
A Supplementary Material

We provide here proofs of all the results from the main text.

Proof of Theorem 1

Proof. We will prove the result by contradiction.

Suppose there is some ê ∈ E such that the optimal solution assigns J+(ê) > 0 and J−(ê) > 0. Then
we note that

a , min{J+(ê), J−(ê)} > 0 .

Consider an alternate solution (J̃+, J̃−) such that ∀ e ∈ E,

J̃+(e) =

{
J+(e)− a if e = ê

J+(e) if e ∈ E \ {ê} ,

J̃−(e) =

{
J−(e)− a if e = ê

J−(e) if e ∈ E \ {ê} .

Clearly, (J̃+, J̃−) is feasible for (1). Moreover, it achieves a lower value of the objective than the
optimal solution (J+, J−). Therefore, (J+, J−) cannot be optimal.

Proof of Theorem 2

Proof. We introduce non-negative Lagrangian vectors α and β, respectively, for the constraints
Ft � c and −c � Ft. We consider the terms in the objective that depend on t

g(t) = t>(ρ1 − ρ0) + α>(Ft− c)− β>(Ft+ c) .

The gradient ∇g(t) must vanish at optimality, so

ρ∗1 − ρ0 + F>(α− β) = 0 .

The first part of the theorem follows immediately by defining η = β − α. A closer look at (1) reveals
that η = J− − J+ is, in fact, the net flow along the edges e− from (1).

Now, we prove the second part. By definition, in order for an edge e to be active, at least one of
e+ and e− must be active, i.e., we must have J+(e) + J−(e) > 0. On the other hand, Theorem 1
implies that at least one of J+(e) and J−(e) is 0 for each e ∈ E in the optimal solution. Combining
these facts, we have that for any active edge e, exactly one of e+ and e− is active, i.e., exactly one of
the inequalities J+(e) > 0 and J−(e) > 0 must hold. This immediately implies, by complementary
slackness, that exactly one of α(e) or β(e) is 0. Thus, for any active edge e, either the lower bound or
the upper bound on Ft∗(e) in the constraints −c(e) ≤ Ft∗(e) ≤ c(e) must become tight. Therefore,
we must have Ft∗(e) ∈ {±c(e)}.

Proof of Theorem 3

Proof. Note that since at least one coordinate of ε is strictly greater than 0, the feasible region is
non-empty, and consequently, a unique projection exists. We introduce variables α ∈ R and β ∈ Rd+,
and form the Lagrangian

L(x, α, β) =
1

2
||x− y||2 − α((x� ε)>1 − 1) − β>(x� ε) .

We now write the KKT conditions for the optimal solution x. For each j ∈ [d], we must have

xj − yj − αεj − βjεj = 0

εjxj ≥ 0

βj ≥ 0

εjxjβj = 0 .

Additionally,
d∑
j=1

εjxj = 1 .
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Clearly, for j ∈ [d] , {1, 2, . . . , d}, εj = 0 =⇒ xj = yj . Therefore, without loss of generality we
assume in the rest of the proof that εj > 0 for all j. Then we can immediately simplify the KKT
conditions to

xj − yj − αεj − βjεj = 0 (10)
xj ≥ 0 (11)
βj ≥ 0 . (12)

xjβj = 0 (13)
d∑
j=1

εjxj = 1 (14)

We note that xj > 0
(13)
==⇒ βj = 0

(10)
==⇒ yj + αεj > 0

εj>0
===⇒ yj/εj > −α , whereas

xj = 0
(10)
==⇒ yj + αεj = −βjεj

(12)
===⇒
εj>0

yj + αεj ≤ 0
εj>0
===⇒ yj/εj ≤ −α .

This shows that the zero coordinates xj correspond to smaller values of yj/εj . Thus, we can sort the
indices j in non-increasing order based on the ratio yj/εj , reorder x according to the sorted indices,
and find an index ` ∈ [d] such that xj > 0 for j ∈ [`] and 0 for ` < j ≤ d. Without loss of generality,
we therefore assume that

x1 ≥ x2 . . . ≥ x` > 0 = x`+1 . . . = xd , and
y1/ε1 ≥ y2/ε2 . . . ≥ yd/εd . (15)

We then have from (14) that

1 =

d∑
j=1

εjxj =
∑̀
j=1

εjxj =
∑̀
j=1

εj(yj + αεj)

=⇒ α =
1−

∑`
j=1 εjyj∑`
j=1 ε

2
j

. (16)

Thus, our task essentially boils down to finding the number of positive coordinates `. We now show
that

` = max

{
j ∈ [d]

∣∣∣∣ yj + εj
(1−

∑j
i=1 εiyi)∑j
i=1 ε

2
i

> 0

}
.

