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A.1 Topology of the Graph

Here, we explain the matrix in the Algorithm[I|which are closely related to the topology of the Graph,
which is left from the main paper due to the limit of the space.

e D = diag[dy, ..., dx] is the degree matrix, with d; denoting the degree of node .

e A is the node-edge incidence matrix: if e € £ and it connects vertex i and j with ¢ > j, then
Ay =1ifv =14, Aep, = —1if v = j and A, = 0 otherwise.

e The signless incidence matrix B := | A|, where the absolute value is taken for each compo-
nent of A.

e The signless graph Laplacian Lt = BT B. By definition L* (i, j) = 0if (i, j) ¢ £. Notice
the non-zeros element in A, L™, the update just depends on each agent itself and its neighbor.

A.2 Practical Acceleration

The algorithm|T]trains the agent with vanilla gradient decent method with a extra consensus update. In
practice, the adaptive momentum gradient methods including Adagrad |Duchi et al.| [2011]], Rmsprop
Tieleman and Hinton/and Adam Kingma and Ba| [2014]] have much better performance in training
the deep neural network. We adapt Adam in our setting, and propose algorithm 2] which has better
performance than algorithm [I]in practice.

Algorithm 2 Accelerated value propagation

Input: Environment ENV, learning rate (1, 32 € [0,1), a, discount factor 7, a mixing matrix W,

number of step Tz, to train dual parameter 8, replay buffer capacity B.

Initialization of 6,6, 9pz-, moment vectors mg =m0, =0, wg =w9 =0.

fort=1,..,Tdo g ’
sample trajectory sqg., ~ 7(s,a) = Hf\il 7'(s,a") and add it into the replay buffer.
/I Update the dual parameter 0 ,:
Do following update T,,; times:
Random sample a mini-batch of transition (s;, {ai} Y |, s;11, {ri}¥,) from the replay buffer.
for agenti = 1 to n do
Calculate the stochastic gradient g(HZi) of —n(8;(s¢, as, s¢41) — pi(se,az))? wart. 9:;1.

// update momentum parameters: m;,; = ﬂlmz,fl + (1= B1)(~9(0))
wZL' = ﬁzw:ﬂ'—l +(1- 52)9(‘921) © 9(921)
end for

/I Do consensus update for each agent ¢
t

t+3 N gt ot gt el
0,7 =2Wligb, 0, = 0, o M

// End the update of dual problem
// Update primal parameters 6,,:, 0. 4 '
Random sample a mini-batch of transition (s;, {ai}¥ |, s;41, {ri} ;) from the replay buffer.
for agenti =1ton do
Calculate the stochastic gradient g¢(6°,),9(0%.) of (86;(s¢, ae, se41) — Vi(se))? —
n(6:(st, ar, se41) — pilse, ar))?, wart. 6° ., 67,
/lupdate the momentum parameter:
mt, = pimi T+ (1—B1)g(6t,)
wh, = Bow!t + (1= B2)g(6) © g(6L,)
// Using Adam to update 6 for each agent 7.
/I Do consensus update on 6, for each agent i:
t+1 N t oot t+1 m!
0,0 % =251 [Wlijbhs, 00 =0, * —u

Tyt
vi j=1 vi Yyt t

vl

w

end for
end for

11
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Mixing Matrix: In Algorithm there is a mixing matrix W C RY*¥ in the consensus update. As
its name suggests, it mixes information of the agent and its neighbors. This nonnegative matrix W
need to satisfy the following condition.

e 1V needs to be doubly stochastic, i.e., WTl=1and W1=1.

e W respects the communication graph G, i.e., W (i, j) = 0if (¢,5) ¢ £.

e The spectral norm of W7 (I — 117 /N)W is strictly smaller than one.
Here is one particular choice of the mixing matrix W used in our work which satisfies above
requirement called Metropolis weights Xiao et al.[[2005].

