
Strategizing against No-regret Learners

Anonymous Author(s)
Affiliation
Address
email

Abstract

How should a player who repeatedly plays a game against a no-regret learner1

strategize to maximize his utility? We study this question and show that under2

some mild assumptions, the player can always guarantee himself a utility of at least3

what he would get in a Stackelberg equilibrium of the game. When the no-regret4

learner has only two actions, we show that the player cannot get any higher utility5

than the Stackelberg equilibrium utility. But when the no-regret learner has more6

than two actions and plays a mean-based no-regret strategy, we show that the7

player can get strictly higher than the Stackelberg equilibrium utility. We provide8

a characterization of the optimal game-play for the player against a mean-based9

no-regret learner as a solution to a control problem. When the no-regret learner’s10

strategy also guarantees him a no-swap regret, we show that the player cannot get11

anything higher than a Stackelberg equilibrium utility.12

1 Introduction13

Consider a two player bimatrix game with a finite number of actions for each player repeated over T14

rounds. When playing a repeated game, a widely adopted strategy is to employ a no-regret learning15

algorithm: a strategy that guarantees the player that in hindsight no single action when played16

throughout the game would have performed significantly better. Knowing that one of the players (the17

learner) is playing a no-regret learning strategy, what is the optimal gameplay for the other player18

(the optimizer)? This question is the focus of our work.19

If this were a single-shot strategic game where learning is not relevant, a (pure or mixed strategy)20

Nash equilibrium is a reasonable prediction of the game’s outcome. In the T rounds game with21

learning, can the optimizer guarantee himself a per-round utility of at least what he could get in a22

single-shot game? Is it possible to get significantly more utility than this? Does this utility depend on23

the specific choice of learning algorithm of the learner? What gameplay the optimizer should adopt24

to achieve maximal utility? None of these questions are straightforward, and indeed none of these25

have unconditional answers.26

Our results. Central to our results is the idea of the Stackelberg equilibrium of the underlying27

game. The Stackelberg variant of our game is a single-shot two-stage game where the optimizer is28

the first player and can publicly commit to a mixed strategy; the learner then best responds to this29

strategy. The Stackelberg equilibrium is the resulting equilibrium of this game when both players30

play optimally. Note that the optimizer’s utility in the Stackelberg equilibrium is always weakly31

larger than his utility in any (pure or mixed strategy) Nash equilibrium, and is often strictly larger.32

Let V be the utility of the optimizer in the Stackelberg equilibrium. With some mild assumptions on33

the game, we show that the optimizer can always guarantee himself a utility of at least (V −ε)T−o(T)34

in T rounds, irrespective of the learning algorithm used by the learner as long as it has the no-regret35

guarantee (see Theorem 4). This means that if one of the players is a learner the other player can36

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

already profit over the Nash equilibrium regardless of the specifics of the learning algorithm employed37

or the structure of the game. Further, if any one of the following conditions is true:38

1. the game is a constant-sum game,39

2. the optimizer’s no-regret algorithm has the stronger guarantee of no-swap regret (see Section 2),40

3. the learner has only two possible actions in the game,41

the learner cannot get a utility higher than V T + o(T) (see Theorem 5, Theorem 6, Theorem 7).42

If the learner employs a learning algorithm from a natural class of algorithms called mean-based43

learning algorithms [Braverman et al., 2018] (see Section 2) that includes popular no-regret algorithms44

like the Multiplicative Weights algorithm, Follow-the-Perturbed-Leader algorithm, we show that45

there exist games where the optimizer can guarantee himself a utility V ′T − o(T) for some V ′ > V46

(see Theorem 8). We note the contrast between the cases of 2 and 3 actions for the learner: in the47

2-actions case even if the learner plays a mean-based strategy, the optimizer cannot get anything more48

than V T + o(T) (Theorem 7), whereas with 3 actions, there are games where he is able to guarantee49

a linearly higher utility.50

Given this possibility of exceeding Stackelberg utility, our final result is on the nature and structure51

of the utility optimal gameplay for the optimizer against a learner that employs a mean-based strategy.52

First, we give a crisp characterization of the optimizer’s asymptotic optimal algorithm as the solution53

to a control problem (see Section 4.2) in N dimensions where N is the number of actions for the54

learner. This characterization is predicated on the fact that just knowing the cumulative historical55

utilities of each of the learner’s actions is essentially enough information to accurately predict the56

learner’s next action in the case of a mean-based learner. These N cumulative utilites thus form an57

N -dimensional “state” for the learner which the optimizer can manipulate via their choice of action.58

We then proceed to make multiple observations that simplify the solution space for this control59

problem. We leave as a very interesting open question of computing or characterizing the optimal60

solution to this control problem; we provide one conjecture of a potential characterization.61

Comparison to prior work. The very recent work of Braverman et al. [2018] is the closest to ours.62

