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Abstract

Pure exploration (aka active testing) is the fundamental task of sequentially gather-
ing information to answer a query about a stochastic environment. Good algorithms
make few mistakes and take few samples.
Lower bounds (for multi-armed bandit models with arms in an exponential family)
reveal that the sample complexity is determined by the solution to an optimisation
problem. The existing state of the art algorithms achieve asymptotic optimality by
solving a plug-in estimate of that optimisation problem at each step.
We interpret the optimisation problem as an unknown game, and propose sampling
rules based on iterative strategies to estimate and converge to its saddle point. We
apply no-regret learners to obtain the first finite confidence guarantees that are
adapted to the exponential family and which apply to any pure exploration query
and bandit structure. Moreover, our algorithms only use a best response oracle
instead of fully solving the optimisation problem.

1 Introduction

We study fundamental trade-offs arising in sequential interactive learning. We adopt the framework
of Pure Exploration, in which the learning system interacts with its environment by performing a
sequence of experiments, with the goal of maximising information gain. We aim to design general,
efficient systems that can answer a given query with few experiments yet few mistakes.

As usual, we model the environment by a multi-armed bandit model with exponential family arms,
and work in the fixed confidence (δ-PAC) setting. Information-theoretic lower bounds [13] show that
a certain number of samples is unavoidable to reach a certain confidence. Moreover, algorithms are
developed [13] that match these lower bounds asymptotically, in the small confidence δ → 0 regime.

Our contribution is a framework for obtaining efficient algorithms with non-asymptotic guarantees.
The main object of study is the “Pure Exploration Game” [9], a two-player zero-sum game that is
central to lower bounds as well as to the widely used GLRT-based stopping rules. We develop iterative
methods that provably converge to saddle-point behaviour. The game itself is not known to the learner,
and has to be explored and estimated on the fly. Our methods are based on pairs of low-regret
algorithms, combined with optimism and tracking. We prove sample complexity guarantees for
several combinations of algorithms, and discuss their computational and statistical trade-offs.

The rest of the introduction provides more detail on pure exploration problems, the pure exploration
game, the connection between them, and expands on our contribution. We also review related work.
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Our model for the environment is a K-armed bandit, i.e. distributions (ν1, . . . , νK) on R. We assume
throughout that these distributions come from a one-dimensional exponential family, and we denote
by d(µ, λ) the relative entropy (Kullback-Leibler divergence) from the distribution with mean µ
to that with mean λ. A pure exploration problem is parameterised by a setM of K-armed bandit
models (the possible environments), a finite set I of candidate answers and a correct-answer function
i∗ :M→I. We focus on Best Arm Identification, for which i∗(µ) = argmaxi µi and the Minimum
Threshold problem, which is defined for any fixed threshold γ by i∗(µ) = 1{mini µi<γ}. The goal of
the learner is to learn i∗(µ) confidently and efficiently by means of sequentially sampling from the
arms of µ, no matter which µ ∈M it faces. When an algorithm sequentially interacts with µ, we
denote by Nk

t and µ̂kt the sample count and empirical mean estimate (these form a sufficient statistic)
for each arm k after t rounds. We write τδ for the time at which the algorithm stops and ı̂ for the
answer it recommends. The algorithm is correct (on a particular run) if it recommends ı̂ = i∗(µ) the
correct answer for µ. An algorithm is δ-PAC (or δ-correct) if Pµ(̂ı 6= i∗(µ)) ≤ δ for each µ ∈M.
Among δ-PAC algorithms, we are interested in those minimising the sample complexity Eµ[τδ]. As
it turns out, what can be achieved, and how, is captured by a certain game.

For each µ ∈M, [9] define the two-player zero-sum simultaneous-move Pure Exploration Game:
MAX plays an arm k ∈ [K], MIN plays an “alternative” bandit model λ ∈ M with a different
correct answer i∗(λ) 6= i∗(µ). We denote the set of such alternatives to answer i by ¬i = {λ ∈M :
i∗(λ) 6= i}. MAX then receives payoff d(µk, λk) from MIN. As the payoff is neither concave in k
(since discrete) nor convex in λ (both domain and divergence are problematic), we will analyse the
game by sequencing the moves and considering a mixed strategy for the player moving first. With
MAX moving first and playing a mixed strategy k ∼ w ∈ 4K (we identify distributions over [K]
and the simplex4K), the value of the game is

Dµ := sup
w∈4K

Dµ(w) where Dµ(w) := inf
λ∈M:i∗(λ)6=i∗(µ)

K∑
k=1

wkd(µk, λk). (1)

We denote a minimiser of Dµ by w∗(µ) and call it an oracle allocation. The analogue where MIN
plays first using a mixed strategy λ ∼ q ∈ P(¬i∗(µ)) (distributions over that set) is proposed and
analysed in [9]. Despite the baroque domain of λ in (1), there always exist minimax q supported on
≤ K points due to dimension constraints.

The Pure Exploration Game is essential to both characterising the complexity of learning, and also
to algorithm design. Namely, first, any δ-correct algorithm has sample complexity for each bandit
µ ∈ M at least Eµ[τδ] ≥ kl(δ, 1− δ)/Dµ ≈ ln 1

δ

/
Dµ , and matching this rate requires sampling

proportions Eµ[Nτδ ]/Eµ[τδ] converging to w∗(µ) as δ → 0 [see 13]. Moreover, second, the
general approach for obtaining δ-correct algorithms is based on the Generalised Likelihood Ratio
Test (GLRT) statistic Zt := tDµ̂t (Nt/t ). There are universal thresholds β(t, δ) ≈ ln 1

δ + K
2 ln ln t

δ
[see e.g. 12, 13, 19, 23] such that Pµ {∃t : Zt ≥ β(δ, t)} ≤ δ for any µ ∈M. Hence stopping when
Zt ≥ β(t, δ) and recommending ı̂ = i∗(µ̂t) is δ-correct for any sampling rule. Maximising the
GLRT to stop as early as possible is achieved by the sampling proportionsNt/t = w∗(µ̂t).

These considerations show that any successful Pure Exploration agent needs to (approximately)
solve the Pure Exploration Game Dµ. The Track-and-Stop approach, pioneered by [13], ensures
that µ̂t → µ using forced exploration, and Nt/t → w∗(µ̂t) using tracking. Continuity of w∗
and Dµ then yields that Zt ≈ tDµ(w∗(µ)) = tDµ. The GLRT stopping rule triggers when
t = β(δ, t)/Dµ ≈ ln 1

δ

/
Dµ , meeting the lower bound in the asymptotic regime δ → 0.

Our contributions. We explore methods to solve the Pure Exploration game Dµ associated with
the unknown bandit model µ, and discusses their statistical and computational trade-offs. We look at
solving the game iteratively, by instantiating a low-regret online learner for each player. In particular
for the k-player we use a self-tuning instance of Exponentiated Gradient called AdaHedge [8]. The
λ-player needs to play a distribution to deal with non-convexity; we consider Follow the Perturbed
Leader as well as an ensemble of Online Gradient Descent experts. We show how a combination of
optimistic gradient estimates, concentration of measure arguments and regret guarantees combine to
deliver the first non-asymptotic sample complexity guarantees (which retain asymptotic optimality for
δ → 0). The advantage of this approach is that it only requires a best response oracle (1, right) instead
of a computationally more costly max-min oracle (1, left) employed by Track-and-Stop. Going the
other extreme, we also develop Optimistic Track-and-Stop based on a max-max-min oracle (the outer
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max implementing optimism over a confidence region for µ), which trades increased computation for
tighter sample complexity guarantees with simpler proofs.

Our cocktail sheds new light on the trade-offs involved in the design of pure exploration algorithms.
We show how “big-hammer” forced exploration can be refined using problem-adapted optimism.
We show how tracking is unnecessary when the k player goes second. We show how computational
complexity can be traded off using oracles of various sophistication. And finally, we validate our
approach empirically in benchmark experiments at practical δ, and find that our algorithms are either
competitive with Track-and-Stop (dense w∗) or dominate it (sparse w∗).

Related work Besides maximising information gain, there is a vast literature on maximising reward
in multi-armed bandit models for which a good starting point is [21]. The canonical Pure Exploration
problem is Best Arm Identification [10, 3], which is actively studied in the fixed confidence, fixed
budget and simple regret settings [21, Ch. 33]. Its sample complexity as a function of the confidence
level δ has been analysed very thoroughly in the (sub)-Gaussian case, where we have a rather complete
picture, even including lower order terms [5]. [18] initiated the quest for correct instance-dependent
constants for arms from any exponential family. [26] stresses the importance of the “moderate
confidence” regime δ � 0. Although it is not the focus here, we do believe that it is crucial to obtain
the right problem dependence not only in ln 1

δ but also in K and other structural parameters, as the
latter may in practice dominate the sample complexity.

Pure Exploration queries beyond Best Arm include Top-M [15], Thresholding [22], Minimum
Threshold [20], Combinatorial Bandits [6], pure-strategy Nash equilibria [29] and Monte-Carlo Tree
Search [27]. There is also significant interest in these problems in structured bandit models, including
Rank-one [17], Lipschitz [23], Monotonic [14], Unimodal [7] and Unit-Sum [26]. Our framework
applies to all these cases. Problems with multiple correct answers were recently considered by [9].
Existing learning strategies do not work unmodified; some fail and others need to be generalised.

Optimism is ubiquitous in bandit optimisation since [1], and was adapted to pure exploration by
[16]. We are not aware of optimism being used to solve unknown min-max problems. Optimism was
employed in the UCB Frank-Wolfe method by [2] for maximising an unknown smooth function faster.
We do not currently know how to make use of such fast rate results. For games the best response
value is a non-smooth function of the action.

Using a pair of independent no-regret learners to solve a fixed and known game goes back to [11].
More recently game dynamics were used to explain (Nesterov) acceleration in offline optimisation
[28]. Ensuring faster convergence with coordinating learners is an active area of research [25].
Unfortunately, we currently do not know how to obtain an advantage in this way, as our main learning
overhead comes from concentration, not regret.

2 Algorithms with finite confidence sample complexity bounds

We introduce a family of algorithms, presented as Algorithm 1, with sample complexity bounds
for non-asymptotic confidence δ. It uses the following ingredients: the GLRT stopping rule, a
saddle point algorithm (possibly formed by two regret minimization algorithms) and optimistic loss
estimates.

2.1 Model and assumption: sub-Gaussian exponential families.

We suppose that the arm distributions belong to a known one-parameter exponential family. That
is, there is a reference measure ν0 and parameters η1, . . . , ηK ∈ R such that the distribution of arm
k ∈ [K] is defined by dνk/dν0(x) ∝ eηkx. Examples include Gaussians with a given variance or
Bernoulli with means in (0, 1). All results can be extended to arms each in a possibly different
known exponential family. Let Θ be the open interval of possible means of such distributions. A
distribution ν is said to be σ2-sub-Gaussian if for all u ∈ R, logEX∼ν eu(X−EX∼ν [X]) ≤ σ2

2 u
2. An

exponential family has all distributions sub-Gaussian with constant σ2 iff for all µ, λ ∈ Θ, it verifies
d(µ, λ) ≥ 1

2σ2 (µ− λ)2.