First consider j < `. Then yj/εj > −α for j ∈ [`]. Noting that εj > 0 for all j and using (16), we
must have

yj + εj
(1−

∑j
i=1 εiyi)∑j
i=1 ε

2
i

=
εj∑j
i=1 ε

2
i

(
yj

∑j
i=1 ε

2
i

εj
+ 1−

j∑
i=1

εiyi

)

which has the same sign as

yj

∑j
i=1 ε

2
i

εj
+ 1−

j∑
i=1

εiyi

= yj

∑j
i=1 ε

2
i

εj
+
∑̀
i=j+1

εiyi + 1−
∑̀
i=1

εiyi

= yj

∑j
i=1 ε

2
i

εj
+
∑̀
i=j+1

εiyi + α
∑̀
i=1

ε2i

=

(
yj
εj

+ α

) j∑
i=1

ε2i +
∑̀
i=j+1

ε2i

(
yi
εi

+ α

)
> 0 .
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Now consider j = `. Since y`/ε` > −α and ε` > 0, we have y` + αε` > 0. Thus

yj + εj
(1−

∑j
i=1 εiyi)∑j
i=1 ε

2
i

= y` + ε`
(1−

∑`
i=1 εiyi)∑`
i=1 ε

2
i

= y` + αε` > 0 .

Finally, we consider ` < j ≤ d. We note that

yj + εj
(1−

∑j
i=1 εiyi)∑j
i=1 ε

2
i

=
εj∑j
i=1 ε

2
i

(
yj

∑j
i=1 ε

2
i

εj
+ 1−

j∑
i=1

εiyi

)
,

which has the same sign as

yj

∑j
i=1 ε

2
i

εj
+ 1−

j∑
i=1

εiyi

= yj

∑j
i=1 ε

2
i

εj
+ 1−

∑̀
i=1

εiyi −
j∑

i=`+1

εiyi

= yj

∑j
i=1 ε

2
i

εj
+ α

∑̀
i=1

ε2i −
j∑

i=`+1

εiyi

=

(
yj
εj

+ α

)∑̀
i=1

ε2i +

j∑
i=`+1

ε2i

(
yj
εj
− yi
εi

)
,

≤ 0 ,

by leveraging the sorted property in (15) and the fact that yj/εj ≤ −α for j ∈ [`].

Therefore, we have shown that yj + εj
(1−

∑j
i=1 εiyi)∑j
i=1 ε

2
i

> 0 for all j ∈ [`], and at most 0 for

` < j ≤ d. Algorithm 1 implements this procedure, and that proves its correctness. The O(d log d)
time complexity is due to the cost of sorting the indices j ∈ [d] based on yj/εj .

Proof of Theorem 4

Proof. Recall the formulation (6):

min
ε∈Ek

ρ̃1�ε∈∆(V )

max
t∈TF,c

t>(ρ̃1 � ε− ρ0) +
λ

2
||ρ̃1||2︸ ︷︷ ︸

φ(ε,t,ρ̃1)

.

Making the constraints Ek explicit, we get

min
ε∈{0,1}|V |

ε>1≤k

 min
ρ̃1∈R|V |

ρ̃1�ε∈∆(V )

max
t∈TF,c

φ(ε, t, ρ̃1)

 . (17)

Note that for any fixed ε (a) {ρ̃1 ∈ R|V | | (ρ̃1 � ε) ∈ ∆(V )} is convex, and TF,c is convex and
compact, (b) φ(ε, t, ρ̃1) is continuous, and (c) for every fixed t, φ(ε, t, ·) is convex in ρ̃1; while for
every fixed ρ̃1, φ(ε, ·, ρ̃1) is linear (thus concave) in t. Therefore, invoking the Sion’s minimax
theorem [60], we can swap the order of min and max within the parentheses in (17), and obtain

min
ε∈{0,1}|V |

ε>1≤k

max
t∈TF,c

min
ρ̃1∈R|V |

ρ̃1�ε∈∆(V )

φ(ε, t, ρ̃1)

 . (18)
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We introduce Lagrangian variables ν ∈ R|V |+ and ζ ∈ R, respectively, for the simplex constraints (a)
0 � ρ̃1 � ε and (b) (ρ̃1 � ε)>1 = 1 to get

Φ(ε, t, ρ̃1, ν, ζ) , φ(ε, t, ρ̃1) + ζ((ρ̃1 � ε)>1− 1)− ν>(ρ̃1 � ε) . (19)

Applying the optimality conditions, we note for any fixed pair (ε, t), the corresponding optimal ρ̃1

must satisfy
∂ρ̃1 Φ(ε, t, ρ̃1, ν, ζ) = 0 ,

whereby

ρ̃1 = −
(

(t− ν)� ε+ ζε

λ

)
. (20)