They study the specific 2-player game of an auction between a single seller and single buyer. The63

main difference from Braverman et al. [2018] is that they consider a Bayesian setting where the64

buyer’s type is drawn from a distribution, whereas there is no Bayesian element in our setting. But65

beyond that the seller’s choice of the auction represents his action, and the buyer’s bid represents66

her action. They show that regardless of the specific algorithm used by the buyer, as long as the67

buyer plays a no-regret learning algorithm the seller can always earn at least the optimal revenue68

in a single shot auction. Our Theorem 4 is a direct generalization of this result to arbitrary games69

without any structure. Further Braverman et al. show that there exist no-regret strategies for the buyer70

that guarantee that the seller cannot get anything better than the single-shot optimal revenue. Our71

Theorems 5, 6 and 7 are both a generalization and refinement of this result, as they pinpoint both72

the exact learner strategies and the kind of games that prevent the optimizer from going beyond the73

Stackelberg utility. Braverman et al. show that when the buyer plays a mean-based strategy, the seller74

can design an auction to guarantee him a revenue beyond the per round auction revenue. Our control75

problem can be seen as a rough parallel and generalization of this result.76

Other related work. The first notion of regret (without the swap qualification) we use in the paper77

is also referred to as external-regret (see Hannan [1957], Foster and Vohra [1993], Littlestone and78

Warmuth [1994], Freund and Schapire [1997], Freund and Schapire [1999], Cesa-Bianchi et al.79

[1997]). The other notion of regret we use is swap regret. There is a slightly weaker notion of regret80

called internal regret that was defined earlier in Foster and Vohra [1998], which allows all occurrences81

of a given action x to be replaced by another action y. Many no-internal-regret algorithms have been82

designed (see for example Hart and Mas-Colell [2000], Foster and Vohra [1997, 1998, 1999], Cesa-83

Bianchi and Lugosi [2003]). The stronger notion of swap regret was introduced in Blum and Mansour84

[2005], and it allows one to simultaneously swap several pairs of actions. Blum and Mansour show85

how to efficiently convert a no-regret algorithm to a no-swap-regret algorithm. One of the reasons86

behind the importance of internal and swap regret is their close connection to the central notion of87

correlated equilibrium introduced by Aumann [1974]. In a general n players game, a distribution over88

action profiles of all the players is a correlated equilibrium if every player has zero internal regret.89

When all players use algorithms with no-internal-regret guarantees, the time averaged strategies of90

the players converges to a correlated equilibrium (see Hart and Mas-Colell [2000]). When all players91

2

simply use algorithms with no-external-regret guarantees, the time averaged strategies of the players92

converges to the weaker notion of coarse correlated equilibrium. When the game is a zero-sum game,93

the time-averaged strategies of players employing no-external-regret dynamics converges to the Nash94

equilbrium of the game.95

On the topic of optimizing against a no-regret-learner, Agrawal et al. [2018] study a setting similar96

to Braverman et al. [2018] but also consider other types of buyer behavior apart from learning, and97

show to how to robustly optimize against various buyer strategies in an auction.98

2 Model and Preliminaries99

2.1 Games and equilibria100

Throughout this paper, we restrict our attention to simultaneous two-player bimatrix games G. We101

refer to the first player as the optimizer and the second player as the learner. We denote the set102

of actions available to the optimizer as A = {a1, a2, . . . , aM} and the set of actions available to103

the learner as B = {b1, b2, . . . , bN}. If the optimizer chooses action ai and the learner chooses104

action bj , then the optimizer receives utility uA(ai, bj) and the learner receives utility uL(ai, bj).105

We normalize the utility such that |uA(ai, bj)| ≤ 1 and |uL(ai, bj)| ≤ 1. We write ∆(A) and106

∆(B) to denote the set of mixed strategies for the optimizer and learner respectively. When the107

optimizer plays α ∈ ∆(A) and the learner plays β ∈ ∆(B), the optimizer’s utility is denoted by108

uA(α, β) =
∑M
i=1

∑N
j=1 αiβjuA(ai, bj), similarly for the learner’s utility.109

We say that a strategy b ∈ B is a best-response to a strategy α ∈ ∆(A) if b ∈ argmaxb′ uL(α, b′).110

We are now ready to define Stackelberg equilibrium [Von Stackelberg, 2010].111

Definition 1. The Stackelberg equilibrium of a game is a pair of mixed strategies (α, β) that112

maximizes uA(α, β) under the constraint that β is a best-response to α. We call the value uA(α, β)113

the Stackelberg value of the game.114

A game is zero-sum if uA(ai, bj) + uL(ai, bj) = 0 for all i ∈ [M] and j ∈ [N]; likewise, a game115

is constant-sum if uA(ai, bj) + uL(ai, bj) = C for some fixed constant C for all i ∈ [M] and116

j ∈ [N]. Note that for zero-sum or constant-sum games, the Stackelberg equilibrium coincides with117

the standard notion of Nash equilibrium due to the celebrated minimax theorem [von Neumann,118