W (i,j) = 1 + max[d(i), d(j)]_1 V(‘ j) €&,
Wi, i) =1-— Z W (i, j),Yi e N, (10)
JENE(i)

where NE(i) = {j € N': (i,7) € £} is the set of neighbors of the agent i and d(i) = |N(7)] is the
degree of agent 7. Such mixing matrix is widely used in decentralized and distributed optimization
Boyd et al.| [2006], Cattivelli et al.|[2008]]. The update rule of the momentum term in Algorithm

. L t+1

1s adapted from Adam. The consensus (communication) steps are 9;2 = Z;V W15 9;1
t+1 N ¢

evi 2= Zj 1[ ] 91,1

A.3 Multi-step Extension on value propagation

The temporal consistency can be extended to the multi-step case |[Nachum et al.|[2017]], where the
following equation holds

= Z ’ytESdSo,ao:tfr [R(Stv at) = A logﬂ-(st? a:&)] + ’yk]ESk|SO,a0:k—1 V(Sk)

Thus in the objective function (8), we can replace J; by d;(so.k, G0:k—1) = Zt 0 ( (St ap) —
AN log 7 (sy, ai)) + v*V;(s1,) and change the estimation of stochastic gradient correspondingly in
Algorithm [T] and Algorithm [2]to get the multi-step version of vaue propagation . In practice, the
performance of setting £ > 1 is better than £ = 1 which is also observed in single agent case Nachum
et al.[[2017],Dai et al.| [2018]]. We can tune & for each application to get the best performance.

A.4 Implementation details of the experiments

Ablation Study

The value function v;(s) and dual variable p;(s, a) are approximated by two hidden-layer neural
network with Relu as the activation function where each hidden-layer has 20 hidden units. The policy
of each agent is approximated by a one hidden-layer neural network with Relu as the activation
function where the number of the hidden units is 32. The output is the softmax function to approximate

( a*). The mixing matrix in Algorlthmlrs selected as the Metropolis Weights in (T0). The graph
g is generated by randomly placing communication links among agents such that the connectivity
ratio is 4/N. We set v = 0.9, A = 0.01, learning rate a=5e-4. The choice of 31, 3 are the default
value in Adam.

Cooperative Navigation task

The value function v;(s) is approximated by a two-hidden-layer neural network with Relu as the
activation function where inputs are the state information. Each hidden-layer has 40 hidden units.
The dual function p(s, a) is also approximated by a two-hidden-layer neural network, where the only
difference is that inputs are state-action pairs (s,a). The policy is approximated by a one-hidden-layer
neural network with Relu as the activation function. The number of the hidden units is 32. The
output is the softmax function to approximate 7 (s, a’). In all experiments, we use the multi-step
version of value propagation and choose k£ = 4. We choose v = 0.95, A = 0.01. The learning
rate of Adam is chosen as 5e-4 and 3, 35 are default value in Adam optimizer. The setting of PCL

12
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without communication is exactly same with value propagation except the absence of communication
network.

A.5 Consensus update in Algorithm I]

We now give details to derive the Consensus Update in Algorithm[I]with 77 = 1 to ease the exposition.
When 7 € [0, 1), we just need to change variable and some notations, the result are almost same.
Here we use the primal update as an example, the derivation of the dual update is the same.

In the main paper section 3] we have shown that when 7 = 1, in the primal update, we basically solve
following problem.

N
o, 0 2o gl (5 D_(R(s,a) +7Vi(s') = Vi(s) = AN log 7' (5, 0))] — g a,s[v"*(
& ‘zr1 i=1 i=1

§t,0p, =...=0,,.

Z\H

(1)

here for simplicity we assume in the dual optimization, we have already find the optimal solution
v*(s, a). It can be any approximated solution of 7(s, a) which does not affect the derivation of the
update rule in primal optimization. In the later proof, we will show how this approximated solution
affects the convergence rate.

When we optimize w.r.t. 6,:, we basically we solve a non-convex problem with the following form

N
min f(z) = Zfz($1)7 st.ox;=..=zxN (12)
i=1
Recall the definition of the node-edge incidence matrix A: if e € £ and it connects vertex ¢ and j
with ¢ > j, then A, = 1ifv =14, Ae, = —1if v = j and A.v = 0 otherwise. Thus by define
x = [z1, ...,xN] we have a equivalent form of

mmf Zfl x;), s.t., Az =0 13)

Notice the update of 6, is a special case of above formulation, since we do not have the constraint
x1 =,...,= xy. Thus in the following, it suffice to analyze above formulation (13). We adapt the
Prox-PDA in|Hong et al.|[2017] to solve above problem. To keep the notation consistent with [ Hong
et al.|[2017]], we consider a more general problem

N

mxin flz) = Z fi(x),s.t., Ax = b.

i=1

In the following we denote V f(x!) := [(V, f(21))T, ..., (Vay f(zn))T]T where the superscript ’
means transpose. We denote g;(x;) as an estimator of V., f(z;) and g(z) = [g1(21), ..., gn (zN)]-

The update rule of Prox-PDA is

B

s oo =a s 4

2 = argming(at), @ — 2%) + (u, Az ~ ) + 5 | Az — b|?