Assumption 1. The arm distributions belong to sub-Gaussian exponential families with constant σ2.

Assumption 2. There exists a closed interval [µmin, µmax] ⊂ Θ such thatM⊆ [µmin, µmax]K .
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Algorithm 1 Pure exploration meta-algorithm.
Require: Algorithms Ak and Aλ, stopping threshold β(t, δ) and exploration bonus f(t).

1: Sample each arm once and form estimate µ̂K .
2: for t = K + 1, . . . do
3: For k ∈ [K], let [αkt , β

k
t ] = {ξ : Nk

t−1d(µ̂kt−1, ξ) ≤ f(t−1)}. . KL confidence intervals
4: Let µ̃t−1 = argminλ∈M∩×Kk=1[αkt ,β

k
t ]

∑K
k=1N

k
t−1d(µ̂kt−1, λ

k). . = µ̂t−1 if µ̂t−1 ∈M
5: Let it = i∗(µ̃t−1).
6: Stop and output ı̂ = it if infλ∈¬it

∑
kN

k
t−1d(µ̂kt−1, λ

k) > β(t, δ). . GLRT Stopping rule
7: Get wt and qt from Akit and Aλit .
8: For k ∈ [K], let Ukt = max

{
f(t−1)/Nk

t−1,maxξ∈{αkt ,βkt } Eλ∼qt d(ξ, λk)
}

. . Optimism

9: Feed Akit the loss `wt (w) = −
∑K
k=1 w

kUkt .

10: Feed Aλit the loss `λt (q) = Eλ∼q
∑K
k=1 w

k
t d(µ̂kt−1, λ

k) .
11: Pick arm kt = argminkN

k
t−1/

∑t
s=1 w

k
s . . Cumulative tracking

12: Observe sample Xt ∼ νkt . Update µ̂t.
13: end for

As a consequence of Assumption 2, there exists L,D > 0 such that for all y ∈ [µmin, µmax], the
function x 7→ d(x, y) is L-Lipschitz on [µmin, µmax] and d(x, y) ≤ D. Assumption 1 is implied by
Assumption 2. Both are discussed in Appendix F. In particular, Assumption 2 can often be relaxed.
L and D will appear in the sample complexity bounds but none of our algorithms use them explicitly.

Everywhere below, µ̂t denotes the orthogonal projection of the empirical mean onto [µmin, µmax]K ,
with one possible exception: the GLRT stopping rule may use it either projected or not, indifferently.

2.2 Algorithmic ingredients

Stopping and recommendation rules. The algorithm stops if any one of |I| many GLRT tests
succeeds [13]. Let Lµ denote the likelihood under the model parametrized by µ. The generalized
log-likelihood ratio between a set Λ and the whole parameter space ΘK is

GLRΘK

t (Λ) = log
supµ̃∈ΘK Lµ̃(X1, . . . , Xt)

supλ∈Λ Lλ(X1, . . . , Xt)
= inf
λ∈Λ

∑
k∈[K]

Nk
t d(µ̂kt , λ

k) .

By concentration of measure arguments, we may find β(t, δ) such that with probability greater
than 1 − δ, for all t ∈ N, GLRΘK

t ({µ}) ≤ β(t, δ) [see 12, 13, 19, 23]. Test i ∈ I succeeds if
GLRΘK

t (¬i) > β(t, δ). If the algorithm stops because of test i, it recommends ı̂ = i (if several tests
succeed at the same time, it chooses arbitrarily among these).
Theorem 1. Any algorithm using the GLRT stopping and recommendation rules with threshold
β(t, δ) such that Pµ{GLRΘK

t ({µ}) > β(t, δ)} ≤ δ is δ-correct.

A game with two players An algorithm is unable to stop at time t if the stopping condition is not
met, i.e.

β(t, δ) ≥ inf
λ∈¬i∗(µ̂t)

∑
k∈[K]

Nk
t d(µ̂kt , λ

k) .

In order to stop early, the right hand side has to be maximized, i.e. made close to
t supw∈4K infλ∈¬i∗(µ̂t)

∑
k∈[K] w

k
t d(µ̂kt , λ

k) = tDµ̂t ≈ tDµ. Then with β(t, δ) ≈ log 1/δ + o(t)

we obtain t ≤ log(1/δ)/Dµ up to lower order terms, i.e. the stopping time is close to optimality.

We propose to approach that max-min saddle-point by implementing two iterative algorithms,Ak and
Aλ, for the k-player and a λ-player. Our sample complexity bound is a function of two quantities
Rkt and Rλt , regret bounds of algorithms Ak and Aλ when used for t steps on appropriate losses.

One player of our choice goes first. The second player can see the action of the first, see the
corresponding loss function and use an algorithm with zero regret (e.g. Best-Response or Be-The-
Leader). One of the players has to play distributions on its action set. We have one of the following:
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1. λ-player plays first and uses a distribution in P(¬it). The k-player plays kt ∈ [K].
2. k-player plays first and useswt ∈ 4K (distribution over [K]). The λ-player plays λt ∈ ¬it.
3. Both players play distributions and go in any order, or concurrently.

Algorithm 1 presents two players playing concurrently but can be modified: if for example λ plays
second, then it gets to see `λt (q) before computing qt.

The sampling rule at stage t first computes the most likely answer it for µ̂t−1. If the set over which
the algorithm optimizes at line 4 is empty, it is arbitrary. The k-player playswt coming from Akit ,
an instance of Ak running only on the rounds on which the selected answer is that it. The λ-player
similarly uses an instance Aλit of Aλ.

Tracking. Since a single arm has to be pulled, if the k-player plays w ∈ 4K an additional
procedure is needed to translate that play into a sampling rule. We use a so-called tracking procedure,
kt = argmink∈[K]N

k
t−1/

∑t
s=1 w

k
s , which ensures that

∑t
s=1 w

k
s − (K − 1) ≤ Nk

t ≤
∑t
s=1 w

k
s .

Optimism in face of uncertainty. Existing algorithms for general pure exploration use forced
exploration to ensure convergence of µ̂t to µ, making sure that every arm is sampled more than e.g.√
t times. We replace that method by the “optimism in face of uncertainty” principle, which gives a

more adaptive exploration scheme. While that heuristic is widely used in the bandit literature, this
work is its first successful implementation for general pure exploration. In Algorithm 1, the k-player
algorithm gets an optimistic loss depending on wt and qt. The λ-player gets a non-optimistic loss.

2.3 Proof scheme and sample complexity result

In order to bound the sample complexity, we introduce a sequence of concentration events Et =

{∀s ≤ t, ∀k ∈ [K], d(µ̂ks , µ
k) ≤ Ŵ ((1+a) log(t))

Nks
} for a > 0 and Ŵ (x) = x + log x + 1/2 . It

verifies
∑+∞
t=3 Pµ(Ect ) ≤ 2eK/a2 (see Appendix B for a proof). The concentration intervals used in

Algorihtm 1 are a function of f(t) = Ŵ ((1 + a)(1 + b) log t) for b > 0.

Lemma 1. Let Et be an event and T0(δ) ∈ N be such that for t ≥ T0(δ), Et ⊆ {τδ ≤ t}. Then

Eµ[τδ] =

+∞∑
t=1

P{τδ > t} ≤ T0(δ) +

+∞∑
t=T0(δ)

Pµ(Ect ) .

We now present briefly the steps of the proof for the stopping time upper bound before stating our
main theorem on the sample complexity of Algorithm 1. These steps are inexact and should be
regarded as a guideline and not as rigorous computations. A full proof of our results can be found
in the appendices (Appendix B for concentration results, C for tracking and D for the main sample
complexity proof). We simplify the presentation by supposing that it = i∗(µ) throughout (the main
proof will show this may fail only o(t) rounds). For t < τδ , under concentration event Et,

β(t, δ) ≥ inf
λ∈¬i∗(µ)

∑
k∈[K]

Nk
t d(µ̂kt , λ

k) (stopping condition)

≥ inf
λ∈¬i∗(µ)

∑
s∈[t]

∑
k∈[K]

wksd(µ̂kt , λ
k)−KD (tracking)

≥ inf
λ∈¬i∗(µ)

∑
s∈[t]

∑
k∈[K]

wksd(µ̂ks−1, λ
k)−O(

√
t log(t)) . (concentration)

The first term is now the infimum of a sum of losses, infλ∈¬i∗(µ)

∑
s∈[t] `

λ
s (λ). We use the regret

property of the λ-player’s algorithm on those losses, then we introduce optimistic values Uks such
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that for ξk ∈ {µk, µ̂ks−1} we have Eλ∼qs d(ξk, λk) ≤ Uks ≤ Eλ∼qs d(ξk, λk) +O(
√

1/s).

inf
λ∈¬i∗(µ)

∑
s∈[t]

∑
k∈[K]

wksd(µ̂ks−1, λ
k) ≥

∑
s∈[t]

E
λ∼qs

∑
k∈[K]

wksd(µ̂ks−1, λ
k)−Rλt (regret λ)

≥
∑
s∈[t]

∑
k∈[K]

wksU
k
s −O(

√
t)−Rλt (optimism)

≥ max
k∈[K]

∑
s∈[t]

Uks −Rkt −O(
√
t)−Rλt (regret w)

≥ max
k∈[K]

∑
s∈[t]

E
λ∼qs

d(µk, λk)−Rkt −O(
√
t)−Rλt (optimism)

Finally, 1/t
∑
s∈[t] Eλ∼qs is itself the expectation of another distribution on P(¬i∗(µ)). Hence

max
k∈[K]

∑
s∈[t]

Eλ∼qs d(µk, λk) ≥ t inf
q

max
k

Eλ∼q d(µk, λk) = tDµ .

Putting these inequalities together, we get finally an inequality on such a t < τδ . The exact result we
obtain is the following Theorem, proved in Appendix D.
Theorem 2. Under Assumption 2, the sample complexity of Algorithm 1 on model µ ∈M is

Eµ[τδ] ≤ T0(δ) +
2eK

a2
with T0(δ) = max{t ∈ N : t ≤ β(t, δ)

Dµ
+ Cµ(Rλt +Rkt + h(t))} ,

where Cµ depends on µ andM and h(t) = O(
√
t log(t)). See Appendix D for an exact definition.

The forms of h(t) and of T0(δ) depend on the particular algorithm but we now show how an inequality
of that type translates into T0(δ). The next lemma is a consequence of the concavity of t 7→

√
t log t.

Lemma 2. Suppose that t ∈ R verifies the equation t− C
√
t log t ≤ log 1/δ

Dµ
. Then for T ∗δ = log 1/δ

Dµ
,

t ≤ log 1/δ

Dµ

(
1 + C

√
log T ∗δ
T ∗δ

1

1− C 1+log T∗δ
2
√
T∗δ log T∗δ

)
.