1928]. Moreover, throughout this paper, we assume that the learner does not have weakly dominated119

strategies: a strategy b ∈ B is weakly dominated if there exists β ∈ ∆(B \ {b}) such that for all120

a ∈ A, uL(a, β) ≥ uL(a, b).121

We are interested in the setting where the optimizer and the learner repeatedly play the game G for T122

rounds. We will denote the optimizer’s action at time t as at; likewise we will denote the learner’s123

action at time t as bt. Both the optimizer and learner’s utilities are additive over rounds with no124

discounting.125

The optimizer’s strategy can be adaptive (i.e. at can depend on the previous values of bt) or non-126

adaptive (in which case it can be expressed as a sequence of mixed strategies (α1, α2, . . . , αT)).127

Unless otherwise specified, all positive results (results guaranteeing the optimizer can guarantee some128

utility) apply for non-adaptive optimizers and all negative results apply even to adaptive optimizers.129

As the name suggests, the learner’s (adaptive) strategy will be specified by some variant of a low-regret130

learning algorithm, as described in the next section.131

2.2 No-regret learning and mean-based learning132

In the classic multi-armed bandit problem with T rounds, the learner selects one of K options (a.k.a.133

arms) on round t and receives a reward ri,t ∈ [0, 1] if he selects option i. The rewards can be chosen134

adversarially and the learner’s objective is to maximize her total reward.135

Let it be the arm pulled by the learner at round t. The regret for a (possibly randomized) learning136

algorithm A is defined as the difference between performance of the algorithm A and the best arm:137

Reg(A) = maxi
∑T
t=1 ri,t − rit,t. An algorithm A for the multi-armed bandit problem is no-regret138

if the expected regret is sub-linear in T , i.e., E[Reg(A)] = o(T). In addition to the bandits setting139

in which the learner only learns the reward of the arm he pulls, our results also apply to the experts140

3

setting in which the learner can learn the rewards of all arms for every round. Simple no-regret141

strategies exist in both the bandits and the experts settings.142

Among no-regret algorithms, we are interested in two special classes of algorithms. The first is the143

class of mean-based strategies:144

Definition 2 (Mean-based Algorithm). Let σi,t =
∑t
s=1 ri,s be the cumulative reward for pulling145

arm i for the first t rounds. An algorithm is γ-mean-based if whenever σi,t < σj,t − γT , the146

probability for the algorithm to pull arm i on round t is at most γ. An algorithm is mean-based if it is147

γ-mean-based for some γ = o(1).148

Intuitively, mean-based strategies are strategies that play the arm that historically performs the best.149

Braverman et al. [2018] shows that many no-regret algorithms are mean-based, including commonly150

used variants of EXP3 (for the bandits setting), the Multiplicative Weights algorithm (for the experts151

setting) and the Follow-the-Perturbed-Leader algorithm (for the experts setting).152

The second class is the class of no-swap-regret algorithms:153

Definition 3 (No-Swap-Regret Algorithm). The swap regret Regswap(A) of an algorithm A is154

defined as155

Regswap(A) = max
π:[K]→[K]

Reg(A, π) =

T∑
t=1

rπ(it),t − rit,t

where the maximum is over all functions π mapping actions to actions. An algorithm is no-swap-regret156

if the expected swap regret is sublinear in T , i.e. E[Regswap(A)] = o(T).157

Intuitively, no-swap-regret strategies strengthen the no-regret criterion in the following way: no-regret158

guarantees the learning algorithm performs as well as the best possible arm overall, but no-swap-159

regret guarantees the learning algorithm performs as well as the best possible arm over each subset of160

rounds where the same action is played. Given a no-regret algorithm, a no-swap-regret algorithm can161

be constructed via a clever reduction (see Blum and Mansour [2005]).162

3 Playing against no-regret learners163

3.1 Achieving Stackelberg equilibrium utility164

To begin with, we show that the optimizer can achieve an average utility per round arbitrarily close to165

the Stackelberg value against a no-regret learner.166

Theorem 4. Let V be the Stackelberg value of the game G. If the learner is playing a no-regret167

learning algorithm, then for any ε > 0, the optimizer can guarantee at least (V − ε)T − o(T) utility.168