Iut+1 — ,ut +/8(A1,t+1 _ b) (15)
where g(z?) is an estimator of V f(x?). The signed graph Laplacian matrix L_ is AT A. Now we
choose B := | A| as the signless incidence matrix. Using this choice of B, we have BT B = L+ ¢
RN XN which is the signless graph Laplacian whose (i, 7)th diagonal entry is the degree of node i
and its (¢, j)thentry is 1 if e = (¢, ) € &, and 0 otherwise.

13
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Thus

B

1 —argmin(g(2?), 2 — ) 4+ (u*, Az — b) + xTL z+ = b

5 (@
:argngn<g(xt) x) + (u', Az — b) + 6 T(L + L)z — 2T Lot (16)
=argmin{(g(a"),z) + (u*, Az — b) + ﬂxTDac — Bz Lot

x — 2L (z — 2")

where D = diag[dy, ..., dn] is the degree matrix, with d; denoting the degree of node 4.

After simple algebra, we obtain

1 1
t+1 _ L=+t —1 ATt
x —2D LTz QBD At ut — ﬂD Lg(at),

which is the primal update rule of the consensus step in the algorithm [I] (notice here the stepsize is

1/8)

B Convergence Proof of Value Propagation

B.1 Convergence on the primal update

In this section, we first give the convergence analysis of the value propagation (algorithm [I)) on the
primal update. To include the effected of the inexact solution of dual optimization problem, we
denote g(z') = V f(x') + €, where ¢, = €; + &; is some error terms.

e ¢, is a zero mean random variable coming from the randomness of the stochastic gradient
g(at).

e &, comes from the approximated solution of o in (II) or p in (8) such
that ||V, L(0v,0x,0,) — Vo,L(Ov,0:,05)| < & and ||Vo L(0v,0.,0,) —
VQWL(G\/, T p)” <€t

Before we begin the proof, we made some mild assumption on the function f(z).
Assumption 2. 1. The function f(x) is differentiable and has Lipschitz continuous gradient, i.e.,

IVf(@) = VIl < e -yl Va,y € RF.

2. Further assume that A” A + BT B = I. This assumption is always satisfied by our choice on A
and B. We have ATA + BB = D = mml{d H

3. There exists a constant § > 0 such that 3f > —oo,s.t., f(x) + %HAJ? —b||* > f,Va. This
assumption is satisfied if we require the parameter space is bounded.

Lemma 1. Suppose the assumption2)is satisﬁed we have following inequality holds

[l = 2 3L . i 2, T t+1 -
< — — — BTRB +1_ b\ _ (b t—1 2
5 S Bo [ 17+ 5 HEt el to— || ("™ =a") = (@' =" )|
a7
Proof. Using the optimality condition of (T4)), we obtain
Vi) + e + ATpt + BAT (Ax'T —b) + BBTB(z' —2') =0 (18)
applying equation (I3) we have
ATttt = vV f(2h) — BT B(2' — ). (19)

Note that from the fact that 4° = 0, we have the variable lies in the column space of A.

pr=pB> (Ax' —b).

t=1

14



510 Let o denote the smallest non-zero eigenvalue of AT A, we have

Tuallt Tt = it
<A = 20)
<| = Vfh) — e — BBT Bz — 2') — (=Vf(a'"!) — 1 — BBTB(z! — 2'71))|
=V f(") = V(") + (-1 — &) = BB B((z" — o' — (' — 2" 1))).
511 Thus we have
[l = 2
B
1 _ _
< S IV VI + - ) = BB —at — = DI
Umin
L2
< oot =g 4 Sl — el + BT B(( - o) — (o — 0t ) P
stz where the second inequality holds from the fact that (a + b + ¢)? < 3a? + 3b? + 3¢2.
513 ]

s+ Lemma 2. Define Lg(a', i) = f(at) + (ut, Az — b) + 2| Az — b||*> + £ ||= — 2?|| pr 5. Suppose
515 assumptions are satisfied, then the following is true for the algorithm