Plugging in ρ̃1 from (20) into (19), we thus have the following equivalent dual formulation for (18)

min
ε∈{0,1}|V |

ε>1≤k

max
t∈TF,c

max
ν∈R|V |+ ,ζ∈R

M(ε, t, ν, ζ) ,

where
M(ε, t, ν, ζ) =

−1

2λ
||(t− ν + ζ1)� ε||2 − t>ρ0 − ζ . (21)

Invoking the first order convex optimality condition for constrained optimization, the ε̂ obtained from
relaxation of (6) is optimal if and only if

0 ∈

∂ε max
t∈TF,c

max
ν∈R|V |+ ,ζ∈R

M(ε, t, ν, ζ)︸ ︷︷ ︸
(A)

+ N

 , (22)

where N is the normal cone of the relaxed constraints

Ẽk =

{
ε ∈ [0, 1]|V |

∣∣∣∣ ε>1 ≤ k} .

Now we note that for any vector x, we can write x� ε = D(ε)x, where D(ε) is the diagonal matrix
corresponding to ε. Also, since ε ∈ {0, 1}|V |, we get D(ε)>D(ε) = D(ε). Thus, for any x, we have

||x� ε||2 = ||D(ε)x||2 = (D(ε)x)>D(ε)x = x>D(ε)>D(ε)x = x>D(ε)x .

In particular, we can simplify ||(t − ν + ζ1) � ε||2 in (21) when we set x to t − ν + ζ1. The
theorem statement then follows immediately from (22) by representing N at the integral point ε∗ and
leveraging the non-negative dual parameter associated with the constraint ε>1 ≤ k.

Proof of Theorem 5

Proof. We will use the shorthand ρ̃1v for ρ̃1(v), and likewise for indexing t, ν, and ε. Using (20),

ρ̃1 = −
(

(t− ν)� ε+ ζε

λ

)
= −

(
t− ν + ζ1

λ

)
� ε .

Therefore,

ρ̃1 � ε = −
(
t− ν + ζ1

λ

)
� ε� ε = ‘−

(
t− ν + ζ1

λ

)
� ε = ρ̃1 , (23)

since ε ∈ {0, 1}|V |. We write one of the KKT conditions for optimality

ρ̃1 � ε� ν = ρ̃1 � ν = 0 .

We consider the different cases. Note that for v ∈ V , using (23), we have

ρ̃1v > 0 =⇒ νv = 0 =⇒ ρ̃1v = − (tv + ζ)εv
λ

, (24)

16



and
ρ̃1v = 0 =⇒ (tv − νv + ζ)εv = 0 =⇒ νvεv = (tv + ζ)εv . (25)

But since νv ≥ 0, and εv ∈ {0, 1}, we note that νvεv ≥ 0. Then, by (25), we have

νvεv ≥ 0 =⇒ − (tv + ζ)εv
λ

≤ 0 = ρ̃1v . (26)

Combining (24) and (26), we can write

ρ̃1v = max

{
− (tv + ζ)εv

λ
, 0

}
=

εv
λ

max {−(tv + ζ), 0} , (27)

since εv ≥ 0 for all v ∈ V and λ > 0. Therefore, we get ρ̃1 =
ε

λ
� r+, where r = − (t + ζ1),

and r+ is computed by setting the negative coordinates of r to 0.

Moreover, since ρ̃1 � ν = 0, we can eliminate ν from (19) and write (17) as

min
ε∈Ek

max
t∈TF,c

max
ζ∈R

t>(ρ̃1 − ρ0) +
λ

2
||ρ̃1||2 + ζ(ρ̃>1 1− 1)

Substituting for ρ̃1 from (27), we obtain the following equivalent problem

min
ε∈Ek

max
t∈TF,c

max
ζ∈R

− r>

λ
(ε� r+) +

1

2λ
r>+(ε� r+) − t>ρ0 − ζ ,

= min
ε∈Ek

max
t∈TF,c

max
ζ∈R

−1

2λ
ε> (r+ � (2r − r+))− t>ρ0 − ζ ,

which can be written as

min
ε∈Ek

max
t∈TF,c

max
ζ∈R

− 1

2λ

∑
v:rv≥0

εvr
2
v − t>ρ0 − ζ

= min
ε∈Ek

max
t∈TF,c

max
ζ∈R

− 1

2λ

∑
v:tv≤−ζ

εvr
2
v − t>ρ0 − ζ

= min
ε∈Ek

max
t∈TF,c

max
ζ∈R

− 1

2λ

∑
v:tv≤−ζ

εv(tv + ζ)2 − t>ρ0 − ζ

= min
ε∈Ek

max
t∈TF,c

max
ζ∈R

− 1

2λ

∑
v:tv≤−ζ

(
εv(tv + ζ)2 + 2λtvρ0,v

)
−

∑
v:tv>−ζ

tvρ0,v − ζ .
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