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Abstract

Fairness-aware learning involves designing algorithms that do not discriminate1

with respect to some sensitive feature (e.g., race or gender). Existing work on the2

problem operates under the assumption that the sensitive feature available in one’s3

training sample is perfectly reliable. This assumption may be violated in many4

real-world cases: for example, respondents to a survey may choose to conceal or5

obfuscate their group identity out of fear of potential discrimination. This poses6

the question of whether one can still learn fair classifiers given noisy sensitive7

features. In this paper, we answer the question in the affirmative: we show that8

if one measures fairness using the mean-difference score, and sensitive features9

are subject to noise from the mutually contaminated learning model, then owing10

to a simple identity we only need to change the desired fairness-tolerance. The11

requisite tolerance can be estimated by leveraging existing noise-rate estimators.12

We finally show that our procedure is empirically effective on two case-studies13

involving sensitive feature censoring.14

1 Introduction15

Classification is concerned with maximally discriminating between a number of pre-defined groups.16

Fairness-aware classification concerns the analysis and design of classifiers that do not discriminate17

with respect to some sensitive feature (e.g., race, gender, age, income). Recently, much progress18

has been made on devising appropriate measures of fairness (Calders et al., 2009; Dwork et al.,19

2011; Feldman, 2015; Hardt et al., 2016; Zafar et al., 2017b,a; Kusner et al., 2017; Kim et al., 2018;20

Speicher et al., 2018; Heidari et al., 2019), and means of achieving them (Zemel et al., 2013; Zafar21

et al., 2017b; Calmon et al., 2017; Dwork et al., 2018; Agarwal et al., 2018; Donini et al., 2018).22

Typically, fairness is achieved by adding constraints which depend on the sensitive feature and by23

correcting one’s learning procedure to achieve these fairness constraints. For example, suppose the24

data comprises of pairs of individuals and their loan repay status, and the sensitive feature is gender.25

Then, we may add a constraint that we should predict equal loan repayment for both men and women26

(see §3.2 for a more precise statement). However, this and similar approaches assume that we are able27

to correctly measure or obtain the sensitive feature. In many real-world cases, one may only observe28

noisy versions of the sensitive feature. For example, survey respondents may choose to conceal or29

obfuscate their group identity out of concerns of potential mistreatment or outright discrimination.30

One is then brought to ask whether fair classification in the presence of such noisy sensitive features31

is still possible. Indeed, if the noise is high enough and all original information about the sensitive32

features is lost, then it is as if the sensitive feature was not provided. Standard learners can then be33

unfair on such data (Dwork et al., 2011; Pedreshi et al., 2008). Recently, Hashimoto et al. (2018)34

showed that progress is possible, albeit for specific fairness measures. The question of what can be35

done under a smaller amount of noise is thus both interesting and non-trivial.36

In this paper, we consider two practical scenarios where we may only observe noisy sensitive features:37
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(1) suppose we are releasing data involving human participants. Even if noise-free sensitive features38

are available, we may wish to add noise so as to obfuscate sensitive attributes, so as to protect39

participant data from potential misuse. Thus, being able to learn fair classifiers under sensitive40

feature noise is a way to achieve both privacy and fairness.41

(2) suppose we wish to analyse data where the presence of the sensitive feature is only known for42

a subset of individuals, while for others the feature value is unknown. For example, patients43

filling out a form may feel comfortable disclosing that they do not have a pre-existing medical44

condition; however, some who do have this condition may wish to refrain from responding. This45

can be seen as a variant of the positive and unlabelled (PU) setting (Denis, 1998), where the46

sensitive feature is present (positive) for some individuals, but absent (unlabelled) for others.47

By considering popular measures of fairness and a general model of noise, we show that fair48

classification is possible under many settings, including the above. Our precise contributions are:49

(C1) we show that if the sensitive features are subject to noise as per the mutually contaminated50

learning model (Scott et al., 2013a), and one measures fairness using the mean-difference51

score (Calders & Verwer, 2010), then a simple identity (Theorem 2) yields that we only need to52

change the desired fairness-tolerance. The requisite tolerance can be estimated by leveraging53

existing noise-rate estimators, yielding a reduction (Algorithm 1) to regular noiseless fair54

classification.55

(C2) we show that our procedure is empirically effective on both case-studies mentioned above.56

In what follows, we review the existing literature on learning fair and noise-tolerant classifiers in §2,57

and introduce the novel problem formulation of noise-tolerant fair learning in §3. We then detail how58

to address this problem in §4, and empirically confirm the efficacy of our approach in §5.59

2 Related work60

We review relevant literature on fair and noise-tolerant machine learning.61

2.1 Fair machine learning62

Algorithmic fairness has gained significant attention recently because of the undesirable social impact63

caused by bias in machine learning algorithms (Angwin et al., 2016; Buolamwini & Gebru, 2018;64

Lahoti et al., 2018). There are two central objectives: designing appropriate application-specific65

fairness criterion, and developing predictors that respect the chosen fairness conditions.66

Broadly, fairness objectives can be categorised into individual- and group-level fairness. Individual-67

level fairness (Dwork et al., 2011; Kusner et al., 2017; Kim et al., 2018) requires the treatment of68

“similar” individuals to be similar. Group-level fairness asks the treatment of the groups divided based69

on some sensitive attributes (e.g., gender, race) to be similar. Popular notions of group-level fairness70

include demographic parity (Calders et al., 2009) and equality of opportunity (Hardt et al., 2016); see71