Proof. Let (α, b) be the Stackelberg equilibrium of the game G. Since (α, b) forms a Stackelberg169

equilibrium, b ∈ argmaxb′ uL(α, b′). Moreover, by the assumption that the learner does not have a170

weakly dominated strategy, there does not exist β ∈ ∆(B \ {b}) such that for all a ∈ A, uL(a, β) ≥171

uL(a, b). By Farkas’s lemma [Farkas, 1902], there must exist an α′ ∈ ∆(A) such that for all172

b′ ∈ B \ {b}, uL(α′, b) ≥ uL(α′, b′) + κ for κ > 0.173

Therefore, for any δ ∈ (0, 1), the optimizer can play the strategy α∗ = (1− δ)α+ δα′ such that b174

is the unique best response to α∗ and playing strategy b′ 6= b will induce a utility loss at least κ for175

the learner. As a result, since the leaner is playing a no-regret learning algorithm, in expectation,176

there is at most o(T) rounds in which the learner plays b′ 6= b. It follows that the optimizer’s177

utility is at least V T − δ(V − uL(α′, b))T − o(T). Thus, we can conclude our proof by setting178

ε = δ(V − uL(α′, b)).179

Next, we show that in the special class of constant-sum games, the Stackelberg value is the best that180

the optimizer can hope for when playing against a no-regret learner.181

Theorem 5. Let G be a constant-sum game, and let V be the Stackelberg value of this game. If the182

learner is playing a no-regret algorithm, then the optimizer receives no more than V T + o(T) utility.183

Proof. Let ~a = (a1, · · · , aT) be the sequence of the optimizer’s actions. Moreover, let α∗ ∈ ∆(A)184

be a mixed strategy such that α∗ plays ai ∈ A with probability α∗i = |{t | at = ai}|/T .185

4

Since the learner is playing a no-regret learning algorithm, the learner’s cumulative utility is at least186

maxb′∈B uL(a∗, b′)T−o(T) = − (minb′∈B uA(a∗, b′)T + o(T)), which implies that the optimizer’s187

utility is at most188

max
a∗∈∆(A)

min
b′∈B

uA(a∗, b′)T + o(T) = V T + o(T)

where the equality follows since in a constant-sum game, the Stackelberg value is equal to the189

minimax value by the minimax theorem.190

3.2 No-swap-regret learning191

In this section, we show that if the learner is playing a no-swap-regret algorithm, the optimizer can192

only achieve their Stackelberg utility per round.193

Theorem 6. Let V be the Stackelberg value of the game G. If the learner is playing a no-swap-regret194

algorithm, then the optimizer will receive no more than V T + o(T) utility.195

Proof. Let ~a = (a1, · · · , aT) be the sequence of the optimizer’s actions and let~b = (b1, · · · , bT) be196

the realization of the sequence of the learner’s actions. Moreover, let Pr[~b] be the probability that197

the learner (who is playing some no-swap-regret learning algorithm) plays~b given that the adversary198

plays ~a. Then, the marginal probability for the learner to play bj ∈ B at round t is199

Pr[bt = bj] =
∑

~b:bt=bj

Pr[~b].

Let αbj ∈ ∆(A) be a mixed strategy such that αbj plays ai ∈ A with probability200

α
bj
i =

∑
t:at=ai

Pr[bt = bj]∑
t Pr[bt = bj]

.

Let B̄ = {b ∈ B : bj 6∈ argmaxb′ uL(αbj , b′)} and consider a mapping π such that π(bj) ∈201

argmaxb′ uL(αbj , b′). Then, the swap-regret under π is202 ∑
bj∈B

((
uL(αbj , π(bj))− uL(αbj , bj)

)
·
∑
t

Pr[bt = bj]

)

=
∑
bj∈B̄

((
uL(αbj , π(bj))− uL(αbj , bj)

)
·
∑
t

Pr[bt = bj]

)

≥ δ ·
∑
bj∈B̄

(∑
t

Pr[bt = bj]

)
where δ = minbj∈B̄

(
uL(αbj , π(bj)) − uL(αbj , bj). Therefore, since the learner is playing a no-203

swap-regret algorithm, we have
∑
bj∈B̄ (

∑
t Pr[bt = bj]) = o(T).204

Moreover, for bj ∈ B \ B̄, the optimizer’s utility when the learner plays bj is at most205

uA(αbj , bj) ·
∑
t

Pr[bt = bj] ≤ V ·
∑
t

Pr[bt = bj].

Thus, the optimizer’s utility is at most206 ∑
bj∈B

(
uA(αbj , bj) ·

∑
t

Pr[bt = bj]

)

=
∑

bj∈B\B̄

(
uA(αbj , bj) ·

∑
t

Pr[bt = bj]

)
+
∑
bj∈B̄

(
uA(αbj , bj) ·

∑
t

Pr[bt = bj]

)

≤ V ·
∑

bj∈B\B̄

(∑
t

Pr[bt = bj]

)
+ 1 ·

∑
bj∈B̄

(∑
t

Pr[bt = bj]

)
≤ V T + o(T).

