mini(
ˆTii +�Tii)  C

for any (X, ¯Y ) and ĝ. Then, we can conclude that the weighted loss is upper bounded by CM and
that

�(S)� �(Si
)  CM

n
. (24)

Similarly, we could prove that �(Si
)� �(S)  CM

n .

By employing McDiarmid’s concentration inequality, for any � > 0, with probability at least 1� �,
we have

�(S)� E[�(S)]  CM

r
log(1/�)

2n
. (25)

C.2 Proof of Lemma 2

Given the learned transition matrix is valid, we have shown that gȲ (X)

((

ˆT+�T )

>g)Ȳ (X)

 1/mini(
ˆTii +

�Tii)  C for all (X, ¯Y ) in the proof of Lemma 1.

Lemma 2 holds of we could prove the following inequality

E�

"
sup

�T,f

1

n

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

#
 E�

"
sup

f

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#
. (26)

Note that

E�

"
sup

�T,f

1

n

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

#

= E�1,...,�n�1

"
E�n

"
sup

�T,f

1

n

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

##
.

(27)

Let sn�1

(�T, f) =
Pn�1

i=1

�i
gȲi

(Xi)

((

ˆT+�T )

>g)Ȳi
(Xi)

`(f(Xi), ¯Yi).

By definition of the supremum, for any ✏ > 0, there exist (�T, f
1

) and (�T, f
2

) such that

g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f
1

(Xn), ¯Yn) + sn�1

(�T, f
1

)

� (1� ✏) sup

�T,f

 
g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f(Xn), ¯Yn) + sn�1

(�T, f)

! (28)

and

�
g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f
2

(Xn), ¯Yn) + sn�1

(�T, f
2

)

� (1� ✏) sup

�T,f

 
�

g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f(Xn), ¯Yn) + sn�1

(�T, f)

!
.

(29)

16



Thus, for any ✏, we have

(1� ✏)E�n

"
sup

�T,f

 
�n

g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f(Xn), ¯Yn) + sn�1

(�T, f)

!#

=

(1� ✏)

2

sup

�T,f

 
g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f
1

(Xn), ¯Yn) + sn�1

(�T, f
1

)

!

+

(1� ✏)

2

sup

�T,f

 
�

g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f
2

(Xn), ¯Yn) + sn�1

(�T, f
2

)

!

 1

2

 
g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f
1

(Xn), ¯Yn) + sn�1

(�T, f
1

)

+(sn�1

(�T, f
2

)�
g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f
2

(Xn), ¯Yn)

!

 1

2

�
sn�1

(�T, f
1

) + sn�1

(�T, f
2

) + C|`(f
1

(Xn), ¯Yn)� `(f
2

(Xn), ¯Yn)|
�
,

(30)

where the last inequality holds because gȲ (X)

((

ˆT+�T )

>g)Ȳ (X)

 C for any (X, ¯Y ), g, and valid ˆT +�T .

Let s = sgn(`(f
1

(Xn), ¯Yn)� `(f
2

(Xn), ¯Yn)). We have

(1� ✏)E�n

"
sup

�T,f

 
�n

g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f(Xn), ¯Yn) + sn�1

(�T, f)

!#

 1

2

�
sn�1

(�T, f
1

) + sn�1

(�T, f
2

) + sC(`(f
1

(Xn), ¯Yn)� `(f
2

(Xn), ¯Yn))
�

=

1

2

�
sn�1

(�T, f
1

) + sC`(f
1

(Xn), ¯Yn)
�
+

1

2

�
sn�1

(�T, f
2

)� sC`(f
2

(Xn), ¯Yn)
�

 1

2

sup

f2F

�
sn�1

(�T, f) + sC`(f(Xn), ¯Yn)
�
+

1

2

sup

f2F

�
sn�1

(�T, f)� sC`(f(Xn), ¯Yn)
�

= E�n

"
sup

�T,f

�
�n`(f(Xn), ¯Yn) + sn�1

(�T, f)
�
#
.

(31)

Since the above inequality holds for any ✏ > 0, we have

E�n

"
sup

�T,f

 
�n

g
¯Yn
(Xn)

((

ˆT +�T )>g)
¯Yn
(Xn)

`(f(Xn), ¯Yn) + sn�1

(�T, f)

!#

 E�n

"
sup

�T,f

�
�n`(f(Xn), ¯Yn) + sn�1

(�T, f)
�
#
.

(32)

Proceeding in the same way for all other �, we have

E�

"
sup

�T,f

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

#
 E�

"
sup

f2F

nX

i=1

�i`(f(Xi), ¯Yi)

#
. (33)

and thus

E
"
sup

�T,f

nX

i=1

�i
g
¯Yi
(Xi)

((

ˆT +�T )>g)
¯Yi
(Xi)

`(f(Xi), ¯Yi)

#
 E

"
sup

f2F

nX

i=1

�i`(f(Xi), ¯Yi)

#
. (34)

C.3 Proof of Lemma 3

Before proving Lemma 3, we show that the loss function `(f(X), ¯Y ) is 1-Lipschitz-continuous w.r.t.
hi(X), i = {1, . . . , C}.

