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Abstract

Within a broad class of generative adversarial networks, we show that discrimi-
nator optimization process increases a lower bound of the dual cost function for
the Wasserstein distance between the target distribution p and the generator dis-
tribution pG. It implies that the trained discriminator can approximate optimal
transport (OT) from pG to p. Based on some experiments and a bit of OT theory,
we propose discriminator optimal transport (DOT) scheme to improve generated
images. We show that it improves inception score and FID calculated by un-
conditional GAN trained by CIFAR-10, STL-10 and a public pre-trained model of
conditional GAN trained by ImageNet.

1 Introduction

Generative Adversarial Network (GAN) [1] is one of recent promising generative models. In this
context, we prepare two networks, a generator G and a discriminator D. G generates fake samples
G(z) from noise z and tries to fool D. D classifies real sample x and fake samples y = G(z). In
the training phase, we update them alternatingly until it reaches to an equilibrium state. In general,
however, the training process is unstable and requires tuning of hyperparameters. Since from the first
successful implementation by convolutional neural nets [2], most literatures concentrate on how to
improve the unstable optimization procedures including changing objective functions [3, 4, 5, 6, 7,
8], adding penalty terms [9, 10, 11], techniques on optimization precesses themselves [12, 13, 14,
15], inserting new layers to the network [16, 17], and others we cannot list here completely.

Even if one can make the optimization relatively stable and succeed in getting G around an equilib-
rium, it sometimes fails to generate meaningful images. Bad images may include some unwanted
structures like unnecessary shadows, strange symbols, and blurred edges of objects. For example,
see generated images surrounded by blue lines in Figure 1. These problems may be fixed by scaling
up the network structure and the optimization process. Generically speaking, however, it needs large
scale computational resources, and if one wants to apply GAN to individual tasks by making use of
more compact devices, the above problem looks inevitable and crucial.

There is another problem. In many cases, we discard the trained discriminator D after the training.
This situation is in contrast to other latent space generative models. For example, variational auto-
encoder (VAE) [18] is also composed of two distinct networks, an encoder network and a decoder
network. We can utilize both of them after the training: the encoder can be used as a data compressor,
and the decoder can be regarded as a generator. Compared to this situation, it sounds wasteful to use
only G after the GAN training.
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Figure 1: Each left image (blue): a sample from generator G. Each right image (red): the sample
modified by our algorithm based on discriminator D. We use here the trained model available on
https://github.com/pfnet-research/sngan_projection .

From this viewpoint, it would be natural to ask how to use trained models G and D efficiently.
Recent related works in the same spirit are discriminator rejection sampling (DRS) [19] and
Metropolis-Hastings GAN (MH-GAN) [20]. In each case, they use the generator-induced distribu-
tion pG as a proposal distribution, and approximate acceptance ratio of the proposed sample based
on the trained D. Intuitively, generated image y = G(z) is accepted if the value D(y) is relatively
large, otherwise it is rejected. They show its theoretical backgrounds, and it actually improve scores
on generated images in practice.

In this paper, we try a similar but more active approach, i.e. improving generated image y = G(z)
directly by adding δy to y such that D(y+δy) > D(y). The optimal transport (OT) theory guaran-
tees that the improved samples can be regarded as approximate samples from the target distribution
p. More concretely, our contributions are

• Proposal of the discriminator optimal transport (DOT) based on the fact that the objective
function for D provides lower bound of the dual cost function for the Wasserstein distance
between p and pG.

• Suggesting approximated algorithms and verifying that they improve Earth Mover’s dis-
tance (EMD) [21], inception score [13] and Fréchet inception distance (FID) [15].

• Pointing out a generality on DOT, i.e. if the G’s output domain is same as the D’s input
domain, then we can use any pair of trained G and D to improve generated samples.

In addition, we show some results on experiment comparing DOT and a naive method of improving
sample just by increasing the value of D, under a fair setting. One can download our codes from
https://github.com/AkinoriTanaka-phys/DOT.