3 Practical Implementations

Next we discuss instantiating no-regret learners. We consider a hierarchy of computational oracles:

1. Min aka Best-Response oracle: obtain for any i ∈ I, w ∈ 4K and ξ ∈ ΘK a minimizer in
¬i of λ 7→

∑
k∈[K] w

kd(ξk, λk) .
2. Max-min aka Game-Solving oracle: obtain for any i ∈ I and ξ ∈ ΘK a vector w∗ ∈ 4K

such that there is a Nash equilibrium (w∗, q∗) ∈ 4K × P(¬i) for the zero-sum game with
reward d(ξk, λk) with the k-player using the mixed strategy w∗.

3. Max-max-min oracle: for any confidence region C = [a1, b1] × . . . × [aK , bK ], obtain
(µ+, i+,w+) with (µ+, i+) = argmaxξ∈C,i∈I supw∈4K infλ∈¬i

∑K
k=1 w

kd(ξk, λk) and
w+ a k-player strategy of a Nash equilibrium of the game with reward d(µ+k, λk).

For Minimum Threshold all oracles can be evaluated in closed form in O(K) time, and the same is
true for Best Response in Best Arm Identification. Max-min for Best Arm requires binary search
[13] and Max-max-min requires O(K) max-min calls. See [24] for run-time data on Track-and-Stop
(max-min oracle) and gradient ascent (min oracle) for Best Arm. Our approach also extends naturally
to min-max and max-min-max oracles, which we plan to incorporate in full detail in our future work.

3.1 A Learning Algorithm for the k-Player vs Best-Response for the λ-Player

In this section the k-player plays first, employing a regret minimization algorithm for linear losses on
the simplex to producewt ∈ 4K at time t. We pick AdaHedge of [8], which runs in O(K) per round
and adapts to the scale of the losses. The λ-player goes second and can use a zero-regret algorithm:
Best-Response. It plays qt , a Dirac at λt ∈ argminλ∈¬it

∑
k∈[K] w

k
t d(µ̂kt−1, λ

k) .
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Lemma 3. AdaHedge has regret Rkt ≤
√∑

s≤t b
2
s lnK + maxs≤t bs(

4
3 lnK + 2) where bs =

maxk U
k
s −mink U

k
s ≤ max{D, f(s)} is the loss scale in round s, so that Rkt = O(

√
t lnK ln t).

Best-Response has no regret, Rλt ≤ 0. The sample complexity is bounded per Theorem 2.

We expect that in practice the scale converges to bs → Dµ after a transitory startup phase.

Computational complexity: one best-response oracle call per time step.

3.2 Learning Algorithms for the λ-Player vs Best Response for the k-Player

Using a learner for the λ-player removes the need for a tracking procedure. In this section the
k-player goes second and uses Best-Response, with zero regret, i.e. kt = argmaxk∈[K] U

k
t (see

Algorithm 1). After playing qt ∈ P(¬it), the λ-player suffers loss Eλ∼qt d(µ̂ktt−1, λ
kt).

Most existing regret minimization algorithms do not apply since the function λ 7→ d(µ, λ) is not
convex in general and the action set ¬it is also not convex. The challenge is to come up with an
algorithm able to play distributions with only access to a best-response oracle.

Follow-The-Perturbed-Leader. Follow-The-Perturbed-Leader can sample points from a distribu-
tion on P(¬i) by only using best-response oracle calls on ¬i. The version we use here incorporates
all the information available to the λ-player: the loss of λ ∈ ¬it will be d(µ̂ktt−1, λ

kt) where the only
unknown quantity is kt. Let σt ∈ RK be a random vector with independent exponentially distributed
coordinates. The idea is that the distribution qt played by the λ-player should be the distribution of

argmin
λ∈¬it

t−1∑
s=1

d(µ̂kss−1, λ
ks) +

K∑
k=1

σkt d(µ̂kt−1, λ
k) .

We show in Appendix E.2 that this argmin can be computed by a single best-response oracle call.
However, the k-player has to be able to compute the best response to qt. Since we cannot get the
above distribution exactly, we instead take for qt an empirical distribution from t samples. A regret
bound Rλt = O(

√
t log t) for that algorithm is in Appendix E.2. The sample complexity is then

bounded by Theorem 2.

Computational complexity: t best-response oracle calls at time step t.

Online Gradient Descent. While the learning problem for λ is hard in general, in several common
cases the sets ¬i have a simple structure. If these sets are unions of a finite number J of convex
sets and λ 7→ d(µ, λ) is convex (i.e. for Gaussian or Bernoulli arm distributions), then we can use
off-the-shelf regret algorithms. One gradient descent learner can be used on each convex set, and
these J experts are then aggregated by an exponential weights algorithm. This procedure would have
O(
√
t) regret. The computational complexity is J (convex) best-response oracle calls per time step.

3.3 Optimistic Track-and-Stop.

At stage t, this algorithm computes (µ+, it) = argmaxξ,i supw∈4K infλ∈¬i
∑K
k=1 w

kd(ξk, λk)

where ξ ranges over all points in ΘK in a confidence region around µ̂t−1 and i ∈ I. Then, the
k-player plays wt such that there exists a Nash equilibrium (wt, qt) of the game with reward
d(µ+k, λk). The proof of its sample complexity bound proceeds slightly differently from the sketch
of part 2.3, although the ingredients are still the GLRT, concentration, optimism and game-solving.
The proof of the following lemma can be found in appendix E.2.

Lemma 4. Take b = 1 in the definition of f(t). Let h(t) = 2
√
tDµ + 3L

√
2σ2f(t)(K2 + (2

√
2 +

1/3)
√
Kt) + f(t)(K2 + 2K log(t/K)) + KD. Then the expected sample complexity is at most

T0(δ) + 2eK
a2 , where T0(δ) is the maximal t ∈ N such that t ≤ (β(t, δ) + h(t))/Dµ .

Note: the K2 factors are due to the tracking. We conjecture that they should be K logK instead.

Computational complexity: one max-max-min oracle call per time step.
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D-C D-D M-C M-D T-C T-D O-C O-D RR opt
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practical

(a) Best Arm for Bernoulli bandit model µ =
(0.3, 0.21, 0.2, 0.19, 0.18). The oracle weights are
w∗ = (0.34, 0.25, 0.18, 0.13, 0.10).

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

2500

5000

7500

10000

lower bd
practical

(b) Minimum Threshold for Gaussian bandit model
µ = (0.5, 0.6) with threshold γ = 0.6, w∗ = e1.
Note the excessive sample complexity of T-C/ T-D.

Figure 1: Selected experiments. In both cases δ = 0.1. Plots based on 3000 and 5000 runs.

This algorithm is the most computationally expensive but has the best sample complexity upper
bound, has a simpler proof and works well in experiments where computing the max-max-min oracle
is feasible, like the Best Arm and Minimum Threshold problems (see section 4).

4 Experiments

The goal of our experiments is to empirically validate Algorithm 1 on benchmark problems for
practical δ. We use stylised stopping threshold β(δ, t) = ln 1+ln t

δ and exploration bonus f(t) = ln t.
Both are unlicensed by theory yet conservative in practise (the error frequency is way below δ). We
use the following letter coding to designate sampling rules: D for AdaHedge vs Best-Response as
advocated in Section 3.1, T for Track-and-Stop of [13], M for the Gradient Ascent algorithm of [24],
O for Optimistic Track-and-Stop from Section 3.3, RR for uniform, and opt for following the oracle
proportionsw∗(µ). We also ran all our experiments on a simplification of D that uses a single learner
instead of partitioning the rounds according to it. We omit it from the results, as it was always within
a few percent of D. We append -C or -D to indicate whether cumulative (Nt  

∑
s≤tws) or direct

(Nt  twt) tracking [13] is employed. We finally note that we tune the learning rate of M in terms
of (the unknown) Dµ.

We perform two series of experiments, one on Best Arm instances from [13, 24], and one on
Minimum Threshold instances from [20]. Two selected experiments are shown in Figure 1, the
others are included in Appendix G. We contrast the empirical sample complexity with the lower
bound kl(δ, 1− δ)/Dµ, and with a more “practical” version, which indicates the time t for which
t = β(t, δ)/Dµ, which is, approximately, the first time at which the GLRT stopping rule crosses the
threshold β.

We see in Figures 1(a) and 1(b) that direct tracking -D has the advantage over cumulative tracking -C
across the board, and that uniform sampling RR is sub-optimal as expected. In Figure 1(a) we see
that T performs best, closely followed by M and O. Sampling from the oracle weights opt performs
surprisingly poorly (as also observed in [26, Table 1]). The main message of Figure 1(b) is that T can
be highly sub-optimal. We comment on the reason in Appendix G.2. Asymptotic optimality of T
implies that this effect disappears as δ → 0. However, for this example this kicks in excruciatingly
slowly. Figure 5 shows that T is still not competitive at δ = 10−20. On the other hand, O performs
best, closely followed by M and then D. Practically, we recommend using O if its computational cost
is acceptable, M if an estimate of the problem scale is available for tuning, and D otherwise.

The gap between opt and T (or O) shows that Track-and-Stop outperforms its design motivation. It
is an exciting open problem to understand exactly why, and to optimise for stopping early (Nt/t ≈
w∗(µ̂t)) while ensuring optimality (Eµ[Nτ ]/Eµ[τ ] ≈ w∗(µ)).
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5 Conclusion

We leveraged the game point of view of the pure exploration problem, together with the use of the
optimism principle, to derive algorithms with sample complexity guarantees for non-asymptotic
confidence. Varying the flavours of optimism and saddle-point strategies leads to procedures with
diverse tradeoffs between sample and computational complexities. Our sample complexity bounds
attain asymptotic optimality while offering guarantees for moderate confidence and the obtained
algorithms are empirically sound. Our bounds however most probably do not depend optimally on
the problem parameters, like the number of arms K. For BAI and the Top-K arms problems, lower
bounds with lower order terms as well as matching algorithms were derived by [26]. A generalization
of such lower bounds to the general pure exploration problem could shed light upon the optimal
complexity across the full confidence spectrum.

The richness of existing saddle-point iterative algorithms may bring improved performance over our
relatively simple choices. A smart algorithm could possibly take advantage of the stochastic nature of
the losses instead of treating them as completely adversarial.
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A Likelihood Ratio and Exponential Families

A.1 Canonical one-parameter exponential families

We suppose that all arms have distributions in a canonical one-parameter exponential family. That
is, there is a reference measure ν0 and parameters η1, . . . , ηK ∈ R such that the distribution of arm
k ∈ [K] is defined by

dνk/dν0(x) ∝ eηkx−ψ(ηk) with ψ(η) = logEX∼ν0 eηx .

Let φ be the convex conjugate of ψ, i.e. φ(x) = supy∈dom ψ(xy − ψ(y)). Let Θ ⊂ R be the open
interval on which the first derivative φ′ is defined. The Kullback-Leibler divergence between the
distributions of the exponential family with means µ and λ in Θ is

d(µ, λ) = φ(µ)− φ(λ)− (µ− λ)φ′(λ) .