§3.2 for formal definitions.72

Group-level fairness criteria have been the subject of more algorithmic design and analysis, and are73

achieved in three possible ways:74

– pre-processing methods (Zemel et al., 2013; Louizos et al., 2015; Lum & Johndrow, 2016;75

Johndrow & Lum, 2017; Calmon et al., 2017; del Barrio et al., 2018; Adler et al., 2018), which76

usually find a new representation of data where the bias with respect to sensitive feature is77

explicitly removed.78

– methods enforcing fairness during training (Calders et al., 2009; Woodworth et al., 2017; Zafar79

et al., 2017b; Agarwal et al., 2018), which usually add a constraint that is a proxy of the fairness80

criteria or add a regularization term to penalise fairness violation.81

– post-processing methods (Feldman, 2015; Hardt et al., 2016), which usually apply a thresholding82

function to make the prediction satisfying the chosen fairness notion across groups.83

2.2 Noise-tolerant classification84

Designing noise-tolerant classifiers is a classic topic of study, concerned with the setting where one’s85

training labels are corrupted in some manner. Typically, works in this area postulate a particular86
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model of label noise, and study the viability of learning under this model. Class-conditional noise87

(CCN) (Angluin & Laird, 1988) is one such effective noise model. Here, samples from each class88

have their labels flipped with some constant (but class-specific) probability. Algorithms that deal with89

CCN corruption have been well studied (Natarajan et al., 2013; Liu & Tao, 2016; Northcutt et al.,90

2017). These methods typically first estimate the noise rates, which are then used for prediction. A91

special case of CCN learning is learning from positive and unlabelled data (PU learning) (Elkan &92

Noto, 2008), where in lieu of explicit negative samples, one has a pool of unlabelled data.93

Our interest in this paper will be the mutually contaminated (MC) learning noise model (Scott et al.,94

2013a). This model (described in detail in §3.3) captures both CCN and PU learning as special95

cases (Scott et al., 2013b; Menon et al., 2015), as well as other interesting noise models.96

3 Background and notation97

We recall the settings of standard and fairness-aware binary classification1, and establish notation.98

3.1 Standard binary classification99

Binary classification concerns predicting the label or target feature Y ∈ {0, 1} that best corresponds100

to a given instance X ∈ X . Formally, suppose D is a distribution over (instance, target feature) pairs101

from X × {0, 1}. Let f : X → R be a score function, and F ⊂ RX be a user-defined class of such102

score functions. Finally, let ` : R×{0, 1} → R+ be a loss function measuring the disagreement103

between a given score and binary label. The goal of binary classification is to minimise104

LD(f) := E(X,Y )∼D[`(f(X), Y )].

3.2 Fairness-aware classification105

In fairness-aware classification, the goal of accurately predicting the target feature Y remains. How-106

ever, there is an additional sensitive feature A ∈ {0, 1} upon which we do not wish to discriminate.107

Intuitively, some user-defined fairness loss should be roughly the same regardless of A.108

Formally, suppose D is a distribution over (instance, sensitive feature, target feature) triplets from109

X × {0, 1} × {0, 1}. The goal of fairness-aware binary classification is to find2110

f∗ := arg min
f∈F

LD(f), such that ΛD(f) ≤ τ

LD(f) := E(X,A,Y )∼D[`(f(X), Y )],
(1)

for user-specified fairness tolerance τ ≥ 0, and fairness constraint ΛD : F → R+. Such constrained111

optimisation problems can be solved in various ways, e.g., convex relaxations (Donini et al., 2018),112

alternating minimisation (Zafar et al., 2017b; Cotter et al., 2018), or linearisation (Hardt et al., 2016).113

A number of fairness constraints ΛD(·) have been proposed in the literature. We focus on two114

important and specific choices in this paper, inspired by Donini et al. (2018):115

ΛDP
D (f) :=

∣∣L̄D0,·(f)− L̄D1,·(f)
∣∣ (2)

ΛEO
D (f) :=

∣∣L̄D0,1
(f)− L̄D1,1

(f)
∣∣ , (3)

where we denote by Da,·, D·,y, and Da,y the distributions over X × {0, 1} × {0, 1} given by116

D|A=a, D|Y=y, and D|A=a,Y=y and ¯̀ : R×{0, 1} → R+ is the user-defined fairness loss with117

corresponding L̄D(f) := E(X,A,Y )∼D[¯̀(f(X), Y )]. Intuitively, these measure the difference in the118

average of the fairness loss incurred among the instances with and without the sensitive feature.119

Concretely, if ¯̀ is taken to be ¯̀(s, y) = 1[sign(s) 6= 1] and the 0-1 loss ¯̀(s, y) = 1[sign(s) 6= y]120

respectively, then for τ = 0, (2) and (3) correspond to the demographic parity (Dwork et al., 2011)121

and equality of opportunity (Hardt et al., 2016) constraints. Thus, we denote these two relaxed122

fairness measures disparity of demographic parity (DDP) and disparity of equality of opportunity123

(DEO). These quantities are also referred to as the mean difference score in Calders & Verwer (2010).124

1For simplicity, we consider the setting of binary target and sensitive features. However, our derivation and
method can be easily extended to the multi-class setting.