17



Recall that

`(f(X), ¯Y ) = �
CX

i=1

1{ ¯Y=i} log(gi(X)) = � log

 
exp(h

¯Y (X))

PC
i=1

exp(hi(X))

!
. (35)

Take the derivative of `(f(X), ¯Y ) w.r.t. hi(X). If i 6= ¯Y , we have

@`(f(X), ¯Y )

@hi(X)

=

exp(hi(X))Pc
i=1

exp(hi(X))

. (36)

If i = ¯Y , we have
@`(f(X), ¯Y )

@hi(X)

= �1 +

exp(hi(X))Pc
i=1

exp(hi(X))

. (37)

According to Eqs.(36) and (37), it is easy to conclude that �1  @`(f(X), ¯Y )

@hi(X)

 1, which also indicates
that the loss function is 1-Lipschitz with respect to hi(X), 8i 2 {1, . . . , C}.

Now we are ready to prove Lemma 3. We have

E
"
sup

f

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#

= E
"

sup

f=argmax{h1,...,hc}

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#

= E
"

sup

max{h1,...,hc}

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#

 E
"

CX

k=1

sup

hk2H

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#

=

CX

k=1

E
"
sup

hk2H

1

n

nX

i=1

�i`(f(Xi), ¯Yi)

#

 CLE
"
sup

hk2H

1

n

nX

i=1

�ihk(Xi)

#

= CLE
"
sup

h2H

1

n

nX

i=1

�ih(Xi)

#
,

(38)

where the first equation holds because the softmax function preserves the rank of its inputs, i.e.,
f(X) = argmaxi2{1,...,C} gi(X) = argmaxi2{1,...,C} hi(X); the second equation holds because
argmax{h

1

, · · · , hc} and max{h
1

, · · · , hc} give the same constraint on hi, 8i 2 {1, . . . , C};the
fifth inequality holds because of the Talagrand Contraction Lemma [20].

D Definition of transition matrix

The definition of symmetry flipping transition matrix is as follows, where C is number of the class.

sym-✏: T =

2

666664

1� ✏ ✏
C�1

. . . ✏
C�1

✏
C�1

✏
C�1

1� ✏ ✏
C�1

. . . ✏
C�1

...
. . .

...
✏

C�1

. . . ✏
C�1

1� ✏ ✏
C�1

✏
C�1

✏
C�1

. . . ✏
C�1

1� ✏

3

777775
.

18



(a) MNIST (b) CIFAR-10 (c) CIFAR-100
Figure 4: Comparing the estimation error of the transition matrix by employing classifier-consistent
and risk-consistent estimators. The first row is about sym-20 label noise while the second row is
about sym-50 label noise. The error bar for STD in each figure has been highlighted as a shade.

E More discussions about Figure 3

We represent Figure 3 in the main paper as Figure 1 in this appendix.

From the figure, we can compare the transition matrices learned by the proposed T-revision method
and the traditional anchor point based method. Specifically, as shown in Figure 1, at epoch 0, the
estimation error corresponds to the estimation error of transition matrix learned by identifying anchor
points [38] (the traditional method to learn transition matrix). Note that the method with "-N/A"
in its name means it runs on the modified datasets where instances with large clean class posterior
probobilities are removed (anchor points are removed); while the method with "-A" in its name means
it runs the original intact dataset (may contain anchor points). Clearly, we can see that the estimation
error will increase by removing possible anchor points, meaning that anchor points is crucial in the
traditional transition matrix learning. Moreover, as the number of epochs grows, the figures show how
the estimation error varies by running the proposed revision methods. We can see that the proposed
Reweight method always leads to smaller estimation errors, showing that the proposed method works
well in find a better transition matrix.

Figure 1 also shows the comparison of learning transition matrices between the risk-consistent
estimator based method and the classifier-consistent method based method. For classifier-consistent
algorithms, we can also modify the transition matrix by adding a slack variable and learning it jointly
with the classifier, e.g., Forward-A-R and Forward-N/A-R. However, we can find that the classifier-
consistent algorithm based method Forward-N/A-R may fail in learning a good transition matrix,
e.g., Figure 1(a). This is because there is no reason to learn the transition matrix by minimizing the
classifier-consistent objective function. It is reasonable to learn the transition matrix by minimizing
the risk-consistent estimator because a favorable transition matrix should make the classification
risk w.r.t. clean data small. This is verified by comparing Forward-A-R and Forward-N/A-R with
the proposed Reweight-A-R and Reweight-N/A-R, we can find that the risk-consistent estimator
Reweight always leads to smaller estimation errors for learning transition matrix.

19