5

207

Theorem 7. Let G be a game where the learner has N = 2 actions, and let V be the Stackelberg208

value of this game. If the learner is playing a no-regret algorithm, then the optimizer receives no209

more than V T + o(T) utility.210

Proof. By Theorem 6, it suffices to show that when there are two actions for the learner, a no-regret211

learning algorithm is in fact a no-swap-regret learning algorithm.212

When there are only two actions, there are three possible mappings from B → B other than the213

identity mapping. Let π1 be a mapping such that π1(b1) = b1 and π1(b2) = b1, π2 be a mapping such214

that π2(b1) = b2 and π2(b2) = b2, and π3 be a mapping such that π3(b1) = b2 and π3(b2) = b1.215

Since the learner is playing a no-regret learning algorithm, we have E[Reg(A, π1)] = o(T) and216

E[Reg(A, π2)] = o(T). Moreover, notice that E[Reg(A, π3)] = E[Reg(A, π1)] + E[Reg(A, π2)] =217

o(T), which concludes the proof.218

4 Playing against mean-based learners219

From the results of the previous section, it is natural to conjecture that no optimizer can achieve more220

than the Stackelberg value per round if playing against a no-regret algorithm. After all, this is true for221

the subclass of no-swap-regret algorithms (Theorem 6) and is true for simple games: constant-sum222

games (Theorems 5) and games in which the learner only has two actions (Theorem 7).223

In this section we show that this is not the case. Specifically, we show that there exist games G where224

an optimizer can win strictly more than the Stackelberg value every round when playing against a225

mean-based learner. We emphasize that the same strategy for the optimizer will work against any226

mean-based learning algorithm the learner uses.227

We then proceed to characterize the optimal strategy for a non-adaptive optimizer playing against228

a mean-based learner as the solution to an optimal control problem in N dimensions (where N is229

the number of actions of the learner), and make several preliminary observations about structure an230

optimal solution to this control problem must possess. Understanding how to efficiently solve this231

control problem (or whether the optimal solution is even computable) is an intriguing open question.232

4.1 Beating the Stackelberg value233

We begin by showing it is possible for the optimizer to get significantly (linear in T) more utility234

when playing against a mean-based learner.235

Theorem 8. There exists a game G with Stackelberg value V where the optimizer can receive utility236

at least V ′T − o(T) against a mean-based learner for some V ′ > V .237

Proof. Assume that the learner is using a γ-mean-based algorithm. Consider the bimatrix game238

shown in Table 1 in which the optimizer is the row player (These utilities are bounded in [−2, 2]239

instead of [−1, 1] for convenience; we can divide through by 2 to get a similar example where utility240

is bounded in [−1, 1]). We first argue that the Stackelberg value of this game is 0. Notice that if the241

optimizer plays Bottom with probability more than 0.5, then the learner’s best response is to play Mid,242

resulting in a −2 utility for the optimizer . However, if the optimizer plays Bottom with probability243

at most 0.5, the expected utility for the optimizer from each column is at most 0. Therefore, in the244

Stackelberg equilibrium, the optimizer will play Top and Bottom with probability 0.5 each, and the245

learner will best respond with purely playing Right.246

Left Mid Right
Top (0,

√
γ) (-2, -1) (-2, 0)

Bottom (0, -1) (-2, 1) (2, 0)
Table 1: Example game for beating the Stackelberg value.

However, the optimizer can obtain utility T − o(T) by playing Top for the first 1
2T rounds and247

then playing Bottom for the remaining 1
2T rounds. Given the optimizer’s strategy, for the first 1

2T248

6

rounds, the learner will play Left with probability at least (1− 2γ) after first
√
γT rounds. For the249

remaining 1
2T rounds, the learner will switch to play Right with probability at least (1− 2γ) between250

(
1+
√
γ

2 + γ)T -th round and (1− γ)T -th round, since the cumulative utility for playing Left is at most251

1
2T ·
√
γ −

√
γ

2 T − γT = −γT and the cumulative utility for playing Mid is at most −γT .252

Therefore, the cumulative utility for the optimizer for the first 1
2T rounds is at least253

(1− 2γ)(
1

2
−√γ)T · 0 +

(
1

2
T − (1− 2γ)(

1

2
−√γ)T

)
· (−2) = −o(T),

and the cumulative utility for the optimizer for the remaining 1
2T rounds is at least254

(1− 2γ)(
1

2
−
√
γ

2
− 2γ)T · 2 +

(
1

2
T − (1− 2γ)(

1

2
−
√
γ

2
− 2γ)T

)
· (−2) = T − o(T).