2Here, f is assumed to not be allowed to use A at test time, which is a common legal restriction (Lipton
et al., 2018). Of course, A can be used at training time to find an f which satisfies the constraint.

3



3.3 Mutually contaminated learning125

In the framework of learning from mutually contaminated distributions (MC learning) (Scott et al.,126

2013b), instead of observing samples from the “true” (or “clean”) joint distribution D, one ob-127

serves samples from a corrupted distribution Dcorr. The corruption is such that the observed128

class-conditional distributions are mixtures of their true counterparts. More precisely, let Dy denote129

the conditional distribution for label y. Then, one assumes that130

D0,corr = (1− α) ·D1 + α ·D0

D1,corr = β ·D1 + (1− β) ·D0,
(4)

where α, β ∈ (0, 1) are (typically unknown) noise parameters with α+ β < 1. Further, the corrupted131

base rate πcorr := P[Ycorr = 1] may be arbitrary. The MC learning framework subsumes CCN and132

PU learning (Scott et al., 2013b; Menon et al., 2015); thus, it is a flexible and appealing noise model.133

4 Fairness under sensitive attribute noise134

The standard fairness-aware learning problem assumes we have access to the true sensitive attribute,135

so that we can both measure and control our classifier’s unfairness as measured by, e.g., Equation 2.136

Now suppose that rather than being given the sensitive attribute, we get a noisy version of it. We will137

show that the fairness constraint on the clean distribution is equivalent to a scaled constraint on the138

noisy distribution. This gives a simple reduction from fair machine learning in the presence of noise139

to the regular fair machine learning, which can be done in a variety of ways as discussed in §2.1.140

4.1 Sensitive attribute noise model141

As previously discussed, we use MC learning as our noise model, as this captures both CCN and PU142

learning as special cases; hence, we automatically obtain results for both these interesting settings.143

Our specific formulation of MC learning noise on the sensitive feature is as follows. Recall from144

§3.2 that D is a distribution over X× {0, 1} × {0, 1}. Following (4), for unknown noise parameters145

α, β ∈ (0, 1) with α+ β < 1, we assume that the corrupted class-conditional distributions are:146

D1,·,corr = (1− α) ·D1,· + α ·D0,·

D0,·,corr = β ·D1,· + (1− β) ·D0,·,
(5)

and that the corrupted base rate is πa,corr (we write the original base rate, P(X,A,Y )∼D[A = 1] as πa).147

That is, the distribution over (instance, label) pairs for the group with A = 1, i.e. P(X,Y | A = 1),148

is assumed to be mixed with the distribution for the group with A = 0, and vice-versa.149

Now, when interested in the EO constraint, it can be simpler to assume that the noise instead satisfies150

D1,1,corr = (1− α′) ·D1,1 + α′ ·D0,1

D0,1,corr = β′ ·D1,1 + (1− β′) ·D0,1,
(6)

for noise parameters α′, β′ ∈ (0, 1). As shown by the following, this is not a different assumption.151

Lemma 1. If we assume that there is noise in the sensitive attribute only, as given in Equation (5),152

then there exists α′, β′ such that Equation (6) holds.153

Although the lemma gives a way to calculate α′, β′ from α, β, in practice it may be useful to consider154

(6) independently. Indeed, when one is interested in the EO constraints we will show below that only155

knowledge of α′, β′ is required. It is often much easier to estimate α′, β′ directly (which can be done156

in the same way as estimating α, β simply by considering D·,1,corr rather than Dcorr).157

4.2 Fairness constraints under MC learning158

We now show that fairness constraints are automatically robust to MC learning noise in A.159

Theorem 2. Assume that we have noise as per Equation (5). Then,160

ΛDP
D (f) ≤ τ ⇐⇒ ΛDP

Dcorr
(f) ≤ τ · (1− α− β)

ΛEO
D·,1

(f) ≤ τ ⇐⇒ ΛEO
Dcorr,·,1

(f) ≤ τ · (1− α′ − β′),
where α′ and β′ are as per Equation (6) and Lemma 1.161
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The above can be seen as a consequence of the immunity of the balanced error (Chan & Stolfo, 1998;
Brodersen et al., 2010; Menon et al., 2013) to corruption under the MC model. Specifically, consider
a distribution D over an input space Z and label space W = {0, 1}. Define

BD := EZ|W=0[h0(Z)] + EZ|W=1[h1(Z)]

for functions h0, h1 : Z → R. Then, if for every z ∈ R h0(z) + h1(z) = 0, we have (van Rooyen,162

2015, Theorem 4.16), (Blum & Mitchell, 1998; Zhang & Lee, 2008; Menon et al., 2015)163

BDcorr
= (1− α− β) ·BD, (7)

where Dcorr refers to a corrupted version of D under MC learning with noise parameters α, β. That164

is, the effect of MC noise on BD is simply to perform a scaling. Observe that BD = L̄D(f) if we set165

Z to X ×Y , W to the sensitive feature A, and h0((x, y)) = +¯̀(y, f(x)), h1((x, y)) = −¯̀(y, f(x)).166