L™yt 1) = Ly(at, i)
ﬁ t+1 t)12 3L2

<_ = _ 0

h 2 ”x v || * ﬁamin

4 <6t,l‘t+1 _ .Tt>

iz, 3 35 _
lo* — 2" + gle— e’ + ——[IBTB((z""" —a") = (&' =2 )|

min

(22)

st6  Proof. By the Assumptions AT A + BT B > I, the objective function in (T4) is strongly convex with
517 parameter /3.

st Using the optimality condition of 2**! and strong convexity, we have for any z,

B

t+1
5l

B
Lg(x, p*) + bl o' Brp — (Le(a™, uf) + lrp) (23)

> (VLg(x'™, ) + BBT B2 — at), x — 2!t + ngt‘H —z|]?

15
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Now we start to provide a upper bound of Lg(z!T1, pt+1) — Lg(at, ut) .

L(t+1

s t+1) Lﬁ(!L‘t,/Jt)
L,B( t+1

t+1) L5($t+1,ut) + L5($t+1,ut) _ Lg(l‘t,/l,t)

1
S 1
B
SLp(a"™*hu ™) = L(a"™h ') + Lo(a™,u') + 2™ = o' |frp — Lp(a', 1)
—u

a || t+1
< ||,U, ” + <VL5(:vt+1,,ut) +ﬂBTB($t+1 _ xt),itt—H _ xt> _ §||$t+1 _ ZL’tHQ
24

b t+1 12
< — éth—i-l _ th2 + ||:u H H + <€t,$t+1 _ $t>

2 s
c 3
<= Dt =t + oot ot P+ e — ]

3p

+ 2 BTB (2 — at) - (2t — &) IP + (e - o),

where the inequality (a) holds from the update rule in (I3)) and a simple algebra from the expression
of Lg(x, ). Inequality (b) comes from the optimality condition of (T4). Particularly, we have

g(z') + ATpt + BAT (Az — b) + BBTB(x — 2) =0
replace g(z*) by Vf(2) + ;, we have the result. The inequality (c) holds using the Lemma[l]

O
Lemma 3. Suppose Assumption[2|is satisfied, then the following condition holds.
R T
L L
St =t Dt a2 Dt~ e o+ A2~ b?) es)

B

a §(H($t —a'™h) = (@ = 2B p + |AET = 2)P) — (e — €1, 2T — )
Proof. Using the optimality condition of z'™! and z' in the update rule in (T4), we obtain

(g(zh) + ATt + BAT (AT — b) + BBT B(a' — %), 2! —2) < 0,Va (26)
and
(g(x=Y) + AT pt =1 4+ AT (Axt — b) + BBT B(a! — 2'71), 2" — 2) <0,Vz 27

Replacing g(x!) by Vf(z!) + ¢; and g(z*~1) by Vf(2'~!) + €,_1, and using the update rule (T3]

(V') 4+ e + ATp!t + BT B(2™! — o), 2™ — 2) < 0,Va (28)

(V"™ +e1+ATpt + BBTB(a' — '), 2" —2) <0,Va (29)

Now choose z = ! in the first inequality and z = x*+!

together, we obtain

in the second one, adding two inequalities

<Vf(xt)—Vf($t_1)+€t—6t_1+AT(/,Lt+1—,ut)+BBTB((l‘t+1—l‘t)—($t—$t_l)),Z‘t+1—$t> <0

(30)

Rearranging above terms, we have

(AT (u" =), 2 —at)

—(Vf(z') — Vf(xt_l) e — €1+ BBTB((JJtJrl —zt) — (z' - mt_l)),xH'l —zt) ©1)

16



532 We first re-express the lhs of above inequality.

(AT (ut+Y — by, 2t — 2t

(BAT (Az+Y — p), 2+ — o)
=(B(Az'T —b), Azt — b — (A’ — b))
=B||Az'Tt — b||* — Az — b, Azt — D)
_B

(32)
5 (IAZ = b” — [ Az’ = b]” + [[ A" — "))