A distribution ν is said to be σ2-sub-Gaussian if for all u ∈ R, logEX∼ν eu(X−EX∼ν [X]) ≤ σ2

2 u
2. A

canonical one-parameter exponential family has all distributions sub-Gaussian with constant σ2 iff
for all µ, λ ∈ Θ, it verifies d(µ, λ) ≥ 1

2σ2 (µ− λ)2.

A.2 The Generalized log-likelihood ratio

The generalized log-likelihood ratio between the whole model spaceM and a subset Λ ⊆M is

GLRMt (Λ) = log
supµ̃∈M Lµ̃(X1, . . . , Xt)

supλ∈Λ Lλ(X1, . . . , Xt)
.

In the case of a canonical one-parameter exponential family, the likelihood of the model with means
µ is

Lµ(X1, . . . , Xt) =

t∏
s=1

exp(φ′(µks)(Xs − µks) + φ(µks))dν0(Xs)

For ξ,λ ∈M two mean vectors,

log
Lξ(X1, . . . , Xt)

Lλ(X1, . . . , Xt)
=

t∑
s=1

d(Xs, λ
ks)− d(Xs, ξ

ks) =

K∑
k=1

Nk
t [d(µ̂kt , λ

k)− d(µ̂kt , ξ
k)] .

The maximum likelihood estimator µ̃t corresponding to the data X1, . . . , Xt is

µ̃t = argmin
λ∈M

K∑
k=1

Nk
t d(µ̂kt , λ

k) .

The GLR for set Λ is

GLRMt (Λ) = argmin
λ∈Λ

K∑
k=1

Nk
t d(µ̂kt , λ

k)− argmin
λ∈M

K∑
k=1

Nk
t d(µ̂kt , λ

k)

= argmin
λ∈Λ

K∑
k=1

Nk
t d(µ̂kt , λ

k)−
K∑
k=1

Nk
t d(µ̂kt , µ̃

k
t ) .

B Concentration Lemmas

B.1 Concentration bounds

For x > 0, let Ŵ (x) = x+ log(x). Let W−1 be the negative branch of the Lambert W function and
for x ≥ 1, W (x) = −W−1(−e−x). Then

• For x, y ≥ 1, x− log x ≥ y ⇔ x ≥W (y) .
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• For x > 1, Ŵ (x) ≤W (x) ≤ Ŵ (x) + min{ 1
2 ,

1√
x
} .

Lemma 5 ([12]). Let Y k1 , . . . , Y
k
t be i.i.d. random variables in a canonical one-parameter exponen-

tial family with mean µk. Then for α > 0,

Pµ

{
∃s ≤ t, sd(

1

s

s∑
r=1

Y kr , µ
k) ≥ α

}
≤ 2e log(t)e−(α−logα) .

Remark that for s ≤ t, the number of pulls verifies Nk
s ≤ t. For t > e and α = W ((1 + a) log t)

with a > 0, the lemma above implies

Pµ
{
∃s ≤ t, Nk

s d(µ̂ks , µ
k) ≥W ((1 + a) log t)

}
≤ 2e

log t

t1+a
.

Definition 1. Let f(s) = W ((1 + a)(1 + b) log s).

For s ≥ t1/(1+b), W ((1 + a)(1 + b) log s) ≥W ((1 + a) log t), and when the event above happens,

d(µ̂ks , µ
k) ≤ f(s)

Nk
s

.

B.2 Main concentration event

Concentration event for t ≥ 3:

Et =
{
∀s ≤ t,∀k ∈ [K]Nk

s d(µ̂ks , µ
k) ≤W ((1 + a) log t)

}
Lemma 6.

∀t ≥ 3, Pµ(Ect ) ≤ 2eK
log t

t1+a
,

+∞∑
t=3

Pµ(Ect ) ≤ 2eK

a2
.

Proof.
+∞∑
t=3

Pµ(Ect ) ≤ 2eK

+∞∑
t=3

log t

t1+a
≤ 2eK

∫ +∞

x=1

log x

x1+a
dx =

2eK

a2
.

C Tracking

Lemma 7. Let (ws)s∈N ∈ 4N
K be vectors in the simplex withw1, . . . ,wK equal to the basis vectors.

We recursively define for t ∈ N,

∀k ∈ [K], Nk
K = 1 ,

∀t ≥ K + 1, kt = argmin
k

Nk
t−1∑t

s=1 w
k
s

, ∀k ∈ [K], Nk
t =

t∑
s=1

I{ks = k} .

The tie-breaking for the argmin is arbitrary. Then for all t ≥ K, all k ∈ [K],
t∑

s=1

wks − (K − 1) ≤ Nk
t ≤

t∑
s=1

wks + 1 .

Proof. Let Σkt =
∑t
s=1 w

k
s . We start by proving the inequality on the right by induction. At t = K,

for all k, Nk
K = ΣkK = 1.

Suppose now that N i
s ≤ Σis + 1 for all i ∈ [K] and all s ≤ t− 1. We prove that it also holds for t.

If i 6= kt, by the induction hypothesis, N i
t−1 ≤ Σit−1 + 1. We obtain N i

t = N i
t−1 ≤ Σit−1 + 1 ≤

Σit + 1.
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If i = kt, we use that
∑K
j=1N

j
t−1 = t − 1 and

∑K
j=1 Σjt = t to say that minj

Njt−1

Σjt
≤ t−1

t ≤ 1.
Since kt realizes that minimum, we have

Nkt
t

Σktt
=
Nkt
t−1

Σktt
+

1

Σktt
≤ 1 +

1

Σktt
.

The inequality is proved for all k ∈ [K] at t.

The lower bound for N i
t follows from the fact that

∑K
i=1N

i
t =

∑K
i=1 Σit = t.

N i
t = t−

∑
j 6=i

N j
t ≥ t−

∑
j 6=i

(Σjt + 1) = Σit − (K − 1) .

Lemma 8. For t ≥ t0 ≥ 1 and (xs)s∈[t] non-negative real numbers such that
∑t0−1
s=1 xs > 0,

t∑
s=t0

xs√∑s
r=1 xr

≤ 2

√√√√ t∑
s=1

xs − 2

√√√√t0−1∑
s=1

xs .

t∑
s=t0

xs∑s
r=1 xr

≤ log(

t∑
s=1

xs)− log(

t0−1∑
s=1

xs) .

Proof. By concavity of x 7→
√
x, we have

√
x ≤

√
x+ y − y

2
√
x+y

. We obtain xs√∑s
r=1 xr

≤

2(
√∑s

r=1 xr −
√∑s−1

r=1 xr) . The sum is then telescopic. The second result uses the concavity of
x 7→ log(x).

Lemma 9. Let (ws)s∈N ∈ 4N
K be vectors in the simplex. Let Nt be defined as in Lemma 7. Then

K∑
k=1

t∑
s=K

wks√
Nk
s

≤ K2 + 2
√
Kt and

K∑
k=1

t∑
s=K+1

wks√
Nk
s−1

≤ K2 + 2
√

2Kt .

Proof. We first prove the inequality on the left. Let tk0 be the first time such that
∑tk0−1
r=1 wkr > K − 1.

Then
t∑

s=K

wks√
Nk
s

=

tk0−1∑
s=K

wks√
Nk
s

+

t∑
s=tk0

wks√
Nk
s

≤
tk0−1∑
s=K

wks +

t∑
s=tk0

wks√
Nk
s

≤ K +

t∑
s=tk0

wks√
Nk
s

.

By the tracking property of Lemma 7,
t∑

s=tk0

wks√
Nk
s

≤
t∑

s=tk0

wks√∑s
r=1 w

k
r − (K − 1)

.

By Lemma 8,

t∑
s=tk0

wks√∑s
r=1 w

k
r − (K − 1)

≤ 2

√√√√ t∑
s=1

wks − (K − 1)− 2

√√√√ tk0∑
s=1

wks − (K − 1) ≤ 2

√√√√ t∑
s=1

wks .

Putting all these computations together, we obtain

K∑
k=1

t∑
s=K

wks√
Nk
s

≤ K2 + 2

K∑
k=1

√√√√ t∑
s=1

wks ≤ K2 + 2
√
Kt .

We now prove the inequality on the right. For s such that Nk
s−1 ≥ 1, we have Nk

s−1 ≥ 1
2N

k
s . We

remark that this is true for all s ≥ K, apply it to the sum starting from tk0 , and obtain the wanted
inequality.
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D Sample complexity proof

D.1 Upper confidence bounds

At stage t, we compute the empirical mean vector µ̂t−1 and the mixed strategies of the two players
wt and qt. A concentration event ensures that for all k ∈ [K], both µk and µ̂kt−1 belong to an interval
[akt , b

k
t ]. We introduce two types of coordinate-wise upper confidence bounds (UCB). The first type

is a vector Ut ∈ RK such that

∀k ∈ [K],∀ξk ∈ [akt , b
k
t ], Ukt ≥ Eλ∼qt d(ξk, λk) .

The second type is a function of λ, Ukt (λ) such that

∀k ∈ [K],∀λ ∈M,∀ξk ∈ [akt , b
k
t ], Ukt (λ) ≥ d(ξk, λk) .

Let [αkt , β
k
t ] be the intersection of [µmin, µmax] and the interval {ξ ∈ Θ : d(µ̂kt−1, ξ) ≤

f(t−1)

Nkt−1

},
where f is defined in Definition 1 in section B.

Let [att, b
k
t ] = [µmin, µmax] ∩ [µ̂kt−1 −

√
2σ2 f(t−1)

Nkt−1

, µ̂kt−1 +

√
2σ2 f(t−1)

Nkt−1

].

We consider the following UCBs.

1. Ukt
(1)

= max
{
f(t−1)

Nkt−1

,maxξ∈[αkt ,β
k
t ] Eλ∼qt d(ξ, λk)

}
.

2. Ukt
(2)

= max
{
f(t−1)

Nkt−1

,maxξ∈[akt ,b
k
t ] Eλ∼qt d(ξ, λk)

}
.

3. Ukt
(1)

(λ) = max
{
f(t−1)

Nkt−1

,maxξ∈[αkt ,β
k
t ] d(ξ, λk)

}
.

4. Ukt
(2)

(λ) = max
{
f(t−1)

Nkt−1

,maxξ∈[akt ,b
k
t ] d(ξ, λk)

}
.

The UCBs indexed by (2) are larger but potentially easier to compute that the ones indexed by (1),
since akt and bkt are easier to compute than αkt and βkt . The next lemma simplifies the computation of
the UCBs.
Lemma 10. In all the UCBs introduced, the maximum over the interval is attained at one of the two
extremal points.

Proof. We need to prove that a function of the form ξ 7→ Eλ∼q d(ξ, λk) attains its maximum at an
extremity of any interval. That function has derivative equal to φ′(ξ) − Eλ∼q φ′(λk). Since φ′ is
increasing, that derivative is negative below a point and positive afterwards. Hence the function is
decreasing then increasing. We obtain that its maximum is indeed attained on an extremity of the
interval.