Thus, (7) implies L̄D(f) = (1− α− β) · L̄Dcorr
(f), and thus Theorem 2.167

4.3 Algorithmic implications168

Theorem 2 has an important algorithmic implication. Suppose we pick a fairness constraint ΛD and169

seek to solve Equation 1 for a given tolerance τ ≥ 0. Then, given samples from Dcorr, it suffices to170

simply change the tolerance to τ ′ = τ · (1− α− β).171

Unsurprisingly, τ ′ depends on the noise parameters α, β. In practice, these will be unknown; however,172

there have been several algorithms proposed to estimate these from noisy data alone (Scott et al.,173

2013b; Menon et al., 2015; Liu & Tao, 2016; Ramaswamy et al., 2016; Northcutt et al., 2017). Thus,174

we may use these to construct estimates of α, β, and plug these in to construct an estimate of τ ′.175

In sum, we may tackle fair classification in the presence of noisy A by suitably combining any176

existing fair classification method (that takes in a parameter τ that is proportional to mean-difference177

score of some fairness measures), and any existing noise estimation procedure. This is summarised in178

Algorithm 1. Here, FairAlg is any existing fairness-aware classification method that solves Equation 1,179

and NoiseEst is any noise estimation method that estimates α, β.180

Algorithm 1 Reduction-based algorithm for fair classification given noisy A.

Input: Training set S = {(xi, yi, ai)}ni=1, scorer class F , fairness tolerance τ ≥ 0, fairness
constraint Λ(·), fair classification algorithm FairAlg, noise estimation algorithm NoiseEst

Output: Fair classifier f∗ ∈ F
1: α̂, β̂ ← NoiseEst(S)

2: τ ′ ← (1− α̂− β̂) · τ
3: return FairAlg(S,F ,Λ, τ ′)

4.4 Connection to differential privacy181

While Algorithm 1 gives a way of achieving fair classification on an already noisy dataset such as the182

use case described in example (2) of §1, it can also be used to simultaneously achieve fairness and183

privacy. As described in example (1) of §1, the very nature of the sensitive attribute makes it likely184

that even if noiseless sensitive attributes are available one might want to add noise to guarantee some185

form of privacy. Note that simply removing the feature does not suffice, because it would prohibit186

researchers from developing fairness-aware classifiers for the dataset. Formally, we can give the187

following privacy guarantee by adding CCN noise to the sensitive attribute.188

Lemma 3. To achieve (ε, δ = 0) differential privacy on the sensitive attribute we can add CCN noise189

with ρ+ = ρ− = ρ ≥ 1
exp (ε)+1 to the sensitive attribute.190

Thus if a desired level of differential privacy is required before releasing a dataset, one could simply191

add the required amount of CCN noise to the sensitive attributes, publish this modified dataset as192

well as the noise level, and researchers could use Algorithm 1 (without even needing to estimate the193

noise rate) to do fair classification as usual.194

Recently, Jagielski et al. (2018) explored preserving differential privacy (Dwork, 2006) while main-195

taining fairness constraints. The authors proposed two methods: one adds Laplace noise to training196
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data and apply the post-processing method in Hardt et al. (2016), while another modifies the method197

in Agarwal et al. (2018) using the exponential mechanism as well as Laplace noise. Our work differs198

from them in three major ways: (1) our work allows for fair classification to be done using a any199

fairness-aware classifier, whereas the method of Jagielski et al. (2018) requires the use of a particular200

classifier. (2) our focus is on designing fair-classifiers with noise-corrupted sensitive attributes; by201

contrast, the main concern in Jagielski et al. (2018) is achieving differential privacy. (3) we deal with202

not only equalized odds, but also demographic parity.203

5 Experiments204

We demonstrate that it is viable to learn fair classifiers given noisy sensitive features. As our205

underlying fairness-aware classifier, we use a modified version of the classifier implemented in206

Agarwal et al. (2018) with the DDP and DEO constraints which, as discussed in §3.2, are special207

cases of our more general constraints (2) and (3). The classifier’s original constraints can also be208

shown to be noise-invariant but in a slightly different way (see Appendix C for a discussion). An209

advantage of this classifier is that it is shown to reach levels of fairness violation that are very close to210

the desired level (τ ), i.e., for small enough values of τ it will reach the constraint boundary.211

While we had to choose a particular classifier, our method can be used before using any downstream212

fair classifier as long as it can take in a parameter τ that controls the strictness of the fairness constraint213

and that its constraints are special cases of our very general constraints (2) and (3).214

5.1 Noise setting215

Our case studies focus on two common special cases of MC learning: CCN and PU learning. Under216

CCN noise the sensitive feature’s value is randomly flipped with probability ρ+ if its value was 1 or217

with probability ρ− if its value was 0. As shown in Menon et al. (2015, Appendix C), CCN noise is a218

special case of MC learning. For PU learning we consider the censoring setting (Elkan & Noto, 2008)219

which is a special case of CCN learning where one of ρ+ and ρ− is 0. While our results also apply to220

the case-controlled setting of PU learning (Ward et al., 2009), the former setting is more natural in221

our context. Note that from ρ+ and ρ− one can obtain α and β as described in Menon et al. (2015).222

5.2 Benchmarks223

For each case study, we evaluate our method (termed cor scale); recall this scales the input parameter224

