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A Proof of the Theorems and Propositions

We begin with the Darmois-Skitovitch Theorem [Kagan et al., 1973].
Darmois-Skitovitch Theorem (D-S Theorem): Define two random variables X1 and X2 as linear
combinations of independent random variables ni(i = 1, ..., q):

X1 =

q

∑
i=1

αini, X2 =

q

∑
i=1

βini.

Then, if X1 and X2 are independent, all variables nj for which αjβj ≠ 0 are Gaussian. In other
words, if there exists a non-Gaussian nj for which αjβj ≠ 0, X1 and X2 are dependent.

A.1 Proof of the Theorem 1

Theorem 1. Let La and Lb be two directed connected latent variables without confounders and
let {Xi} and {Xj , Xk} be their children, respectively. Then if {Xi, Xj} and Xk violate the Triad
constraint, La → Lb holds. In other words, if the Triad condition is violated and the latent variables
have no confounders, then the latent variable of the reference variable is a child of the other latent
variable.

Proof. For La and Lb, there are two possible causal relations, La → Lb and Lb → La, corresponding
to the causal structure (a) and (b) in Figure 1.
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Figure 1: Identification of causal direction between two latent variables based on Triad constraints

In the non-trivial case, the causal strengths α, a, b and c are not equal to 0.

As the variables strictly follow linear assumption, for the structure (a), we obtain

La = εLa
,

Lb = αLa + εLb
= αεLa

+ εLb
, (1)

Xi = aLa + εXi
= aεLa

+ εXi
,

Xj = bLb + εXj
= bαεLa

+ bεLb
+ εXj

,

Xk = cLb + εXk
= cαεLa

+ cεLb
+ εXk

. (2)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Then E(i,j ∣k) is as follows:

E(i,j ∣k) = Xi −
Cov(Xi, Xk)
Cov(Xj , Xk)

⋅Xj

= aεLa
+ εXi

− t ⋅ (bαεLa
+ bεLb

+ εXj
),

= (a − αtb)εLa
+ εXi

− tbεLb
− tεXj

, (3)

where t = αacVar(εLa )
(α)2bcVar(εLa )+bcVar(εLb

) ≠ 0.

For {Xi, Xj} and Xk, based on Equation (3) and Equation (2), we can find that they have one
common non-Gaussian noise εLb

and tb ≠ 0, c ≠ 0. Hence, by D-S theorem, we have E(i,j ∣k) é Xk,
i.e., {Xi, Xj} and {Xk} violate the Triad constraint.

Similarly for the structure (b), we have
Lb = εLb

,

La = αLb + εLa
= αεLb

+ εLa
, (4)

Xi = aLa + εXi
= aαεLb

+ aεLa
+ εXi

,

Xj = bLb + εXj
= bεLb

+ εXj
,

Xk = cLb + εXk
= cεLb

+ εXk
. (5)

Then the pseudo residual E(i,j ∣k) is as below.

E(i,j ∣k) = Xi −
Cov(Xi, Xk)
Cov(Xj , Xk)

⋅Xj

= aαεLb
+ aεLa

+ εXi
−
aα

b
⋅ (bεLb

+ εXj
)

= aεLa
+ εXi

−
aα

b
εXj

. (6)

For {Xi, Xj} and Xk, based on Equation (6) and Equation (5), we find that there is no common
non-Gaussian, independent component shared by E(i,j ∣k) and Xk. According to D-S Theorem, we
reach the result that E(i,j ∣k) ⫫ Xk, i.e., {Xi, Xj} and {Xk} satisfy the Triad constraint. This finishes
the proof.

A.2 Proof of the Theorem 2

Theorem 2. Let S be a set of correlated variables. If ∀Xi, Xj ∈ S and ∀Xk ∈ X \ S, {Xi, Xj}
and Xk satisfy the Triad constraints, then S is a cluster.

Proof. The proof is done by contradiction. Assume S is not a cluster, the elements in S must have
at least two different parental latent variables. Without loss of generality, let La and Lb be the two
latent variables, and let their children be {Xi, Xj} and {Xk, Xl}, respectively. There are two cases to
consider.

Case 1). When there is a causal relationship between La and Lb, e.g., La is the ancestor of Lb. We
know that Xk contains the noise εLb

while Xi and Xj do not. Since S is a correlated variable set,
then Xi, Xj , and Xk are related, i.e., Cov(Xi, Xj) ≠ 0 and Cov(Xk, Xj) ≠ 0. By E(i,k ∣ j) = Xi −
Cov(Xi,Xj )
Cov(Xk,Xj ) ⋅Xk, we obtain that E(i,k ∣ j) must contain εLb

. According to D-S Theorem, E(i,k ∣ j) é Xj ,
i.e., {Xi, Xk} and Xj violate Triad constraint, which contradicts the original assumption.

Case 2). When there is no causal relationship between La and Lb. Since S is a correlated variable set,
we know La é Lb. Therefore, La and Lb have at least one common ancestor. This structure shows
that {Xi, Xj} and {Xk, Xl} contain respective latent variable noises, i.e., εLa

and εLb
. Therefore,

E(i,k ∣ j) and E(i,k ∣ l) both contain εLa
and εLb

. Based on the D-S Theorem , E(i,k ∣ j) é Xj and
E(i,k ∣ l) é Xl, i.e., {Xi, Xk} and Xj violate Triad constraint, and so do {Xi, Xk} and Xl. This
contradicts the original assumption.