Lemma 11. For all k ∈ [K], all t ∈ N, Ukt
(1) ≤ Ukt

(2)
. Furthermore for all λ ∈ M, Ukt

(1)
(λ) ≤

Ukt
(2)

(λ).

Proof. By the sub-Gaussian assumption 1, [αkt , β
k
t ] ⊆ [akt , b

k
t ].

Lemma 12. Ukt
(1)

and Ukt
(2)

verify ∀ξ ∈ [αkt , β
k
t ], Ukt ≥ Eλ∼qt d(ξ, λk). Ukt

(1)
(λ) and Ukt

(2)
(λ)

verify ∀ξ ∈ [αkt , β
k
t ], Ukt ≥ d(ξ, λk).

Proof. It is true for Ukt
(1) and Ukt

(1)
(λ) by definition and true for Ukt

(2) and Ukt
(2)

(λ) by Lemma 11.

The analysis will proceed identically with Ukt
(1) or Ukt

(2) (resp. Ukt
(1)

(λ) or Ukt
(2)

(λ)), which will
be denoted simply by Ukt (resp. Ukt (λ)). The following lemma is an immediate consequence of the
definition.

14



Lemma 13. All UCBs presented verify Ukt ≥
f(t−1)

Nkt−1

(resp. Ukt (λ) ≥ f(t−1)

Nkt−1

).

This lower bound is the reason the UCBs are computed as the maximum of some expression and
f(t−1)

Nkt−1

. But for Ukt
(2) and Ukt

(2)
(λ), that lower bound is also obtained automatically as soon as

[akt , b
k
t ] ⊆ [µmin, µmax]. Indeed in that case

Ukt
(2) ≥ min{d(µ̂kt−1 −

√
2σ2 f(t−1)

Nkt−1

, µ̂kt−1), d(µ̂kt−1 +

√
2σ2 f(t−1)

Nkt−1

, µ̂kt−1)} .

From the sub-Gaussian assumption, they are both bigger than f(t−1)

Nkt−1

.

D.2 Saddle point algorithms

Let Λ be a subset ofM.
Definition 2. In the context of this proof, an algorithm playing sequences (ws, qs)s≤t ∈ (4K ×
P(Λ))[t] is said to be an approximate optimistic saddle point algorithm with slack xt if

inf
λ∈Λ

t∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥ max

k

t∑
s=1

Eλ∼qs Uks (λ)− xt ,

or inf
λ∈Λ

t∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥ max

k

t∑
s=1

Uks − xt .

We now show two ways to prove that a procedure is an approximate optimistic saddle point algorithm,
introducing either upper bounds Ukt (λ) or Ukt .

Introduce UCBs, then use a saddle point property. We can start by replacing d(µ̂ks−1, λ
k) by an

UCB Uks (λ). Let Cks = supλ∈Λ(Uks (λ)− d(µ̂ks−1, λ
k)).

inf
λ∈Λ

t∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥ inf

λ∈Λ

t∑
s=1

K∑
k=1

wksU
k
s (λ)−

t∑
s=1

K∑
k=1

wksC
k
s .

Consider the following “optimistic” zero-sum games, indexed by t ∈ N: to actions (k,λ) ∈ [K]× Λ
corresponds a reward of Ukt (λ) for the k-player.

An iterative saddle point algorithm attains an (Rλt , R
k
t ) equilibrium at time t on that sequence if

inf
λ∈Λ

t∑
s=1

K∑
k=1

wksU
k
s (λ) +Rλt ≥

t∑
s=1

K∑
k=1

wks Eλ∼qs Uks (λ) ≥ max
k∈[K]

t∑
s=1

Eλ∼qs Uks (λ)−Rkt .

The notations Rλt and Rkt reflect a common strategy to attain such an equilibrium: instan-
tiate two regret minimization algorithms for the two players, with linear losses `wt (w) =

−Eλ∼qt
∑K
k=1 w

kUkt (λ) and `λt (q) = Eλ∼q
∑K
k=1 w

k
t U

k
t (λ). If we do so, the left and right

inequalities are the regret properties of the algorithm for λ and k respectively. At that point we have

inf
λ∈Λ

t∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥ max

k∈[K]

t∑
s=1

Eλ∼qs Uks (λ)−Rλt −Rkt −
t∑

s=1

K∑
k=1

wksC
k
s .

We obtain the desired property with xt = Rλt +Rkt +
∑t
s=1

∑K
k=1 w

k
sC

k
s .

Use a regret property for λ, then introduce UCBs, then use a regret property for
k. We take here for the λ-player a regret minimization algorithm for the loss `λt (q) =∑K
k=1 w

k
t Eλ∼q d(µ̂kt−1, λ

k). It verifies

inf
λ∈Λ

t∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥

t∑
s=1

K∑
k=1

wks Eλ∼qs d(µ̂ks−1, λ
k)−Rλt .
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We now introduce UCBs Uks ,

t∑
s=1

K∑
k=1

wks Eλ∼qs d(µ̂ks−1, λ
k) ≥

t∑
s=1

K∑
k=1

wksU
k
s −

t∑
s=1

K∑
k=1

wksC
k
s .

The k-player uses a regret minimization algorithm for the loss `kt (w) = −
∑K
k=1 w

k
sU

k
s , with regret

Rkt . Let Cks = Uks − Eλ∼qs d(µ̂kt−1, λ
k) .

t∑
s=1

K∑
k=1

wksU
k
s ≥ max

k

t∑
s=1

Uks −Rkt .

We obtain the desired property with xt = Rλt +Rkt +
∑t
s=1

∑K
k=1 w

k
sC

k
s .

D.3 Concentration arguments

Concentration event: Et =
{
∀s ≤ t,∀k ∈ [K], d(µ̂ks , µ

k) ≤ f(t
1/(1+b))
Nks

}
.

Lemma 14. Under the event Et, for all s ∈ [t], k ∈ [K] and λ ∈M,

|d(µk, λk)− d(µ̂ks−1, λ
k)| ≤ L

√
2σ2

f(t1/(1+b))

Nk
s−1

.

Proof. Use the Lipschitz property of x 7→ d(x, y), then the sub-Gaussian assumption and finally the
definition of Et.

Lemma 15. Let Cks = max

{
2L

√
2σ2 f(max{s−1,t1/(1+b)})

Nks−1

, f(max{s−1,t
1/(1+b)})

Nks−1

}
. Let αks and βks

be defined as in section D.1. Under the event Et, for all s ∈ [t], all λ ∈M,

sup
ξ∈[αks ,β

k
s ]

(Uks (λ)− d(ξ, λk)) ≤ Cks ,

sup
ξ∈[αks ,β

k
s ]

(Uks − Eλ∼qs d(ξ, λk)) ≤ Cks .

Proof. Let uks = µ̂ks−1 −
√

2σ2 f(max{s−1,t1/(1+b)})
Nks−1

and vks = µ̂ks−1 +

√
2σ2 f(max{s−1,t1/(1+b)})

Nks−1

.

Under the event Et, for all s ∈ [t], we have µ̂ks−1, µ
k ∈ [uks , v

k
s ]. Uks is defined as the maximum of

f(s−1)

Nks−1

and a maximum over an interval which is contained in [uks , v
k
s ]. If Uks is equal to the latter,

sup
ξ∈[αks ,β

k
s ]

(Uks − Eλ∼qs d(ξ, λk)) ≤ sup
η,ξ∈[uks ,v

k
s ]

|Eλ∼qs d(η, λk)− Eλ∼qs d(ξ, λk)|

≤ L|uks − vks | ≤ 2L

√
2σ2

f(max{s− 1, t1/(1+b)})
Nk
s−1

.

If Uks = f(s−1)

Nks−1

, then supξ∈[αks ,β
k
s ](U

k
s − Eλ∼qs d(ξ, λk)) ≤ Uks = f(s−1)

Nks−1

.

Same computations for Uks (λ), without expectations.

Lemma 16.
t∑

s=K+1

K∑
k=1

wksC
k
s ≤ 2L

√
2σ2f(t)(K2 + 2

√
2Kt) + f(t)(K2 + 2K log(t/K)) .
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Proof. Since Cks is the maximum of two quantities, it is smaller than their sum. By Lemma 9,

t∑
s=K+1

K∑
k=1

wks2L

√
2σ2

f(max{s− 1, t1/(1+b)})
Nk
s−1

≤ 2L
√

2σ2f(t)

t∑
s=K+1

K∑
k=1

wks√
Nk
s−1

≤ 2L
√

2σ2f(t)(K2 + 2
√

2Kt) ,

Similarly,

t∑
s=K+1

K∑
k=1

wks
f(max{s− 1, t1/(1+b)})

Nk
s−1

≤ f(t)

t∑
s=K+1

K∑
k=1

wks
Nk
s−1

≤ f(t)(K2 + 2K log(t/K)) ,

Lemma 17. Under Et, for any λ ∈M,

K∑
k=1

Nk
t d(µ̂kt , λ

k) ≥
K∑
k=1

Nk
t d(µk, λk)− L

√
2σ2Ktf(t) .

Proof. By the Lipschitzness assumption,

K∑
k=1

Nk
t d(µ̂kt , λ

k) ≥
K∑
k=1

Nk
t d(µk, λk)− L

K∑
k=1

Nk
t |µ̂kt − µk| .

Using the sub-Gaussian hypothesis, under Et, |µ̂kt − µk| ≤
√

2σ2d(µ̂kt , µ
) ≤

√
2σ2 f(t)

Nkt
.

K∑
k=1

Nk
t d(µ̂kt , λ

k) ≥
K∑
k=1

Nk
t d(µk, λk)− L

K∑
k=1

Nk
t

√
2σ2

f(t)

Nk
t

=

K∑
k=1

Nk
t d(µk, λk)− L

√
2σ2f(t)

K∑
k=1

√
Nk
t

≥
K∑
k=1

Nk
t d(µk, λk)− L

√
2σ2Ktf(t) .

D.4 The candidate answer

The data seen before time t is summarized in the vector µ̂t−1 ∈ ΘK . That vector does not in general
belong toM.

Our algorithm finds any point in the intersection ofM and the confidence box around µ̂t−1. The
point obtained is denoted by µMt−1 and verifies that for all k ∈ [K], d(µ̂kt−1, µ

Mk
t−1) ≤ f(t−1)

Nkt−1

. The

candidate answer used at time t is then it = i∗(µMt−1).

D.5 When the candidate answer is not the correct answer

Chernoff information. For x, y ∈ Θ, let ch(x, y) = infu∈Θ(d(u, x) + d(u, y)) be the Chernoff
information between x and y.
Assumption 3. There exists ε > 0 such that for all λ ∈ ¬i∗(µ), there exists k ∈ [K] such that
ch(λk, µk) ≥ ε.

If the distributions are sub-Gaussian with parameter σ2, then ch(x, y) ≥ (x−y)2

8σ2 and that assumption
is true for every µ ∈M with Dµ > 0. i.e. Assumption 1 implies Assumption 3.
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Lemma 18. Suppose that Assumption 3 holds for µ ∈M and that for all k ∈ [K], d(µ̂kt−1, µ
k) ≤

log(t−1)

Nkt−1

. If i∗(µMt−1) 6= i∗(µ) then there exists j ∈ [K] such that f(t−1)

Njt−1

≥ ε
2 .