τ using Theorem 2 and the values of ρ+ and ρ−, and then uses the fair classifier to perform225

classification. We compare our method with three different baselines. The first two trivial baselines226

are applying the fair classifier directly on the non-corrupted data (termed nocor) and on the corrupted227

data (termed cor). While the first baseline is clearly the ideal, it won’t be possible when only the228

corrupted data is available. The second baseline should show that there is indeed an empirical need to229

deal with the noise in some way and that it cannot simply be ignored.230

The third, non-trivial, baseline (termed denoise) is to first denoise A and then apply the fair classifier231

on the denoised distribution. This denoising is done by applying the RankPrune method in Northcutt232

et al. (2017). Note that we provide the RankPrune method with the same known values of ρ+ and233

ρ− that we use to apply our scaling so this is a fair comparison to our method. Compared to denoise,234

we do not explicitly infer individual sensitive feature values; thus, our method does not compromise235

privacy.236

For both case studies, we study the relationship between the input parameter τ and the testing error237

and fairness violation. For simplicity, we only consider the DP constraint.238

5.3 Case study: privacy preservation239

In this case study, we look at COMPAS, a dataset from Propublica (Angwin et al., 2016) that is widely240

used in the study of fair algorithms. Given various features about convicted individuals, the task241

is to predict recidivism and the sensitive attribute is race. The data comprises 7918 examples and242

10 features. In our experiment, we assume that to preserve differential privacy, CCN noise with243

ρ+ = ρ− = 0.15 is added to the sensitive attribute. As per Lemma 3, this guarantees (ε, δ = 0)244

differential privacy with ε = 1.73. We assume that the noise level ρ is released with the dataset (and245
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(a) COMPAS dataset (privacy case study).
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(b) law school dataset (PU learning case study).

Figure 1: Relationship between input fairness tolerance τ versus DP fairness violation (left panels), and versus
error (right panels). Our method (cor scale) achieves approximately the ideal fairness violation (indicated
by the gray dashed line in the left panels), with only a mild degradation in accuracy compared to training on
the uncorrupted data (indicated by the nocor method). Baselines that perform no noise-correction (cor) and
explicitly denoise the data (denoise) offer suboptimal tradeoffs by comparison; for example, the former achieves
slightly lower error rates, but does so at the expense of greater fairness violation.

is thus known). We performed fair classification on this noisy data using our method and compare the246

results to the three benchmarks described above.247

Figure 1a shows the average result over three runs each with a random 80-20 training-testing split.248

(Note that fairness violations and errors are calculated with respect to the true uncorrupted features.)249

We draw two key insights from this graph:250

(i) in terms of fairness violation, our method (cor scale) approximately achieves the desired251

fairness tolerance (shown by the gray dashed line). This is both expected and ideal, and it252

matches what happens when there is no noise (nocor). By contrast, the naïve method cor253

strongly violates the fairness constraint.254

(ii) in terms of accuracy, our method only suffers mildly compared with the ideal noiseless method255

(nocor); some degradation is expected as noise will lead to some loss of information. By256

contrast, denoise sacrifices much more predictive accuracy than our method.257

In light of both the above, our method is seen to achieve the best overall tradeoff between fairness258

and accuracy. Experimental results with EO constraints, and other commonly studied datasets in259

the fairness literature (adult, german), show similar trends as in Figure 1a, and are included in260

Appendix D for completeness.261

5.4 Case study: PU learning262

In this case study, we consider the dataset law school, which is a subset of the original dataset from263

LSAC (Wightman, 1998). In this dataset, one is provided with information about various individuals264

(grades, part time/full time status, age, etc.) and must determine whether or not the individual passed265

the bar exam. The sensitive feature is race; we only consider black and white. After prepossessing266

the data by removing instances that had missing values and those belonging to other ethnicity groups267

(neither black nor white) we were left with 3738 examples each with 11 features.268
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Figure 2: Relationship between the estimated noise level ρ̂− and fairness violation/error on the law school
dataset using DP constraint (testing curves), with ρ̂+ = 0 and τ = 0.2. Our method (cor scale) is not overly
sensitive to imperfect estimates of the noise rate, evidenced by its fairness violation and accuracy closely tracking
that of training on the uncorrupted data (nocor) as ρ̂− is varied. That is, red curve in the left plot closely tracks
the yellow reference curve. By contrast, the baseline that explicitly denoises the data (denoise) deviates strongly
from nocor, and is sensitive to small changes in ρ̂−. This illustrates that our method performs well even when
noise rates must be estimated.

While the data ostensibly provides the true values of the sensitive attribute, one may imagine having269

access to only PU information. Indeed, when the data is collected one could imagine that individuals270

from the minority group would have a much greater incentive to conceal their group membership due271

to fear of discrimination. Thus, any individual identified as belonging to the majority group could272

be assumed to have been correctly identified (and would be part of the positive instances). On the273

other hand, no definitive conclusions could be drawn about individuals identified as belonging to the274

minority group (these would therefore be part of the unlabelled instances).275

To model a PU learning scenario, we added CCN noise to the dataset with ρ+ = 0 and ρ− = 0.2. We276

initially assume that the noise rate is known. Figure 1b shows the average result over three runs under277

this setting each with a random 80-20 training-testing split. We draw the same conclusion as before:278

our method achieves the highest accuracy while respecting the specified fairness constraint.279