2 Background

2.1 Generative Adversarial Nets

Throughout this paper, we regard an image sample as a vector in certain Euclidean space: x ∈ X .
We name latent space as Z and a prior distribution on it as pZ(z). The ultimate goal of the GAN is
making generator G : Z → X whose push-foward of the prior pG(x) =

∫
Z
pZ(z)δ

(
x−G(z)

)
dz

reproduces data-generating probability density p(x). To achieve it, discriminator D : X → R and

2

https://github.com/pfnet-research/sngan_projection
https://github.com/AkinoriTanaka-phys/DOT


objective functions,
VD(G,D) = Ex∼p [f(−D(x))] + Ey∼pG [f(D(y))] , (1)
VG(G,D) = Ey∼pG [g(D(y))] , (2)

are introduced. Choice of functions f and g corresponds to choice of GAN update algorithm as
explained below. Practically, G and D are parametric models Gθ and Dφ, and they are alternatingly
updated as

φ← φ+ ϵ∇φVD(Gθ, Dφ), (3)
θ ← θ − ϵ∇θVG(Gθ, Dφ), (4)

until the updating dynamics reaches to an equilibrium. One of well know choices for f and g is
f(u) = − log(1 + eu) g(u) = −f(−u). (5)

Theoretically speaking, it seems better to take g(u) = f(u), which is called minimax GAN [22] to
guarantee pG = p at the equilibrium as proved in [1]. However, it is well known that taking (5),
called non-saturating GAN, enjoys better performance practically. As an alternative, we can choose
the following f and g [6, 4]:

f(u) = max(0,−1− u), g(u) = −u. (6)
It is also known to be relatively stable. In addition to it, pG = p at an equilibrium is proved at least
in the theoretically ideal situation. Another famous choice is taking

f(u) = −u, g(u) = u. (7)
The resultant GAN is called WGAN [5]. We use (7) with gradient penalty (WGAN-GP) [9] in
our experiment. WGAN is related to the concept of the optimal transport (OT) which we review
below, so one might think our method is available only when we use WGAN. But we would like to
emphasize that such OT approach is also useful even when we take GANs described by (5) and (6)
as we will show later.

2.2 Spectral normalization

Spectral normalization (SN) [16] is one of standard normalizations on neural network weights to
stabilize training process of GANs. To explain it, let us define a norm for function called Lipschitz
norm,

||f ||Lip := sup
{ ||f(x)− f(y)||2

||x− y||2

∣∣∣x ̸= y
}
. (8)

For example, ||ReLU ||Lip = ||lReLU ||Lip = 1 because their maximum gradient is 1. For linear
transformation lW,b with weight matrix W and bias b, the norm ||lW,b||Lip is equal to the maximum
singular value σ(W ). Spectral normalization on lW,b is defined by dividing the weight W in the
linear transform by the σ(W ):

SN(lW,b) = lW/σ(W ),b. (9)
By definition, it enjoys ||lW/σ(W )||Lip = 1. If we focus on neural networks, estimation of the upper
bound of the norm is relatively easy because of the following property1:

||f ◦ g||Lip ≤ ||f ||Lip · ||g||Lip. (10)
For example, suppose fnn is a neural network with ReLU or lReLU activations and spectral normal-
izations: fnn(x) = SN ◦ lWL ◦ f ◦ SN ◦ lWL−1 ◦ · · · ◦ SN ◦ lW1(x), then the Lipschitz norm is
bounded by one:

||fnn||Lip ≤
L∏

l=1

||lWl/σ(Wl)||Lip = 1 (11)

Thanks to this Lipschitz nature, the normalized network gradient behaves mild during repeating
updates (3) and (4), and as a result, it stabilizes the wild and dynamic optimization process of
GANs.

1 This inequality can be understood as follows. Naively, the norm (8) is defined by the maximum gradient
between two different points. Suppose x1 and x2 realizing maximum of gradient for g and u1 and u2 are
points for f , then the (RHS) of the inequality (10) is equal to ||f(u1) − f(u2)||2/||u1 − u2||2 × ||g(x1) −
g(x2)||2/||x1 − x2||2. If g(xi) = ui, it reduces to the (LHS) of the (10), but the condition is not satisfied in
general, and the (RHS) takes a larger value than (LHS). This observation is actually important to the later part
of this paper because estimation of the norm based on the inequality seems to be overestimated in many cases.
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2.3 Optimal transport