Proof. If i∗(µ̃t−1) 6= i∗(µ) then µMt−1 belongs to the set ¬i∗(µ).

By Assumption 3, there exists j ∈ [K] such that ch(µk, µMt−1
k
) ≥ ε. By definition of ch as an

infimum over Θ, it is smaller than d(µ̂jt−1, µ
j) + d(µ̂jt−1, µ

M
t−1

j
). That sum is then bigger than ε,

with consequence that either d(µ̂jt−1, µ
j) ≥ ε/2 or d(µ̂jt−1, µ

M
t−1

j
) ≥ ε/2.

If d(µ̂jt−1, µ
j) ≥ ε/2, then by hypothesis, f(t−1)

Njt−1

≥ d(µ̂jt−1, µ
j) ≥ ε/2.

Otherwise d(µ̂js−1, µ
M
t−1

j
) ≥ ε/2. By definition of µMt−1, f(t−1)

Njt−1

≥ d(µ̂jt−1, µ
M
t−1

j
). We proved that

f(t−1)

Njt−1

≥ ε
2 .

Linear increase in information. For i ∈ I, let ni(t) be the number of stages s ≤ t in which
is = i. To shorten notations, let i∗ = i∗(µ). The goal of this section is to find a lower bound for
ni∗(t). We do it by showing that when the answer is is not the correct one, a quantity is linearly
increasing, while at the same time being O(

√
t) by a concentration argument. Hence the number of

time steps this can happen is also O(
√
t).

Using that µ ∈ ¬is,

∑
s≤t,is 6=i∗

K∑
k=1

wksd(µ̂ks−1, µ
k) ≥

∑
i∈I\{i∗}

inf
λ∈¬i

∑
s≤t,is=i

K∑
k=1

wksd(µ̂ks−1, λ
k) .

Let εt be the quantity on the left, which will be small by a concentration argument.

The algorithm used when is = i is an optimistic approximate saddle point algorithm with slack
Rkni(t) +Rλni(t) +

∑
s≤t,is=i

∑K
k=1 w

k
sC

k
s . Hence we have

εt ≥
∑

i∈I\{i∗}

max
k

∑
s≤t,is=i

Uks −
∑

i∈I\{i∗}

(Rkni(t) +Rλni(t))−
∑

s≤t,is 6=i∗

K∑
k=1

wksC
k
s .

Note: if UCBs of the form Uks (λ) are used instead of Uks , replace Uks by Eλ∼qs Uks (λ) here and in
the following expressions.

For fixed i ∈ I \ {i∗}, we now shos that the quantity maxk
∑
s≤t,is=i U

k
s increases linearly with

the number of terms of the sum, ni(t). We proved in Lemma 13 that for all s ∈ N and k ∈ [K],
Uks ≥

f(s−1)

Nks−1

. When the event Et holds, for all s ∈ [t1/(1+b), t] with is 6= i∗, there is a js ∈ [K] such

that U jss ≥ ε/2 by Lemma 18.

Let t′ be the last term of the sum and suppose that t′ >
√
t. Let j be such that U jt′ ≥ ε/2. Then for

all s ∈ [dt1/(1+b)e, t′],

f(s− 1)

N j
s−1

≥ f(s− 1)

N j
t′−1

=
f(s− 1)

f(t′ − 1)

f(t′ − 1)

N j
t′−1

≥ f(t1/(1+b))

f(t)
ε/2 .

For t > e, f(t
1/(1+b))
f(t) ≥ 1

3(1+b) . Let Cb = 1/(3(1 + b)).

Hence for that arm j,
∑
s≤t,is=i U

j
s ≥ Cbε(ni(t)− ni(t

1/(1+b)))/2.

18



We conclude that the maximum over k of the sums is also bigger than this quantity. We have shown

εt ≥
∑

i∈I\{i∗}

Cbε

2
(ni(t)− ni(t

1/(1+b)))−
∑

i∈I\{i∗}

(Rkni(t) +Rλni(t))−
t∑

s=K+1

K∑
k=1

wksC
k
s

≥ Cbε

2
(t− t1/(1+b) − ni∗(t))− (|I| − 1)(Rkt +Rλt )−

t∑
s=K+1

K∑
k=1

wksC
k
s .

If n 7→ Rkn and n 7→ Rλn are concave (for example regret proportional to
√
n), the regret term has the

form (|I| − 1)(Rk(t−ni∗ )/(|I|−1) +Rλ(t−ni∗ )/(|I|−1)).

By concentration,

εt ≤ f(t
1/(1+b))

t∑
s=1

K∑
k=1

wks
N t
s−1

≤ f(t)(K2 + 2K log(t/K)) .

We proved

ni∗(t) ≥ t− t
1/(1+b) − 2

Cbε

(
(|I| − 1)(Rkt+Rλt ) + f(t)(K2+2K log(t/K)) +

t∑
s=K+1

K∑
k=1

wksC
k
s

)
(2)

D.6 When the candidate answer is the correct answer

Let t′ ≤ t be the last round in which it′ = i∗ before the algorithm stops. Then t′ ≥ ni∗(t), we have
it′ = i∗ and ni∗(t′) = ni∗(t).

β(t, δ) ≥ β(t′, δ) ≥ inf
λ∈¬it′

K∑
k=1

Nk
t′d(µ̂kt′ , λ

k) = inf
λ∈¬i∗

K∑
k=1

Nk
t′d(µ̂kt′ , λ

k)

≥ inf
λ∈¬i∗

K∑
k=1

Nk
t′d(µk, λk)− L

√
2σ2Ktf(t) .

Using the tracking Lemma 7, then concentration Lemma 14,

β(t, δ) ≥ inf
λ∈¬i∗

t′∑
s=1

K∑
k=1

wksd(µk, λk)−KD − L
√

2σ2Ktf(t)

≥ inf
λ∈¬i∗

t′∑
s=K+1

K∑
k=1

wksd(µ̂ks−1, λ
k)

− L
√

2σ2f(t)

t∑
s=K+1

K∑
k=1

wks√
Nk
s−1

−KD − L
√

2σ2Ktf(t)

≥ inf
λ∈¬i∗

t′∑
s=K+1

K∑
k=1

wksd(µ̂ks−1, λ
k)

− 2L
√

2σ2f(t)(K2 + 2
√

2Kt)−KD − L
√

2σ2Ktf(t)

We drop the rounds in which is 6= i∗.

β(t, δ) ≥ inf
λ∈¬i∗

∑
K+1≤s≤t′,is=i∗

K∑
k=1

wksd(µ̂ks−1, λ
k)

− 2L
√

2σ2f(t)(K2+2
√

2Kt)−KD − L
√

2σ2Ktf(t) .
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The algorithm used is an optimistic approximate saddle point algorithm with slack Rλt + Rkt +∑t
s=1

∑K
k=K+1 w

k
sC

k
s :

inf
λ∈¬i∗

∑
s≤t′,is=i∗

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥ max

k

∑
s≤t′,is=i∗

Uks − (Rλt +Rkt +

t∑
s=K+1

K∑
k=1

wksC
k
s ) .

Let At =
∑t
s=K+1

∑K
k=1 w

k
sC

k
s + 2L

√
2σ2f(t)(K2 + 2

√
2Kt) + KD + L

√
2σ2Ktf(t). We

obtain
β(t, δ) ≥ max

k

∑
K<s≤t′,is=i∗

Uks −Rkt −Rλt −At .

Let tb = t1/(1+b). Since Ut is a coordinate-wise upper confidence bound when concentration holds
(for s ≥ t1/(1+b)), we have

β(t, δ) ≥ max
k

∑
tb≤s≤t′,is=i∗

Eλ∼qs d(µk, λk)−Rkt −Rλt −At

= (ni∗(t
′)− tb) max

k

1

(ni∗(t′)− tb)
∑

t1/(1+b)≤s≤t′,is=i∗
Eλ∼qs d(µk, λk)−Rkt −Rλt −At

≥ (ni∗(t
′)− tb) inf

q∈P(¬i∗)
max
k

Eλ∼q d(µk, λk)−Rkt −Rλt −At

= (ni∗(t
′)− t1/(1+b))Dµ −Rkt −Rλt −At .

t′ is such that ni∗(t′) = ni∗(t). Combining that result and the lower bound on ni∗(t) of equation (2),
we have
β(t, δ) +At +Rkt +Rλt

Dµ
(3)

≥ t− 2t
1/(1+b) − 2

Cbε

(
(|I| − 1)(Rkt +Rλt ) + f(t)(K2 + 2K log(t/K)) +

t∑
s=K+1

K∑
k=1

wksC
k
s

)
.

(4)

D.7 Stopping time upper bound

We can solve equation (3) to find an upper bound for t such that the algorithm does not stop. Suppose
that there exists R > 0 such that Rkt +Rλt ≤ R

√
Kt. Take b = 1. By Lemma 16,∑t

s=K+1

∑K
k=1 w

k
sC

k
s ≤ 2L

√
2σ2f(t)(K2 + 2

√
2Kt) + f(t)(K2 + 2K log(t/K)).

At ≤ 4L
√

2σ2f(t)(K2 + 2
√

2Kt) +KD + L
√

2σ2Ktf(t) + f(t)(K2 + 2K log(t/K)).

We now define

h(t) = 2
√
t+

At +R
√
Kt

Dµ

+
2

Cbε

(
(|I| − 1)R

√
Kt+ 2f(t)(K2+2K log(t/K)) + 2L

√
2σ2f(t)(K2+2

√
2Kt)

)
.

We have that h(t) = O(
√
t log t) and we obtained that if t < τδ then

t− h(t) ≤ β(t, δ)

Dµ
.

E Algorithms

E.1 Optimistic Track and Stop

We prove that under the concentration event Et, there is an upper bound on t such that t < τδ .

Let Cs = {ξ ∈ ΘK : ∀k ∈ [K], d(µ̂ks−1, ξ
k) ≤ f(s−1)

Nks−1

} be a confidence region around µ̂s−1.
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When it 6= i∗(µ). Let i ∈ I \ {i∗(µ)}. Since is¬i∗(µ) implies that µ ∈ ¬is,

∑
s≤t,is=i

K∑
k=1

wksd(µ̂ks−1, µ
k) ≥ inf

λ∈¬i

∑
s≤t,is=i

K∑
k=1

wksd(µ̂ks−1, λ
k) .

Let εit be the left hand side of that inequality. Since µ̂s−1 and µ+
s both belong to Cs, we have

∑
s≤t,is=i

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥

∑
s≤t,is=i

K∑
k=1

wksd(µ+k
s , λk)− L

√
2σ2f(t)

∑
s≤t,is=i

wks√
Nk
s−1

.