Unlike in the privacy case, the noise rate in the PU learning scenario is usually unknown in practice,280

and must be estimated. Such estimates will inevitably be approximate. We thus evaluate the impact of281

the error of the noise rate estimate on all methods. In Figure 2, we consider a PU scenario where we282

only have access to an estimate ρ̂− of the negative noise rate, whose true value is ρ− = 0.2. Figure 2283

shows the impact of different values of ρ̂− on the fairness violation and error. We see that that as284

long as this estimate is reasonably accurate, our method performs the best in terms of being closest to285

the case of running the fair algorithm on uncorrupted data.286

In sum, these results are consistent with our derivation and show that our method cor scale can287

achieve the desired degree of fairness while minimising loss of accuracy. Appendix E includes results288

for different settings of τ , noise level, and on other datasets showing similar trends.289

6 Conclusion and future work290

In this paper, we showed both theoretically and empirically that even under the very general MC291

learning noise model (Scott et al., 2013a) on the sensitive feature, fairness can still be preserved by292

scaling the input unfairness tolerance parameter τ . In future work, it would be interesting to consider293

the case of categorical sensitive attributes (as applicable, e.g., for race), and the more challenging294

case of instance-dependent noise (Awasthi et al., 2015).295
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Supplementary material for “Noise-tolerant425

fair classification”426

A Proofs of results in the main body427

A.1 Proof of Lemma 1428

Proof. Suppose that we have noise as given by Equation (5). We denote by A the random variable429

denoting the value of the true sensitive attribute and by Acorr the random variable denoting the value430

of the corrupted sensitive attribute.431

Then, for any measurable subset of instances U ,432

P[X ∈ U | Y = 1, Acorr = 1]

=
P[X ∈ U, Y = 1 | Acorr = 1]

P[Y = 1 | Acorr = 1]

=
P[X ∈ U, Y = 1 | Acorr = 1]

(1− α)P[Y = 1 | A = 1] + αP[Y = 1 | A = 0]

=
(1− α)P[X ∈ U, Y = 1 | A = 1]

(1− α)P[Y = 1 | A = 1] + αP[Y = 1 | A = 0]

+
αP[X ∈ U, Y = 1 | A = 0]

(1− α)P[Y = 1 | A = 1] + αP[Y = 1 | A = 0]

=
(1− α)P[Y = 1 | A = 1]P[X ∈ U | Y = 1, A = 1]

(1− α)P[Y = 1 | A = 1] + αP[Y = 1 | A = 0]

+
αP[Y = 1 | A = 0]P[X ∈ U | Y = 1, A = 0]

(1− α)P[Y = 1 | A = 1] + αP[Y = 1 | A = 0]

= (1− α′)P[X ∈ U | Y = 1, A = 1]

+ α′P[X ∈ U | Y = 1, A = 0],

where in the last equality we set433

α′ :=
αP[Y = 1 | A = 0]

(1− α)P[Y = 1 | A = 1] + αP[Y = 1 | A = 0]
.

Note that the last equality is equivalent to the first equality of Equation (6) with α′ as in the lemma.434

The proof for β′ is exactly the same and simply expands P[X ∈ U | Y = 1, Acorr = 0] instead of435

P[X ∈ U | Y = 1, Acorr = 1].436

A.2 Proof of Theorem 2437

Proof. For the DP-like constraints simply note that by definition of Dcorr we have that

L̄D0,·,corr(f) = (1− β) · L̄D0,·(f) + β · L̄D1,·(f)

and similarly,
L̄D1,·,corr(f) = (1− α) · L̄D1,·(f) + α · L̄D0,·(f)

Thus we have that438

L̄D0,·,corr(f)− L̄D1,·,corr(f) = (1− α− β)·
(L̄D0,·(f)− L̄D1,·(f)),

which immediately implies the desired result.439

The result for the EO constraint is obtained in the exact same way by simply replacing Da,· with440

Da,1, Da,·,corr with Da,1,corr, and α and β with α′ and β′.441
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A.3 Proof of Lemma 3442

Proof. Basic definitions in Differential Privacy are provided in Appendix B. Consider an instance443

{xi, yi, ai} with only xi disclosed by an attacker. Assume the sensitive attribute ai is queried. Denote444

âi to be the sensitive attribute of the instance after adding noise i.e. being flipped with probability ρ.445

The attacker is interested in knowing if ai = 0 or ai = 1 by querying âi.446

Since447

P[âi = 1|ai = 1]

P[âi = 1|ai = 0]
=

P[âi = 0|ai = 0]

P[âi = 0|ai = 1]

we can reason in a similar way for âi = 0. Thus, let us focus on the case where âi = 1. Let us448

consider two neighbor instances {xi, yi, 0} and {xi, yi, 1}. Essentially, we want to upper-bound the449

ratio450
P[â = 1|ai = 1]

P[â = 1|ai = 0]
:=

1− ρ
ρ

by exp(ε), and lower-bound the ratio by exp(−ε). The lower bound is always true since ρ < 0.5. For451

the upper-bound, We have:452

1− ρ
ρ
≤ exp (ε) ⇐⇒ ρ ≥ 1

exp(ε) + 1
.

453
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B Background on Differential Privacy454

The following definitions are from Appendix Dwork (2006). They are used for the proof of Lemma 3455

in A.456

Probability simplex: Given a discrete set B, the probability simplex over B, denoted ∆(B) is:457

∆(B) = {x ∈ R|B| : ∀i, xi ≥ 0, and
|B|∑
i=1

xi = 1}.