Another important background in this paper is optimal transport. Suppose there are two probability
densities, p(x) and q(y) where x,y ∈ X . Let us consider the cost for transporting one unit of mass
from x ∼ p to y ∼ q. The optimal cost is called Wasserstein distance. Throughout this paper, we
focus on the Wasserstein distance defined by l2-norm cost ||x− y||2:

W (p, q) = min
π∈Π(p,q)

(
E(x,y)∼π

[
||x− y||2

])
. (12)

π means joint probability for transportation between x and y. To realize it, we need to restrict π
satisfying marginality conditions,∫

dx π(x,y) = q(y),

∫
dy π(x,y) = p(x). (13)

An optimal π∗ satisfies W (p, q) = E(x,y)∼π∗ [||x−y||2], and it realizes the most effective transport
between two probability densities under the l2 cost. Interestingly, (12) has the dual form

W (p, q) = max
||D̃||Lip≤1

(
Ex∼p

[
D̃(x)

]
− Ey∼q

[
D̃(y)

])
. (14)

The duality is called Kantorovich-Rubinstein duality [23, 24]. Note that ||f ||Lip is defined in (8),
and the dual variable D̃ should satisfy Lipschitz continuity condition ||D̃||Lip ≤ 1. One may wonder
whether any relationship between the optimal transport plan π∗ and the optimal dual variable D∗

exists or not. The following theorem is an answer and it plays a key role in this paper.

Theorem 1 Suppose π∗ and D∗ are optimal solutions of the primal (12) and the dual (14) problem,
respectively. If π∗ is deterministic optimal transport described by a certain automorphism2 T :
X → X , then the following equations are satisfied:

||D∗||Lip = 1, (15)

T (y) = argmin
x

{
||x− y||2 −D∗(x)

}
, (16)

p(x) =

∫
dy δ

(
x− T (y)

)
q(y). (17)

(Proof) It can be proved by combining well know facts. See Supplementary Materials. □

3 Discriminator optimal transport

If we apply the spectral normalization on a discriminator D, it satisfies ||D||Lip = K with a certain
real number K. By redefining it to D̃ = D/K, it becomes 1-Lipschitz ||D̃||Lip = 1. It reminds us
the equation (15), and one may expect a connection between OT and GAN. In fact, we can show the
following theorem:

Theorem 2 Each objective function of GAN using logistic (5), or hinge (6), or identity (7) loss with
gradient penalty, provides lower bound of the mean discrepancy of D̃ = D/K between p and pG:

VD(G,D) ≤ K
(
Ex∼p

[
D̃(x)

]
− Ey∼pG

[
D̃(y)

])
. (18)

(Proof) See Supplementary Materials. □

In practical optimization process of GAN, K could change its value during the training process, but
it stays almost constant at least approximately as explained below.

2 It is equivalent to assume there exists an unique solution of the corresponding Monge problem:

min
T :X→X

(
Ey∼q

[
||T (y)− y||2

])
, constrained by (17).

Reconstructing T ∗ from π∗ without any assumption is a subtle problem and only guaranteed within strictly
convex cost functions [25]. Unfortunately, it is not satisfied in our l2 cost. However, there is a known method
[26] to find a solution based on relaxing the cost to strictly convex cost ||x − y||1+ϵ

2 with ϵ > 0. In our
experiments, DOT works only when ||x − y||2 is small enough for given y. In this case, there is no big
difference between ||x− y||2 and ||x− y||1+ϵ

2 , and it suggests DOT approximates their solution.
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Figure 2: Logs of inception score (left), approximated Lipschitz constant of D (middle), and ap-
proximated Lipschitz constant of D◦G (right) on each GAN trained with CIFAR-10. Approximated
Lipschitz constants are calculated by random 500 pair samples. Errorbars are plotted within 1σ by
500 trials.

3.1 Discriminator Optimal Transport (ideal version)

The inequality (18) implies that the update (3) of D during GANs training maximizes the lower
bound of the objective in (14), the dual form of the Wasserstein distance. In this sense, the optimiza-
tion of D in (3) can be regarded solving the problem (14) approximately3. If we apply (16) with
D∗ ≈ D̃ = D/K, the following transport of given y ∼ pG

TD(y) = argmin
x

{
||x− y||2 −

1

K
D(x)

}
(19)

is expected to recover the sampling from the target distribution p thanks to the equality (17).