By definition of µ+
s ,

inf
λ∈¬i

∑
s≤t,is=i

K∑
k=1

wksd(µ+k
s , λk) ≥

∑
s≤t,is=i

inf
λ∈¬i

K∑
k=1

wksd(µ+k
s , λk) =

∑
s≤t,is=i

Dµ+
s
.

For s ≥ t1/(1+b), µ ∈ Cs and by definition of µ+
s , Dµ+

s
≥ Dµ. We obtain, with ni(t) the number of

times with is = i until t,∑
i∈I\{i∗(µ)}

εit ≥ (t− ni∗(µ)(t)− t1/(1+b))Dµ − L
√

2σ2f(t)
∑
s≤t

wks√
Nk
s−1

≥ (t− ni∗(µ)(t)− t1/(1+b))Dµ − L
√

2σ2f(t)(K2 + 2
√

2Kt) .

See Lemma 9 for that last inequality. By concentration,

∑
i∈I\{i∗(µ)}

εit ≤ f(t)

t∑
s=1

K∑
k=1

wks
Nk
s−1

≤ f(t)(K2 + 2K log(t/K)) .

Finally,

ni∗(µ)(t) ≥ t− t1/(1+b) − 1

Dµ

(
L
√

2σ2f(t)(K2 + 2
√

2Kt) + f(t)(K2 + 2K log(t/K))
)
.

When it = i∗(µ). Let t′ ≥ ni∗(µ)(t) be such that it′ = i∗(µ) and ni∗(µ)(t
′) = ni∗(µ)(t). Using

concentration and tracking properties, as in the main sample complexity proof of Appendix D.6,

β(t′, δ) ≥ inf
λ∈¬i∗(µ)

K∑
k=1

Nk
t d(µ̂kt′ , λ

k)

≥ inf
λ∈¬i∗(µ)

K∑
k=1

Nk
t d(µk, λk)− L

√
2σ2Ktf(t)

≥ inf
λ∈¬i∗(µ)

t′∑
s=1

K∑
k=1

wksd(µk, λk)−KD − L
√

2σ2Ktf(t)

≥ inf
λ∈¬i∗(µ)

t′∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k)

− L
√

2σ2f(t)(K2+2
√

2Kt)−KD − L
√

2σ2Ktf(t)

Since µ̂s−1 and µ+
s both belong to Cs, we have

inf
λ∈¬i∗(µ)

t′∑
s=1

K∑
k=1

wksd(µ̂ks−1, λ
k) ≥ inf

λ∈¬i∗(µ)

t′∑
s=1

K∑
k=1

wksd(µ+k
s , λk)− L

√
2σ2f(t)(K2+2

√
2Kt) .
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Let Bt = 2L
√

2σ2f(t)(K2 + 2
√

2Kt) +KD + L
√

2σ2Ktf(t).

β(t, δ) ≥ inf
λ∈¬i∗(µ)

∑
s≤t′,is=i∗(µ)

K∑
k=1

wksd(µ+k
s , λk)−Bt

≥
∑

s≤t′,is=i∗(µ)

inf
λ∈¬it

K∑
k=1

wksd(µ+k
s , λk)−Bt

=
∑

s≤t′,is=i∗(µ)

Dµ+
s
−Bt .

For s ≥ t1/(1+b), µ ∈ Cs. Then by definition of µ+
s , Dµ+

s
≥ Dµ.

β(t, δ) ≥
∑

t1/(1+b)≤s≤t′,is=i∗(µ)

Dµ −Bt

= (ni∗(µ)(t)− t1/(1+b))Dµ −Bt .

Putting things together. Let h(t) = 3L
√

2σ2f(t)(K2 + 2
√

2Kt) + f(t)(K2 + 2K log(t/K)) +

KD + L
√

2σ2Ktf(t). When the concentration event Et holds, if t < τδ then

β(t, δ) + h(t)

Dµ
≥ t− 2t1/(1+b) .

Let T0(δ) be the maximal t verifying this inequality. Then the expected sample complexity is lower
than T0(δ) + 2eK

a2 . Note that f(t) depends on a and b.

E.2 Follow The Perturbed Leader

In this section, we suppose that the rewards are bounded and we define C > 0 such that for all times
s and k ∈ [K], |Xk

s − µ̂ks−1| ≤ C.

At stage t, the loss of a vector λ is `t(λ) = d(µ̂ktt−1, λ
kt). The only unknown quantity for the

λ-player is kt. We will use the form of that loss in the way we perturb the leader. For σ ∈ RK+ and
ξ ∈ ΘK we define

λt(σ, ξ) = argmin
λ

t−1∑
s=1

`s(λ) +

K∑
k=1

σkd(ξk, λk) .

We study the expected regret of an algorithm playing λt(σt, µ̂t−1) with exponentially distributed
perturbationsσt. Let qt be the distribution ofλt(σt, µ̂t−1). Let µ̃kt−1 = 1

Nkt−1

∑t−1
s=1 µ̂

k
s−1I{ks = k}.

We show in the following lemma that the point λt(σt, µ̂t−1) can be computed by the best-response
oracle, as

argmin
λ∈Λ

K∑
k=1

(Nk
t−1 + σkt )d

(
Nk
t−1

Nk
t−1 + σkt

µ̃kt−1 +
σkt

Nk
t−1 + σkt

µ̂kt−1, λ
k

)
.

Lemma 19. Let (µs)s∈[t] be t points in ΘK . Then

argmin
λ∈Λ

t∑
s=1

d(µkss , λ
ks) = argmin

λ∈Λ

K∑
k=1

Nk
t d(

∑t
s=1 µ

k
sI{ks = k}
Nk
t

, λk) .

Proof. This is an extension of the following property:

argmin
λ

d(µ1, λ) + d(µ2, λ) = argmin
λ

d(
µ1 + µ2

2
, λ) .
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Indeed we can observe that fact by developing the divergence in terms of φ and observing that the
terms depending on λ are the same up to a multiplicative factor.

d(µ1, λ) + d(µ2, λ) = φ(µ1) + φ(µ2)− 2

(
φ(λ) + φ′(λ)(

µ1 + µ2

2
− λ)

)
,

d(
µ1 + µ2

2
, λ) = φ(

µ1 + µ2

2
)−

(
φ(λ) + φ′(λ)(

µ1 + µ2

2
− λ)

)
.

Theorem 3. The expected regret of the FTPL procedure introduced above against an oblivious

adversary, with perturbations σkt = ηkt σ
k
1 with ηkt =

√
Nk
t−1 and σk1 exponential with parameter η is

t∑
s=1

Eλ∼qs `s(λ)− inf
λ∈Λ

t∑
s=1

`s(λ) ≤ Rt =
√
Kt

(
D + 2CL

η
+ 2Dη

)
.

The expected regret of the FTPL algorithm in which the noises are independent in time and σkt is
exponential with parameter η/ηkt is the same.

For non-oblivious adversaries, the quantity
∑t
s=1 Eλ∼qs `s(λ)−infλ∈Λ

∑t
s=1 `s(λ) is also bounded

by the same Rt, according to Lemma 4.1 of [4].

Proof of Theorem 3. Regret decomposition: for any u, the regret compared to u is

t∑
s=1

`s(λs(σs, µ̂s−1))−
t∑

s=1

`s(u) ≤
t∑

s=1

`s(λs(σs, µ̂s−1))− `s(λs+1(σs, µ̂s−1))

+

t∑
s=1

`s(λs+1(σs, µ̂s−1))−
t∑

s=1

`s(u)

Second term of the regret. We are analysing here the regret of a noisy Be-The-Leader. We first
show by induction that

t∑
s=1

`s(λs+1(σs, µ̂s−1))−
t∑

s=1

`s(u)

≤ σᵀ
t d(µ̂t−1, u) +

t∑
s=1

σᵀ
s d(µ̂s−1,λs+1(σs, µ̂s−1))− σᵀ

s−1d(µ̂s−2, λs+1(σs, µ̂s−1))

Initialization: for all u ∈ Λ,

`1(λ2(σ1, µ̂0)) = `1(λ2(σ1, µ̂0)) + σᵀ
1d(µ̂0,λ2(σ1, µ̂0))− σᵀ

1d(µ̂0,λ2(σ1, µ̂0))

≤ `1(u) + σᵀ
1d(µ̂0, u)− σᵀ

1d(µ̂0,λ2(σ1, µ̂0)) .

Let A1(u) = σᵀ
1d(µ̂0, u)− σᵀ

1d(µ̂0,λ2(σ1, µ̂0)). Then for all u ∈ Λ, `1(λ2(σ1, µ̂0))− `1(u) ≤
A1(u).

Induction: suppose that for all u ∈ Λ,
∑t−1
s=1 `s(λs+1(σs, µ̂s−1)) ≤

∑t−1
s=1 `s(u) +At−1(u), with

At−1(u) = σᵀ
t−1d(µ̂t−2, u) +

t−1∑
s=1

σᵀ
s−1d(µ̂s−2,λs+1(σs, µ̂s−1))− σᵀ

s d(µ̂s−1,λs+1(σs, µ̂s−1))
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where σ0 = 0. Apply it to u = λt+1(σt, µ̂t−1).

t∑
s=1

`s(λs+1(σs, µ̂s−1)) ≤
t−1∑
s=1

`s(λt+1(σt, µ̂t−1)) + `t(λt+1(σt, µ̂t−1))

+At−1(λt+1(σt, µ̂t−1))

=

t∑
s=1

`s(λt+1(σt, µ̂t−1)) + σᵀ
t d(µ̂t−1,λt+1(σt, µ̂t−1))

− σᵀ
t d(µ̂t−1,λt+1(σt, µ̂t−1)) +At−1(λt+1(σt, µ̂t−1))

≤
t∑

s=1

`s(u) + σᵀ
t d(µ̂t−1, u)

− σᵀ
t d(µ̂t−1,λt+1(σt, µ̂t−1)) +At−1(λt+1(σt, µ̂t−1)) .

We obtain

At(u)− σᵀ
t d(µ̂t−1, u) = At−1(λt+1(σt, µ̂t−1))− σᵀ

t d(µ̂t−1,λt+1(σt, µ̂t−1))

=

t∑
s=1

σᵀ
s−1d(µ̂s−2,λs+1(σs, µ̂s−1))− σᵀ

s d(µ̂s−1,λs+1(σs, µ̂s−1)) .

End of the induction proof.

We now bound At(u). First we write

At(u)− σᵀ
t d(µ̂t−1, u) =

t∑
s=1

σᵀ
s−1d(µ̂s−2,λs+1(σs, µ̂s−1))− σᵀ

s d(µ̂s−1,λs+1(σs, µ̂s−1))

=

t∑
s=1

σᵀ
s [d(µ̂s−2,λs+1(σs, µ̂s−1))− d(µ̂s−1,λs+1(σs, µ̂s−1))]

+

t∑
s=1

(σs−1 − σs)ᵀd(µ̂s−2,λs+1(σs, µ̂s−1)) .

We now bound separately the two sums. The first one uses the Lipschitz-continuity of d and the fact
that successive µ̂t are not far from each other.