Randomized Algorithms: A randomized algorithmM with domain A and range B is an algorithm458

associated with a total map M : A→ ∆(B). On input a ∈ A, the algorithmM outputsM(a) = b459

with probability (M(a))b for each b ∈ B. The probability space is over the coin flips of the algorithm460

M.461

For simplicity we will avoid implementation details and we will consider databases as histograms.462

Given a universe X an histogram over X is an object in N|X |. We can bake in the presence or absence463

of an individual notion in a definition of distance between databases.464

465

Distance Between Databases: The l1 norm ‖x‖1 of a database x ∈ N|X | is defined as:466

‖x‖1 =

|X |∑
i=1

xi.

The l1 distance between two databases x and y is defined as ‖x− y‖1.467

468

Differential Privacy: A randomized algorithmM with domain N|X | is (ε, δ)-differentially private469

if for all S ⊆ Range(M) and for all x, y ∈ NX such that ‖x− y‖1 ≤ 1:470

P[M(x) ∈ S] ≤ exp(ε) · P[M(y) ∈ S] + δ,

where the probability space is over the coin flips of the mechanismM.471
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C Relationship between mean-difference score and the constraint used in472

Agarwal et al. (2018)473

Agarwal et al. (2018) adopts slightly different fairness constraints than ours. Using our notation and
letting cf (X) = sign(f(X)), instead of bounding ΛDP

D (f) by τ , they bound

max
a∈{0,1}

∣∣EDa,· [cf (X)]− ED[cf (X)]
∣∣

and
max
a∈{0,1}

∣∣EDa,1
[cf (X)]− ED·,1 [cf (X)]

∣∣
for DP and EO respectively by τ . The two have the following relationship.474

Theorem 4. Under the setting of fair binary classification with a single binary sensitive attribute475

and using ¯̀(s, y) = 1[sign(s)] we have that476

max
a∈{0,1}

∣∣EDa,· [cf (X)]− ED[cf (X)]
∣∣ = max

a∈{0,1}
(P[A = 0],P[A = 1])ΛDP

D (f)

and477

max
a∈{0,1}

∣∣EDa,1
[cf (X)]− ED·,1 [cf (X)]

∣∣ = max
a∈{0,1}

(P[A = 0 | Y = 1],P[A = 1 | Y = 1])ΛEO
D (f)

Proof. For the DP case,478 ∣∣ED1,· [cf (X)]− ED[cf (X)]
∣∣

=
∣∣ED1,· [cf (X)]− (P[A = 1]ED1,· [cf (X)] + P[A = 0]ED0,· [cf (X)])

∣∣
=
∣∣(1− P[A = 1])ED1,· [cf (X)]− P[A = 0]ED0,· [cf (X)]

∣∣
=
∣∣P[A = 0]ED1,· [cf (X)]− P[A = 0]ED0,· [cf (X)]

∣∣
= P[A = 0]

∣∣(ED1,· [cf (X)]− ED0,· [cf (X)])
∣∣

= P[A = 0]
∣∣L̄D0,·(f)− L̄D1,·(f)

∣∣
= P[A = 0]ΛDP

D (f)

and similarly479 ∣∣ED0,· [cf (X)]− ED[cf (X)]
∣∣ = P[A = 1]ΛDP

D (f)

so the theorem holds.480

The result for the EO case is proved in exactly the same way by simply replacing P[A = 0],P[A = 1],481

Da,· and D with P[A = 0 | Y = 1],P[A = 1 | Y = 1], Da,1 and D·,1 respectively.482

483

We then have the following as an immediate corollary.484

Corollary 5. Assuming that we have noise as described above by Equation (5) and that we485

take ¯̀(s, y) = 1[sign(s)] then we have that if maxa∈{0,1}(PD[A = 0],PD[A = 1]) =486

maxa∈{0,1}(PDcorr [A = 0],PDcorr [A = 1]) then:487

max
a∈{0,·}

∣∣EDa,· [cf (X)]− ED[cf (X)]
∣∣ < τ ⇐⇒ max

a∈{0,1}

∣∣EDa,·,corr [cf (X)]− EDcorr [cf (X)]
∣∣ < τ ·(1−α−β).

And if maxa∈{0,1}(PD·,1 [A = 0],PD·,1 [A = 1]) = maxa∈{0,1}(PD·,1,corr [A = 0],PD·,1,corr [A = 1])488

then:489

max
a∈{0,1}

∣∣EDa,1
[cf (X)]− ED·,1 [cf (X)]

∣∣ < τ ⇐⇒ max
a∈{0,1}

∣∣EDa,1,corr [cf (X)]− ED·,1,corr [cf (X)]
∣∣ < τ ·(1−α′−β′).

Even if the noise does not satisfy these new assumptions, we can still bound the constraint. Note490

that both maxa∈{0,1}(P[A = 0],P[A = 1]) and maxa∈{0,1}(P[A = 0 | Y = 1],P[A = 1 | Y = 1])491

have values between 0.5 and 1. Thus,492

1

2
ΛDP
D (f) ≤ max

a∈{0,1}

∣∣EDa,· [cf (X)]− ED[cf (X)]
∣∣ ≤ ΛDP

D (f)
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493
1

2
ΛEO
D (f) ≤ max

a∈{0,1}

∣∣EDa,1
[cf (X)]− ED·,1 [cf (X)]

∣∣ ≤ ΛEO
D (f),

and therefore the following corollary holds:494

Corollary 6. Assuming that we have noise as described above by Equation (5) and that we take495
¯̀(s, y) = 1[sign(s)] then we have that:496

max
a∈{0,1}

∣∣EDa,·,corr [cf (X)]− EDcorr [cf (X)]
∣∣ < 1

2
τ ·(1−α−β)⇒ max

a∈{0,1}

∣∣EDa,· [cf (X)]− ED[cf (X)]
∣∣ < τ

and,497

max
a∈{0,1}

∣∣EDa,1,corr [cf (X)]− ED·,1,corr [cf (X)]
∣∣ < 1

2
τ ·(1−α′−β′)⇒ max

a∈{0,1}

∣∣EDa,1
[cf (X)]− ED·,1 [cf (X)]

∣∣ < τ.