3.2 Discriminator Optimal Transport (practical version)

To check whether K changes drastically or not during the GAN updates, we calculate approximated
Lipschitz constants defined by

Keff = max
{ |D(x)−D(y)|
||x− y||2

∣∣∣x,y ∼ pG

}
, (20)

keff = max
{ |D ◦G(z)−D ◦G(zy)|

||z − zy||2

∣∣∣z, zy ∼ pZ

}
, (21)

in each 5,000 iteration on GAN training with CIFAR-10 data with DCGAN models explained in
Supplementary Materials. As plotted in Figure 2, both of them do not increase drastically. It is worth
to mention that the naive upper bound of the Lipschitz constant like (11) turn to be overestimated.
For example, SNGAN has the naive upper bound 1, but (20) stays around 0.08 in Figure 2.

Target space DOT Based on these facts, we conclude that trained discriminators can approximate
the optimal transport (16) by

T eff
D (y) = argmin

x

{
||x− y||2 −

1

Keff
D(x)

}
. (22)

As a preliminary experiment, we apply DOT to WGAN-GP trained by 25gaussians dataset and
swissroll dataset. We use the gradient descent method shown in Algorithm 1 to search transported
point T eff

D (y) for given y ∼ pG. In Figure 3, we compare the DOT samples and naively transported
samples by the discriminator which is implemented by replacing the gradient in Algorithm 1 to
− 1

Keff
∇xD(x) , i.e. just searching x with large D(x) from initial condition x← y where y ∼ pG.

DOT outperforms the naive method qualitatively and quantitatively. On the 25gaussians, one might
think 4th naively improved samples are better than 3rd DOT samples. However, the 4th samples are
too concentrated and lack the variance around each peak. In fact, the value of the Earth Mover’s
distance, EMD, which measures how long it is separated from the real samples, shows relatively
large value. On the swissroll, 4th samples based on naive transport lack many relevant points close
to the original data, and it is trivially bad. On the other hand, one can see that the 3rd DOT samples
keep swissroll shape and clean the blurred shape in the original samples by generator.

3 This situation is similar to guarantee VAE [18] objective function which is a lower bound of the likelihood
called evidence lower bound (ELBO).
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Algorithm 1 Target space optimal transport by gradient descent
Require: trained D, approximated Keff by (20), sample y, learning rate ϵ and small vector δ

Initialize x← y
for ntrial in range(Nupdates) do
x← x− ϵr x

{
||x− y + δ||2 − 1

Keff
D(x)

}
( δ is for preventing overflow. )

end for
return x

EMD 0.052(08) 0.052(10) 0.065(11)

EMD 0.021(05) 0.020(06) 0.160(22)

Figure 3: 2d experiments by using trained model of WGAN-GP. 1,000 samples of, 1st: training
samples, 2nd: generated samples by G, 3rd: samples by target space DOT, 4th: samples by naive
transport, are plotted. Each EMD value is calculated by 100 trials. The error corresponds to 1σ. We
use δ = 0.001. See the supplementary material for more details on this experiment.

Latent space DOT The target space DOT works in low dimensional data, but it turns out to be
useless once we apply it to higher dimensional data. See Figure 4 for example. Alternative, and
more workable idea is regarding D ◦ G : Z → R as the dual variable for defining Wasserstein
distance between “pullback” of p by G and prior pZ . Latent space OT itself is not a novel idea
[27, 28], but there seems to be no literature using trained G and D, to the best of our knowledge.
The approximated Lipschitz constants of G ◦D also stay constant as shown in the right sub-figure
in Figure 2, so we conclude that

T eff
D◦G(zy) = argmin

z

{
||z − zy||2 −

1

keff
D ◦G(z)

}
(23)

approximates optimal transport in latent space. Note that if the prior pZ has non-trivial support, we
need to restrict z onto the support during the DOT process. In our algorithm 2, we apply projection
of the gradient. One of the major practical priors is normal distribution N (0, ID×D) where D
is the latent space dimension. If D is large, it is well known that the support is concentrated on
(D − 1)-dimensional sphere with radius

√
D, so the projection of the gradient g can be calculated

by g − (g · z)z/
√
D approximately. Even if we skip this procedure, transported images may look

improved, but it downgrades inception scores and FIDs.
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