Thus, the optimizer can obtain a total utility T − o(T), which is greater than V T = 0 for the255

Stackelberg value V = 0 in this game.256

4.2 The geometry of mean-based learning257

We have just seen that it is possible for the optimizer to get more than the Stackelberg value when258

playing against a mean-based learner. This raises an obvious next question: how much utility can259

an optimizer obtain when playing against a mean-based learner? What is the largest α such that an260

optimizer can always obtain utility αT − o(T) against a mean-based learner?261

In this section, we will see how to reduce the problem of constructing the optimal gameplay of a262

non-adaptive optimizer to solving a control problem in N dimensions. The primary insight is that a263

mean-based learner’s behavior depends only on their historical cumulative utilities for each of their264

N actions, and therefore we can characterize the essential “state” of the learner by a tuple of N real265

numbers that represent the cumulative utilities for different actions. The optimizer can control the266

state of the learner by playing different actions, and in different regions of the state space the learner267

plays specific responses.268

More formally, our control problem will involve constructing a path in RN starting at the origin. For269

each i ∈ [N], let Si equals the subset of (u1, u2, . . . , uN) ∈ RN where ui = max(u1, u2, . . . , uN)270

(this will represent the subset of state space where the learner will play action bi). Note that these271

sets Si (up to some intersection of measure 0) partition the entire space RN .272

We represent the optimizer’s strategy π as a sequence of tuples (α1, t1), (α2, t2), . . . , (αk, tk) with273

αi ∈ ∆(A) and ti ∈ [0, 1] satisfying
∑
i ti = 1. Here the tuple (αi, ti) represents the optimizer274

playing mixed strategy αi for a ti fraction of the total rounds. This strategy evolves the learner’s state275

as follows. The learner originally starts at the state P0 = 0. After the ith tuple (αi, ti), the learner’s276

state evolves according to Pi = Pi−1 + ti(uL(αi, b1), uL(αi, b2), . . . , uL(αi, bN)) (in fact, the state277

linearly interpolates between Pi−1 and Pi as the optimizer plays this action). For simplicity, we will278

assume that positive combinations of vectors of the form (uL(αi, b1), uL(αi, b2), . . . , uL(αi, bN))279

can generate the entire state space RN .280

To characterize the optimizer’s reward, we must know which set Si the learner’s state belongs to.281

For this reason, we will insist that for each 1 ≤ i ≤ k, there exists a ji such that both Pi−1 and Pi282

belong to the same region Sji . It is possible to convert any strategy π into a strategy of this form283

by subdividing a step (α, t) that crosses a region boundary into two steps (α, t′) and (α, t′′) with284

t = t′+ t′′ so that the first step stops exactly at the region boundary. If there is more than one possible285

choice for ji (i.e. Pi−1 and Pi lie on the same region boundary), then without loss of generality we286

let the optimizer choose ji, since the optimizer can always modify the initial path slightly so that Pi287

and Pi−1 both lie in a unique region.288

Once we have done this, the optimizer’s average utility per round is given by the expression:289

U(π) =

k∑
i=1

tiuA(αi, bji).

7

Theorem 9. Let U∗ = supπ U(π) where the supremum is over all valid strategies π in this control290

game. Then291

1. For any ε > 0, there exists a non-adaptive strategy for the optimizer which guarantees292

expected utility at least (U∗ − ε)T − o(T) when playing against any mean-based learner.293

2. For any ε > 0, there exists no non-adaptive strategy for the optimizer which can guarantee294

expected utility at least (U∗ + ε)T + o(T) when playing against any mean-based learner.295

Proof. See Appendix.296

Understanding how to solve this control problem (even inefficiently, in finite time) is an interesting297

open problem. In the remainder of this section, we make some general observations which will let us298

cut down the strategy space of the optimizer even further and propose a conjecture to the form of the299

optimal strategy.300

The first observation is that when the learner hasN actions, our state space is trulyN−1 dimensional,301

not N dimensional. This is because in addition to the learner’s actions only depending on the302

cumulative reward for each action, they in fact only depend on the differences between cumulative303

rewards for different actions (see Definition 2). This means we can represent the state of the learner304

as a vector (x1, x2, . . . , xN−1) ∈ RN−1, where xi = ui − uN . The sets Si can be written in305

terms of the xi as Si = {x|xi = max(x1, . . . , xN−1, 0)} for 1 ≤ i ≤ N − 1 and SN = {x|0 =306

max(x1, . . . , xN−1, 0)}.307

The next observation is that if the optimizer makes several consecutive steps in the same region Si,308

we can combine them into a single step. Specifically, assume Pi, Pi+1, and Pi+2 all belong to some309

region Sj , where (αi, ti) sends Pi to Pi+1 and (αi+1, ti+1) sends Pi+1 to Pi+2. Then replacing these310

two steps with
(
αiti+αi+1ti+1

ti+ti+1
, ti + ti+1

)
results in a strategy with the exact same reward U(π).311

Applying this fact whenever possible, this means we can restrict our attention to strategies where all312

Pi (with the possible exception of the final state Pk) lie on the boundary of two or more regions Si.313

Finally, we observe that this control problem is scale-invariant; if π =314

((α1, t1), (α2, t2), . . . , (αn, tn)) is a valid policy that obtains utility U , then λπ =315