533 Next, we bound the rhs of (31).

—(Vf(z") = Vf(a'™ >+€t—€t 1+ﬁBTB( t+1 _ ') (mt_xt—l))7xt+1_mt>
—(Vf(xt)—Vf(:pt Dde — ettt —at) — ﬁ<BTB(( B gty (gt t—l))’xt+1_xt>

xr — T
al,
Sgllxt+1 —a'|? + IIVf( D= VTP (e —e-r,2tt - ah)
—ﬁ<BTB((.Z‘t+1—Z‘t) ($ _xt 1)),33 t>
b L
Sgllxt+1_xt”2+§”xt t 1”2 <€t_6t 1, +1_wt>
—ﬁ<BTB((al‘t+1—a?t) (.’L‘ _xt 1))733 t>
L L
:7||It+1_zt||2+7”xt t 1”2 <€t_€t LT +1_l,t>
2 2
+§(let — ' grp — 2™ =2 G p — (@ =27 = (@ =2 [[Brp),

(33)

53¢ where the inequality (a) uses Cauchy-Schwartz inequality, (b) holds from the smoothness assumption
535 on f.

536 Combine all pieces together, we obtain

([Az* = blf* + |2 — 2B )

<

IR TR

L
o+t = a2 4+ Zfat — 2t 12+ 2 )t o' prp + Az’ —0%) (34
B

- (@ =) = @ =2 + AET = 2)P) = (e — -1, 2" — 2

537

sss  Same with|Hong et al.|[2017]], we define the potential function

B
Pope™ ! 1) = Lo(™ ) + (A2 = b + o) — ' [Bey)  (35)

ss9  Lemma 4. If Assumption |2 holds, we have following

P 5( t+1 $t,‘ut+1)

C,

_ B cL 2c+1 3L? cL
§P0>B<xt7xt 1aut)_(7_7_7)th+l—l‘t||2 (ﬂ + )H =1 _ t||2

2 2 2
c8  36|B"B| _ B 1
— - )@@ —a") = (2" —af 1)|\2BTB+<Z+§)||et71—et||2+§||et||2

2
(36)

—(

Umll’l

17



540

541

542

544

545

Proof.
Pcﬁ (:L'H_l , l't, Nt+1)

ch _
<ot i) + D ot — e + 1Azt ) — (5
3L? cLi. i1 2412 c8  3p|BTB| e
oo + Sl = o = (5 = Lt -ty -
+B||€t — e 1|® + (e, 2T — 2t — cley — e_q, T — )
L L? cL
<Pp(at ot t) = (5 - Pt -t + (o +
8 36|B"B| _
R A [
1 1
el =2+ Sl + St = 7 + Sl — el
L 2 1 3L?
—Poplat et ) = (5 - G = It P (o
3 _ 39157 ]
— (5 = D —at) = (@ =g + (5§ +

L
g Dt

t

+ )t =

1—€tH2
cL
+ )2t -
P . 2
3)||€t71 el

where the second inequality holds from the Cauchy-Schwartz inequality.

We require that

8 _3BIBTBI _
2 Omin -
which is satisfied when
6| B" B
Z -
Omin

We further require

B cL 2c+1 3L? cL
(-5 -2+,

2 2 2 Bomin 2
which will be used later in the telescoping.
Thus we require

6L2
B8>2cL+2c+1+
Bo-min
2412

and choose 8 > CL + 25 + %\/(QCL—FQC—}— 12+

18

Omin

(@' = 2" )5rp

t H 2
1
+ 5l
(37)
(38)
(39)
O



546

547

548

549

550
551

552

553

554
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559

Now we do summation over both side of (36) and have

T
B el 2c+1 3L L
DG =g = T e =l = (g e =

T
c 35| BT B _
#D BB gty (ot a1 (0
t=1 min
T e 8 1
<P.g(at, 2, 10) — Pog(aT+!, 2T, uT) (S + Dllerms — ecl|? + =llec?
<Pus(a’,a®,1%) = Popla )+ 21+ Pl =l + 3lel)
rearrange terms of above inequality.
= B8 d 241 3L* d .1 4. B d 241 p1 po
Z(g—g—T—r—g)Hl’ —1’||+(§—§—T)||l’ -z ||
t=1 Umm
<Pupla % 1) = Pop(a™ 1,07 ) + (e 4+ Dt °||2+Z Dlevs el +
>Iep ) ) cf ) ) 50’min 2 t— t

(41)

Next we show P_g is lower bounded

The following lemma is from Lemma 3.5 in|Hong| [2016]], we present here for completeness.