Based on the above analysis, Theorem 2 holds.
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A.3 Proof of the Proposition 1

Proposition 1. Let C1 and C2 be two clusters. If C1 and C2 are overlapping, C1 and C2 share a
same latent parent.

Proof. Since C1 and C2 are two clusters, then the elements in C1 have only one common latent
variable. Without loss of generality, we let L1 denote the parental latent variable of C1. Similarly, L2

denotes the parental latent variable of C2. Since C1 and C2 are overlapping, then they have at least
one shared element. Let Xi denote the shared element of C1. then Xi has two latent parents L1 and
L2, which contradicts with Theorem 1. This finishes the proof.

A.4 Proof of the Proposition 2

Proposition 2. Given a latent variable Lr and its two children{Vi, Vj}, Lr is a root latent variable
if and only if E(i,j∣k) ⫫ Vk holds for all the Vk, where Vk is a child of any other latent variables.

Proof. (i) "⇒" Since Lr is a root latent variable, there is no confounder between Lr and another
latent variables. Based on Theorem 1, we reach the conclusion that E(i,j∣k) ⫫ Vk holds for all Vk.

(ii) "⇐" This part of proof is proved by contradiction. Assume Lr is not a root variable, Lr has at
least one parent. Considering the following two cases. Case 1: Lr has only one parent. Let Ls denote
the parent of Lr and {Vk} denote a child of Ls. Based on Theorem 1, E(i,k∣j) is not independent of
Vj . Case 2: Lr has more than one parent, e.g., Ls and Lt, where their children variables are {Vk} and
{Vl} respectively. If Ls ⫫ Lt, based on the Theorem 1, one can find that E(i,k∣j) is not independent
of Vj and that E(i,l∣j) is not independent of Vj . If Ls é Lt and Ls → Lt, due to linear assumption,
E(i,p∣j) always contains noise εLt

and Vp also contains this noise variable. According to D-S theorem,
E(i,p∣j) is not independent of Vp; Similarly, when Ls é Lt and Ls ← Lt, E(i,k∣j) is not independent
of Vk. The results of Case 1 and Case 2 show that the assumption does not hold, and Lr is a root
variable. This finishes the proof.

B The correctness of Phase 2

We illustrate the correctness of Phase 2, especially the procedure of learning causal order of latent
variables recursively, with the example in our paper.
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Figure 2: The considerd structure in our paper, where (a) is the ground truth graph, (b) is the
equivalent graph of (b)

In phase 1, we have get three clusters {{X1, L4},{X4, X5},{X6, L5}} and their latent variables are
L1, L2 and L3, respectively. Next, we will show the process of Phase 2 step by step.

Note that, although we can not get the observed values of latent variables L4 and L5, we can use the
values of their pure child as surrogates (This is because linear causal models are transitive). Here, we
use X2 and X7 to replace L4 and L5, respectively, where ε′X2

= bλεL4
+ εX2

and ε′X7
= fεL5

+ εX7

(See Figure 3).
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We obtain,

X1 = aL1 + εX1
,

X2 = bλL1 + ε
′
X2
,

X4 = cL2 + εX4
= c(αL1 + εL2

) + εX4
= cL

′
2 + cαL1 + εX4

,

X5 = dL2 + εX5
= d(αL1 + εL2

) + εX5
= dL

′
2 + dαL1 + εX5

, (7)

X6 = eL3 + εX6
= e((γ + αβ)L1 + βεL2

+ εL3
) + εX6

= eL
′
3 + e(γ + αβ)L1 + εX6

,

X7 = fθL3 + ε
′
X7

= fθ((γ + αβ)L1 + βεL2
+ εL3

) + ε′X7

= fθL
′
3 + fθ(γ + αβ)L1 + ε

′
X7
, (8)

We can then learn the causal structure of latent variable step by step in the following way.

• First, according to the Proposition 2, we know that{X1, X2} correspond to the root latent
cause.

• Next, we are ready to find the causal direction between the latent variables L2 and L3.
Let us consider the pseudo residual variables E(i,k ∣ l) instead of Xi, where i ∈ {4, 5, 6, 7},
k ∈ {1, 2}, l ∈ {1, 2} and k ≠ l. For convenience, we let L′2 ∶= εL2

and L′3 ∶= βεL2
+ εL3

.
Then, we update the rest of variables by {X1, X2},

E(4,1 ∣2) = X4 −
Cov(X4, X2)
Cov(X1, X2)

⋅X1 = cL
′
2 + εX4

−
cα
a ⋅ εX1

(9)

E(6,1 ∣2) = e((γ + αβ)L1 + βεL2
+ εL3

) + εX6
−
e((γ + αβ)

a (aL1 + εX1
) (10)

= eL
′
3 + εX6

−
e((γ + αβ)

a εX1
.

• Finally, combining equations (7-10) and Theorem 1, one can see that {E(4,1 ∣2), E(6,1 ∣2)} and
X5 satisfy the Triad constraint and that {E(4,1 ∣2), E(6,1 ∣2)} and X7 violate it. Figure 4
gives the graphical representations of the relationships among those variables, from which
the above conclusion can be immediately seen. Thanks to this asymmetry, we know that the
latent variable L2, which generated {X4, X5}, is a cause of L3, which generated {X6, X7}.
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Figure 3: Using the Triad constraint to determine the direction between L2 and L3. (a)
{E(4,1 ∣2), E(6,1 ∣2)} and X5 satisfy the Triad constraint. (b) {E(4,1 ∣2), E(6,1 ∣2)} and X7 violate the
Triad constraint. The influences of noise terms are shown by dashed lines; note that the noise terms
are mutually independent in each case.
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