In addition to giving a simple way to use the classifier of Agarwal et al. (2018) without any modifica-498

tion, these results seem to indicate that with small modifications our scaling method can apply to an499

even wider range of fair classifiers than formally shown.500
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D More results for the privacy case study501

In this section we give some additional results for the privacy case study.502

Figure 3 shows additional results on COMPASS for different noise levels ρ+ = ρ− ∈ {0.15, 0.3}.503
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Figure 3: Relationship between input τ and fairness violation/error on the COMPAS dataset using DP constraint
(testing curves). The gray dashed line represents the ideal fairness violation.

Figure 4 shows the results under the EO constraint for the COMPAS dataset. That is, the dataset and504

setting is the same as described in section 5.3 but with the EO constraint instead of the DP constraint.505

We see that the trends are the same.506
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Figure 4: (EO)(testing and training) Relationship between input τ and fairness violation/error on the COMPAS
dataset.

Figures 5 and Figure 6 show results on the bank dataset (Ban) with the DP and EO constraints507

respectively. This dataset is a subset of the original Bank Marketing dataset from the UCI reposi-508

tory (Dheeru & Karra Taniskidou, 2017). The task is to predict if a client subscribes a term deposit.509

The sensitive attribute is if a person is middle aged(i.e. has an age between 25 and 60). The data510

comprises 11162 examples and 17 features. Again we note that the trends are the same.511
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Figure 5: (DP)(testing and training) Relationship between input τ and fairness violation/error on the bank
dataset.
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Figure 6: (EO)(testing and training) Relationship between input τ and fairness violation/error on the bank
dataset.
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E More results for the PU case study512

In this section we give some additional results for the PU case study.513

Figure 7 shows additional results on law school for different noise levels ρ+ = ρ− ∈ {0.2, 0.4}.514

Figure 8 shows additional results under noise rate estimation on law school for different upper515

bound of fairness violation: τ ∈ {0.1, 0.3}.516
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Figure 7: Relationship between input τ and fairness violation/error on the law school dataset using DP
constraint (testing curves). The gray dashed line represents the ideal fairness violation. Note that in some of the
graphs, the red line and the orange line perfectly overlap with each other.

Figure 9 and Figure 10 show the results under PU noise on the german dataset, which is another517

dataset from the UCI repository (Dheeru & Karra Taniskidou, 2017). The task is to predict if one518

has good credit and the sensitive attribute is whether a person is foreign. The data comprises 1000519

examples and 20 features. The trends are similar to those for the law school dataset.520
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Figure 8: Relationship between the estimated noise level ρ̂− and fairness violation/error on the law school
dataset using DP constraint (testing curves) at τ ∈ {0.1, 0.3}, with ρ̂+ = 0.
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Figure 9: (DP)(training and testing) Relationship between input τ and fairness violation/error on the german
dataset.

0.0 0.1 0.2 0.3 0.4
+

0.00

0.05

0.10

0.15

D
D

P

german DP, + = 0.2, = 0.0

nocor
denoise
cor scale

0.0 0.1 0.2 0.3 0.4
+

0.05

0.10

0.15

D
D

P

german DP, + = 0.4, = 0.0

nocor
denoise
cor scale

0.0 0.1 0.2 0.3 0.4
+

0.0

0.1

0.2

0.3

E
rr

or
%

german DP, + = 0.2, = 0.0

nocor
denoise
cor scale

0.0 0.1 0.2 0.3 0.4
+

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
%

german DP, + = 0.4, = 0.0

nocor
denoise
cor scale

Figure 10: Relationship between the estimated noise level ρ̂+ and fairness violation/error on the german dataset
using DP constraint (testing curves). Note that ρ̂− is fixed to 0 and τ = 0.04.
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F The influence of different noise levels521

Figure 11 explores the influence of the noise level on the trends and relationships between our522

method’s performance and that of the benchmarks. We run these experiments on the UCI adult523

dataset, which is another dataset from the UCI repository (Dheeru & Karra Taniskidou, 2017). The524

task is to predict if one has income more than 50K and gender is the sensitive attribute. The data525

comprises 48842 examples and 14 features. We run these experiments with the DP constraint under526

different CCN noise levels (ρ+ = ρ− ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.48}). We include both training527

and testing curves for completeness. As we can see, as the noise increases the gap between the528

corrupted data curves and the uncorrupted data curve increases. It becomes very hard to get close to529

the non-corrupted case when noise becomes too high.530
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Figure 11: Relationship between input τ and fairness violation/error on the adult dataset for various noise
levels. From left to right: testing fairness violation, testing error, training fairness violation, and training error.
Different noise levels from top to bottom.
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