Lemma 5. Suppose Assumption |are satisfied, and (c, 8) are chosen according to (39) and (38).

Then the following state holds true
P s.t., Peg(z™,at,p"*1) > P> —o0

Proof.
Lola* i) =f (@) + (1, At )+ 2 a2

B

1
=f(@) 4 Gt )+ G At bl (42)

1 B
=f(a") + %(IIMMH2 — 1P + 1 = pfl?) + §||Affft+1 —b|*.
Sum over both side, we obtain

T T

ZLB($t+1 t+1 Z t+1 ‘AxtJrl b||2 H/J)
t=1 t=1 5

1
t+1_ )2 T+12_,,12
wll )+25(Hu 17 =Ml 17)
(43)

By assumption 2, above sum is lower bounded, which implies that the sum of the potential function is
also lower bounded (Recall P, g(z+!, at, pt*1) = Lg(at, pt+1) + L (|| Azttt — b||% + [t —
2%+ 5) ). Thus we have

Pop(a™ 2ty > —o00, ¥t > 0
O

In the next step, we are ready to provide the convergence rate. Following [Hong|[2016], we define the
convergence criteria

Q@' pf ) = [VLg (2™, ph) 1 + [ Az — b|J? (44)

19
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seo It is easy to see, when Q(z'™!, ut) = 0, V f(z) + AT = 0 and Az = b, which are KKT condition
561 of the problem.

IVLs (", p* =)
=|IVF(a") = V@' ™) + e — ey + AT (' = pf) + BT B2 — at)|? (45)
<AL?[lat — a2 + 4l = P AT AL + 487 BT B(2" T — 2" + 4ller — e

s62  Using the proof in Lemmal[I] we know there exist two positive constants c1 ¢2 ¢3 c4

Q' 1Y) < erlla’ =P realla’ —a TP 4es | BT B((2 T —af) = (af —a' ) P +ealler—er .

563 Using LemmaEL we know there must exist a constant « such that

W\Q

1
<k(Pp(a*, 20, 1%) = Pog(a™ ", 2™, 1) + D e — el + §||€t|\2]) +tea Y e —eal?

t=1

) -
Mee-1 = el + Sllecl®)) +ca D llee — eea |

Hk\t’:

uxm
W\m

T
<k(Peg(a’, 2, 1) Z
- (46)

se4 Divide both side by 1" and take expectation

T T
! ! K c B 1
—E tt—1<7 Pc Oo_P R c P\E o 9 1 5
T ;ZlQ(x,u ) < h(Pep(z, 27, 17) 7)+T[;(4+3) leems = edll® + 5 lledll’
c T—1
4 2
- E e
+T po ||€t €t 1||

47
s6s  Now we bound the R.H.S. of above equation.

se6  Recall we choose the mini-batch size VT, ¢, = &; + &; and g, < ¢1 / VT

861 80’2
— 4+ 48
+T (48)

leer—eell” < 2E(ller[*+llecl®) < 4B(llee|*+1Ee]* +llee-al*+l1E?) < =5

s67  Similarly we can bound ||¢;||?. Combine all pieces together, we obtain

T
1 1 1
TEZ: Qz', 1) < TH(PCB($1,$O,[LO) - P)+ T(KJC&‘) + c607),
s68 Where cs, cg are some universal positive constants.

seo  Notice min; EQ(z!, u*~) < LES] | Q(at, u'~1), we have min, EQ(a*, '~ 1) < (C + 02)/T
570 where C' is a universal positive constant.

s71  B.2 Convergence on the dual update

s72  If the dual objective function is non-convex, we just follow the exact analysis in our proof on the
573 primal problem. Notice the analysis on the dual update is easier than primal one, since we do not
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have the error term €;. Therefore, we have the algorithm converges to stationary solution with rate
O(1/T)in criteria Q.

If the dual objective function is linear or convex, the update rule reduce to Extra [Hong} 2016} Shi
et al.| 2015]] the convergence result of stochastic setting can be adapted from the proof in [Shi et al.|
20135]]. Since it is not the main contribution of this paper, we omit the proof here.
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