E
t∑

s=1

σᵀ
s [d(µ̂s−2,λs+1(σs, µ̂s−1))− d(µ̂s−1,λs+1(σs, µ̂s−1))]

= E
t∑

s=1

σks−1
s [d(µ̂

ks−1

s−2 , λ
ks−1

s+1 (σs, µ̂s−1))− d(µ̂
ks−1

s−1 , λ
ks−1

s+1 (σs, µ̂s−1))]

≤
t∑

s=1

E[σks−1
s ]L|µ̂ks−1

s−1 − µ̂
ks−1

s−2 | ≤ CL
t∑

s=1

E[σks−1
s ]

1

N
ks−1

s−1

≤ CL

η

t∑
s=1

η
ks−1
s

N
ks−1

s−1

.

For ηkt non-decreasing in t, σs−1 − σs has non-positive coordinates and the second sum is negative.

We obtain

EAt(u) ≤ Eσᵀ
t d(µ̂t−1, u) +

CL

η

t∑
s=1

η
ks−1
s

N
ks−1

s−1

≤ D‖ηt‖1
η

+
CL

η

t∑
s=1

η
ks−1
s

N
ks−1

s−1

.
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First term of the regret. Remark that λt+1(σ, µ̂t−1) = λt(σ + ekt , µ̂t−1) . Let f be the density
of the distribution of σt. In expectation, the first term of the regret is

Eσt [`t(λt(σt, µ̂t−1))− `t(λt+1(σt, µ̂t−1))]

=

∫
σt

[`t(λt(σt, µ̂t−1))− `t(λt(σt + ekt , µ̂t−1))]f(σt)dσt

=

∫
σt

`t(λt(σt, µ̂t−1))(f(σt)− f(σt − ekt))dσt

By positivity of `t (since it is a divergence),
Eσt [`t(λt(σt, µ̂t−1))− `t(λt+1(σt, µ̂t−1))]

≤
∫
σt

`t(λt(σt, µ̂t−1))I{f(σt)− f(σt − ekt) > 0}(f(σt)− f(σt − ekt))dσt

≤ D
∫
σt

I{f(σt)− f(σt − ekt) > 0}(f(σt)− f(σt − ekt))dσt

≤ D
∫
σt

I{f(σt)− f(σt − ekt) > 0}f(σt)dσt

= D

∫
σ
kt
t ≤1

f(σt)dσt

= D(1− e−η/η
kt
t )

≤ Dη/ηktt .

Putting things together. Choose ηkt =
√
Nk
t−1.

ERt ≤ D
‖ηt‖1
η

+
CL

η

t∑
s=1

η
ks−1
s

N
ks−1

s−1

+Dη

t∑
s=1

1

ηkss
≤
√
Kt

(
D + 2CL

η
+ 2Dη

)
.

Approximation of qt by an empirical distribution. We want the k-player to use optimistic best-
response to qt. This requires the computation of

argmax
k∈[K]

Ukt with Ukt = max
ξ∈{akt ,bkt }

Eλ∼qt d(ξ, λk) .

for some values akt , b
k
t .

Since we cannot compute an expectation under qt exactly, we compute instead the expectation under
an empirical distribution based on t samples λ(1)

t , . . . ,λ
(t)
t of qt. For all ξ, d(ξ, λk) is bounded by

D. Hence, by Hoeffding’s inequality,

P

1

t

t∑
j=1

d(ξ, λ
(j)k
t )− Eλ∼qt d(ξ, λk) ≥

√
3D2 log(t)

2t

 ≤ 1

t3
.

In the concentration analysis of the algorithm, we replace Et by Et ∩ E ′t with

E ′t =

∀k ∈ [K],∀s ≤ t, ∀ξ ∈ {aks , bks}
1

s

s∑
j=1

d(ξ, λ(j)k
s )− Eλ∼qs d(ξ, λk) ≤ D

√
3 log(t)

2t


It verifies

∑+∞
t=1 P(E ′t

c
) ≤ 2K

∑+∞
t=1 1/t2 ≤ Kπ2/3 .

Under the event E ′t,
t∑

s=1

1

s

s∑
j=1

d(ξ, λ(j)k
s )−

t∑
s=1

Eλ∼qs d(ξ, λk) ≤ D
√

3

2
t log(t) .

We obtain that the procedure based on these empirical distributions has O(
√
t log t) regret.
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F On the statistical assumptions

F.1 The sub-Gaussian assumption

The natural coordinate-wise concentration events for exponential families have the form
Nk
t d(µ̂kt , µ

k) ≤ c for some constant c > 0. In our proofs, we need then to relate d(µ̂kt , λ
k)

and d(µk, λk) for a given λk under such a concentration constraint. However, we now show that for
some convex function φ (such that d is the associated Bregman divergence), these two quantities
could be very far apart even under the constraint d(µ̂kt , µ

k) = 0.

If d(µ̂kt , µ
k) = 0, we have the equalities

d(µ̂kt , λ
k)− d(µk, λk) = d(µ̂kt , µ

k) + (µ̂kt − µk)(φ′(µk)− φ′(λk))

= (µ̂kt − µk)(φ′(µk)− φ′(λk)) .

Let φ : R→ R be defined by φ(x) = max{0, x}. Let λk = 1, µk = −1 and µ̂kt < −1. Then

d(µ̂kt , µ
k) = 0 ,

d(µ̂kt , λ
k)− d(µk, λk) = |µ̂kt − µk| .

In that example, the constraint on d(µ̂kt , µ
k) is not sufficient to bound d(µ̂kt , λ

k)− d(µk, λk).

The example exploits the piecewise linearity of φ. Such a function φ cannot arise from an exponential
family. Indeed, for an exponential family φ is the convex conjugate of a cumulant generating function.
In particular, φ is strictly convex. But it could still have very low curvature (for example for an
exponential distribution with high mean). The sub-Gaussian assumption ensures that φ is strongly
convex.

Our work and previous parametric pure exploration papers treat d as a general Bregman divergence.
The present example shows that either we need to also use more specific properties of d due to
the fact that it is a Kullback-Leibler divergence, or we need to impose additional assumptions like
sub-Gaussianity.

F.2 The upper bound assumption

A first way to relax the assumption thatM ⊆ [µmin, µmax]K is to remark that we do not need to
bound d(µ, λ) for any µ and λ.

For µ ∈M andw ∈ 4K , let λ(µ,w) = argminλ∈¬i
∑K
k=1 w

kd(µk, λk). Our proofs are valid for
example under the following assumption.

Assumption 4. There exists D > 0 and L > 0 such that for all w ∈ 4K , for all µ ∈ M,
‖d(µ,λ(µ,w))‖∞ ≤ D and ‖φ′(µ)− φ′(λ(µ,w))‖∞ ≤ L.

We could also use the concentration events to replace it with weaker hypotheses. Under event Et and
with Assumption 1, for all s ≤ t, ‖d(µ̂s,µ)‖∞ ≤ f(t) and ‖µ̂s − µ‖∞ ≤

√
2σ2f(t). That is, we

get from concentration only, without assumptions, that µ̂t is in a bounded set around µ. We can then
quantify L and D on that set.

Let Lµ = supw∈4k maxk |φ′(µk)− φ′(λ(µ,w)k)|.

Assumption 5. For all µ ∈M, Lµ is finite.

This is true for BAI, where Lµ ≤ φ′(maxk µ
k)− φ′(mink µ

k).

Assumption 6. There exists M > 0 such that µ 7→ Lµ is M -Lipschitz for the `∞ norm.

This is true for BAI on sets on which φ′ is Lipschitz. For example, it is true on R for Gaussian arm
distributions, but is still only true in intervals of the form [ε, 1− ε] for Bernoulli distributions.
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Then for any µ, ξ and λµ minimal point for µ, for any coordinate k ∈ [K] (omitted in the computa-
tions),

d(µ, λµ) = d(ξ, λµ) + (µ− ξ)(φ′(µ)− φ′(λµ))− d(ξ, µ)

≥ d(ξ, λµ)− |µ− ξ|Lµ − d(ξ, µ)

≥ d(ξ, λµ)− |µ− ξ|Lξ −M(µ− ξ)2 − d(ξ, µ)

≥ d(ξ, λµ)− Lξ
√

2σ2 min{d(µ, ξ), d(ξ, µ)} − 2σ2M min{d(µ, ξ), d(ξ, µ)} − d(ξ, µ)

Examples for the quantities used in the proofs:

d(µ, λµ) ≥ d(µ̂s−1, λµ)− Lµ
√

2σ2d(µ̂s−1, µ)− d(µ̂s−1, µ)

d(µ̂t, λµ̂t) ≥ d(µ, λµ̂t)− Lµ
√

2σ2d(µ̂t, µ)− 2σ2Md(µ̂t, µ)− d(µ, µ̂t)

The proofs must then be adapted to account for the additional terms in these inequalities.

G Numerical Experiments

G.1 Best Arm

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

5.0×103

1.0×104

1.5×104
lower bd
practical

(a) Bernoulli bandit µ = (0.5, 0.45, 0.43, 0.4),
w∗ = (0.42, 0.39, 0.14, 0.06)

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

1000

2000

3000

4000

5000
lower bd
practical

(b) Bernoulli bandit µ =
(0.3, 0.21, 0.2, 0.19, 0.18), w∗ =
(0.34, 0.25, 0.18, 0.13, 0.10)

Figure 2: Best Arm experiments from [13]. In both cases δ = 0.1. Plots show 3000 runs.
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(a) δ = 0.1

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

2500

5000

7500

10000

lower bd
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(b) δ = 0.01

Figure 3: Best Arm experiment from [24]. Gaussian bandit µ = (1., 0.85, 0.8, 0.7), w∗ =
(0.41, 0.38, 0.15, 0.06). Plots show 3000 runs.
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G.2 Minimum Threshold

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

100

200

300

400 lower bd
practical

(a) Gaussian bandit µ = (−1, . . . , 1) withK = 10
arms and δ = e−23,w∗ = e1

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

200

400

600

lower bd
practical

(b) Gaussian bandit µ = (0.5, . . . , 1) with
K = 5 arms and δ = e−7, w∗ =
(0.38, 0.24, 0.17, 0.12, 0.09)

Figure 4: Minimum Threshold experiments from [20] with threshold γ = 0. Plots show 5000 runs.
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(a) δ = 0.1
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(b) δ = 0.0001
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(c) δ = 10−10
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lower bd
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(d) δ = 10−20

Figure 5: Minimum Threshold experiment (new): Gaussian bandit µ = (0.5, 0.6) with threshold
γ = 0.6, w∗ = e1. Note the excessive sample complexity of Track-and-Stop (T-C and T-D). Plots
show 5000 runs.

The reason for the bad performance of Track-and-Stop in Figure 5 is that with small but non-negligible
probability the algorithm finds µ̂1

t � γ estimated too high at some early t. In this situationw∗(µt)
will be e2 (exactly if µ̂2

t ≤ γ, approximately if µ̂2
t > γ), and constantly pulling arm 2 will not correct

the estimate of arm 1. T relies on forced exploration to correct the estimate.
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