((α1, λt1), (α2, λt2), . . . , (αn, λtn)) is another valid policy (with the exception that
∑
ti = λ, not316

1) which obtains utility λU (this is true since all the regions Si are cones with apex at the origin).317

This means we do not have to restrict to policies with
∑
ti = 1; we can choose a policy of any total318

time, as long as we normalize the utility by
∑
ti.319

This generalizes the strategy space, but is useful for the following reason. Consider a sequence of320

steps π which starts at some point P (not necessarily 0) and ends at P . Then if U is the average321

utility of this cycle, then U∗ ≥ U (in particular, we can consider any policy which goes from 0 to P322

and then repeats this cycle many times). Likewise, if we have a sequence of steps π which starts at323

some point P and ends at λP for some λ > 1 which achieves average utility U , then again U∗ ≥ U324

(by considering the policy which proceeds 0 → P → λP → λ2P → . . . (note that it is essential325

that λ ≥ 1 to prevent this from converging back to 0 in finite time).326

These observations motivate the following conjecture.327

Conjecture 10. The value U∗ is achieved by either:328

1. The average utility of a policy starting at the origin and consisting of at most N steps (in329

distinct regions).330

2. The average utility of a path of at most N steps (in distinct regions) which starts at some331

point P and returns to λP for some λ ≥ 1.332

We leave it as an interesting open problem to compute the optimal solution to this control problem.333

8

References334

Shipra Agrawal, Constantinos Daskalakis, Vahab S. Mirrokni, and Balasubramanian Sivan. Robust335

repeated auctions under heterogeneous buyer behavior. In Proceedings of the 2018 ACM Conference336

on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018, page 171, 2018.337

Robert J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical338

Economics, 1(1):67 – 96, 1974. ISSN 0304-4068.339

Avrim Blum and Yishay Mansour. From external to internal regret. In Peter Auer and Ron Meir,340

editors, Learning Theory, 2005.341

Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. Selling to a no-regret buyer. In342

Proceedings of the 2018 ACM Conference on Economics and Computation, pages 523–538. ACM,343

2018.344

Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line prediction and game345

theory. Machine Learning, 51(3):239–261, Jun 2003.346

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and347

Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–485, May 1997. ISSN348

0004-5411.349

Julius Farkas. Theorie der einfachen ungleichungen. Journal für die reine und angewandte Mathe-350

matik, 124:1–27, 1902.351

Dean P. Foster and Rakesh V. Vohra. A randomization rule for selecting forecasts. Operations352

Research, 41(4):704–709, 1993.353

Dean P. Foster and Rakesh V. Vohra. Calibrated learning and correlated equilibrium. Games and354

Economic Behavior, 21(1):40 – 55, 1997.355

Dean P. Foster and Rakesh V. Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 06 1998.356

Dean P. Foster and Rakesh V. Vohra. Regret in the on-line decision problem. Games and Economic357

Behavior, 29(1):7 – 35, 1999.358

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an359

application to boosting. Journal of Computer and System Sciences, 55(1):119 – 139, 1997.360

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games361

and Economic Behavior, 29(1):79 – 103, 1999.362

James Hannan. Approximation to bayes risk in repeated plays. Contributions to the Theory of Games,363

3:97–139, 1957.364

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.365

Econometrica, 68(5):1127–1150, 2000.366

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Computation,367

108(2):212 – 261, 1994.368

John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320,369

1928.370

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,371

2010.372

9

Appendix373

Proof of Theorem 9374

Proof of Theorem 9. Part 1: Let π = ((α1, t1), (α2, t2), . . . , (αk, tk)) be a strategy for the control375

problem which satisfies U(π) ≥ U∗ − 0.5ε. As suggested by π, we will consider the strategy of the376

optimizer where for each i (in order), the optimizer plays mixed strategy αi for tiT rounds. We will377

show that this strategy guarantees an expected utility of (U∗ − ε)T − o(T) for the optimizer .378

Since the learner is mean-based, they are playing a γ-mean-based algorithm for some γ = o(1).379

As in Definition 2, let σj,t be the learner’s cumulative utility from playing action bj for rounds 1380

through t. For 0 ≤ i ≤ k, let τi =
∑i
j=1 ti (with T0 = 0). For τ ∈ [0, 1], let P (τ) be the state of the381

control problem at time τ (linearly interpolating between Pi and Pi+1 if τi ≤ τ ≤ τi+1); note that382

P (τi) = Pi. We will first show that with high probability, |σj,τT − TP (τ)j | ≤ o(T); in other words,383

P (τ) provides a good approximation of the true cumulative utilities of the learner in the repeated384

game.385

To see this, we first claim |E[σj,τT]−TP (τ)j | ≤ k. Fix any round t in [τiT, τi+1T]; this means that386

the optimizer plays strategy αi during round t, and therefore that E[σj,t+1 − σj,t] = uL(α, bj). If387

t+ 1 also belongs to [τiT, τi+1T] (so t/T and (t+ 1)/T both belong to [τi, τi+1]), we also have that388

T (P (t+1
T)j − P (tT)j) = uL(α, b1). Since there are only k intervals, t and t+ 1 belong to the same389

interval for all but k rounds, and since utilities are bounded by 1 it follows that |E[σj,τT]−TP (τ)j | ≤390

k. Now, we also claim that with high probability (at least 1 − 1/T), for all t, |E[σj,t] − σj,t| ≤391

10
√
T log(TN). This follows simply from Hoeffding’s inequality, since each component of σj,t392

is the sum of t independent random variables bounded in [−1, 1]. Together, this implies that393

|E[σj,τT]− TP (τ)j | ≤ o(T).394

We now claim that for sufficiently large T , the learner will play action ji for rounds t ∈ [τiT, τi+1T].395

To see this, recall that Sji is the unique region containing both Pi and Pi+1. Since regions are convex396

with disjoint interiors, this means that the segment connecting Pi and Pi+1 lies in the interior of397

Sji . By the definition of Sji , this implies that there exists some δ > 0 such that for at least 1− 0.5ε398

fraction of τ in the interval [τi, τi+1], P (τ) satisfies P (τ)ji − P (τ)j ≥ δ for all j 6= ji. Since399

|E[σj,τT]− TP (τ)j | ≤ o(T) for all j, this means that for at least a 1− 0.5ε fraction of rounds t in400

[τiT, τi+1T], we have that σji,τT − σj,τT ≥ δT − o(T). For sufficiently large T , this is bigger than401

γT (which is also o(T)).402

Therefore, for each i, for at least (1− 0.5)εtiT rounds, the optimizer plays the mixed strategy α and403

the learner plays action bji . The optimizer’s total expected utility is therefore at least404

k∑
i=1

(1− 0.5ε)tiTuA(αi, bji) = (1− 0.5ε)U(π)T ≥ (1− ε)U∗T.

Part 2:405

Assume there exists such a family (one for each T) of non-adaptive strategies (α1, α2, . . . , αT) for406

the optimizer . Since this strategy must work against any mean-based learner, we will construct a407

bad mean-based learner for this strategy in the following way. Fix γ = T−1/2 (any γ > 2/T will408

work). At any time t, let Jt = {bj |maxi σi,t−σj,t < γT} be the set of actions for the learner whose409

historical performance are within γT of the optimally performing action. The mean-based property410

requires the learner to play an action in Jt with probability at least 1−Kγ. Our mean-based learner411

will choose the worst action in Jt for the optimizer ; that is, the action bj ∈ Jt which minimizes412

uA(αt, bj).413

Now, choose a sufficiently large T0 such that this strategy achieves utility at least (U∗ + 0.5ε) for414

the optimizer against this mean-based learner. We now claim we can construct a solution π to the415

control problem with k = T0 which satisfies U(π) ≥ U∗ + 0.5ε, contradicting the optimality of U∗.416

Consider the protocol π = ((α1, 1/T0), (α2, 1/T0), . . . , (αT0 , 1/T0)). This is not a proper protocol,417

since some of the steps of this protocol might start in one region Sj and end in a different region Sj′ ,418

but for any such steps we can divide them into substeps per region as described earlier.419

10

We now claim that the step (αt, 1/T0) only passes through regions in the set Jt. To see this, note420

that Pt and Pt+1 differ in each coordinate by at most 1/T0 (since all utilities are bounded by 1).421

Therefore if the segment between Pt and Pt+1 passes through a point on the boundary Sj ∩ Sj′422

(where uj = u′j = maxi ui), it must be the case that (Pt)j and (Pt)j′ are both within 2/T0 of423

maxj(Pt)j . By construction (Pt)j = 1
T0
σj,t, so this implies that maxi σi,t − σj,t ≤ 2 ≤ γT , and424

therefore j ∈ Jt (similarly, j′ ∈ Jt).425

Now, if the step (αt, 1/T0) only passes through regions in the set Jt, it obtains utility for the optimizer426

at least minbj∈Jt
1
T0
uA(αt, bj), and thus427

U(π) =
1

T0

∑
t

min
bj∈Jt

uA(αt, bj).

But this sum is exactly the utility of the optimizer against our mean-based learner, which is at least428

(U∗ + 0.5ε)T0. It follows that U(π) ≥ U∗ + 0.5ε, contradicting that U∗ is optimal.429

430

11

	Introduction
	Model and Preliminaries
	Games and equilibria
	No-regret learning and mean-based learning

	Playing against no-regret learners
	Achieving Stackelberg equilibrium utility
	No-swap-regret learning

	Playing against mean-based learners
	Beating the Stackelberg value
	The geometry of mean-based learning

