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Abstract

Dynamic mechanisms offer powerful techniques to improve on both revenue and1

efficiency by linking sequential auctions using state information, but these tech-2

niques rely on exact distributional information of the buyers’ valuations (present3

and future), which limits their use in learning settings. In this paper, we consider4

the problem of contextual auctions where the seller gradually learns a model of5

the buyer’s valuation as a function of the context (e.g., item features) and seeks a6

pricing policy that optimizes revenue. Building on the concept of a bank account7

mechanism—a special class of dynamic mechanisms that is known to be revenue-8

optimal—we develop a non-clairvoyant dynamic mechanism that is robust to both9

estimation errors in the buyer’s value distribution and strategic behavior on the10

part of the buyer. We then tailor its structure to achieve a policy with provably11

low regret against a constant approximation of the optimal dynamic mechanism in12

contextual auctions. Our result substantially improves on previous results that only13

provide revenue guarantees against static benchmarks.14

1 Introduction15

As a fundamental problem in mechanism design, pricing in repeated auctions has been extensively16

studied in recent years. This is partly motivated by the popularity of selling online ads via auctions,17

an industry totalling annual revenue of hundreds of billions of dollars. Repeated auctions open up18

the possibility of linking auctions across time using state information in order to enhance revenue19

or welfare, but this introduces several challenges. To guarantee optimal outcomes, the process must20

take into account the bidders’ incentives to possibly manipulate each individual auction as well as the21

auction state across time. In practice, the seller must also rely on approximate models of the buyers’22

preferences to effectively set auction parameters like reserve prices. These aspects of the problem23

have so far been explored in two separate strands of the literature on repeated auctions, where items24

arrive online and the allocation and payment decisions must be made as soon as an item arrives.25

One strand, known as dynamic mechanism design, considers an environment in which the seller has26

exact distributional information over the buyers’ values for the items, for the current stage and all27

future stages, and designs revenue-maximizing dynamic mechanisms that adapt the auction state28

based on the buyer’s historical bids [Thomas and Worrall, 1990, Bergemann and Välimäki, 2010,29

Ashlagi et al., 2016, Mirrokni et al., 2016a,b]. However, this clairvoyant framework relies on the30

seller having an accurate forecast of the buyer’s valuation distributions in future auctions. To address31

this concern, Mirrokni et al. [2018] propose non-clairvoyant dynamic mechanisms, which do not rely32

on any information about the future (but do rely on an accurate forecast of the present). They show33

that a non-clairvoyant dynamic mechanism can achieve a constant approximation to the revenue of34

the optimal clairvoyant mechanism. The other strand of literature, known as robust price learning,35

focuses on a setting where the buyer’s value distributions across stages are parameterized by some36

common private factors that are unknown to the seller, and designs robust policies to learn from the37
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buyer’s bids and set prices with good revenue performance [Amin et al., 2013, 2014, Medina and38

Mohri, 2014, Golrezaei et al., 2018]. Although these results also take into account strategic buyer39

behavior, they only provide guarantees against the revenue-optimal static benchmark, which does not40

take advantage of auction state across time and whose revenue can be arbitrarily smaller than the41

optimal dynamic benchmark [Papadimitriou et al., 2016].42

In this work, we consider a scenario in which the designer can only make use of an estimate of the43

buyer’s value distribution in the present auction stage, which connects dynamic mechanism design44

with the problem of learning. Designing dynamic auctions in this setting is challenging for several45

reasons. When the seller’s estimate of the distribution is not perfectly aligned with the buyer’s true46

distribution, it is impossible for the seller to offer a dynamic mechanism that is exactly incentive-47

compatible and also makes use of the prior on values. Furthermore, unlike static mechanisms in48

which the auction for each item is independent of the buyer’s past reports, in a dynamic mechanism a49

buyer’s misreport can potentially affect auctions for all future items. We overcome these obstacles and50

provide a robust non-clairvoyant dynamic mechanism such that the extent of the buyers’ misreports51

and the revenue loss can be related to and bounded by the estimation error. We then apply our52

robust dynamic mechanism to the concrete problem of contextual auctions, where a buyer’s valuation53

depends on the context that describes the item, but the relationship between the buyer’s valuation54

and the context is unknown to the seller and must be estimated across auctions. The seller’s task is55

to design a policy which adapts the auction mechanism based on the buyer’s historical bids, with56

the objective of maximizing revenue. Previous results give no-regret policies against the optimal57

static mechanism [Amin et al., 2014, Golrezaei et al., 2018], but as mentioned it is known that the58

revenue gap between optimal static and dynamic mechanisms can be arbitrarily large [Papadimitriou59

et al., 2016]. We tailor the structure of our robust non-clairvoyant dynamic mechanism to a learning60

environment, leading to a no-regret policy against the strong benchmark of a constant approximation61

of the optimal clairvoyant dynamic mechanism.62

Related Work63

We briefly discuss research in dynamic mechanism design that is closely related to the present work.64

For a comprehensive review of the literature readers are encouraged to refer to [Bergemann and Said,65

2011]. Our work builds upon the framework of bank account mechanisms developed by Mirrokni66

et al. [2016a,b, 2018]. Based on the bank account mechanism, Mirrokni et al. [2018] design a non-67

clairvoyant mechanism achieving 1/3 of the revenue of a clairvoyant mechanism which can make68

use of present and future information on the distributions of item values. However, their mechanism69

relies on exact distributional information, which makes it unsuitable in a learning environment where70

value distributions are estimated. Our robust dynamic mechanism addresses this limitation.71

Our work is closely related to dynamic pricing with learning; see [den Boer, 2015] for a recent72

survey. The study of robust price learning with strategic buyers was initiated by Amin et al. [2013]73

and Medina and Mohri [2014]. They design no-regret policies in a non-contextual environment74

where the seller repeatedly interacts with a single buyer through posted price auctions, where the75

buyer is less patient than the seller. Amin et al. [2013] show that no learning algorithm can achieve76

sublinear revenue loss if the buyer is as patient as the seller. For learning in contextual auctions,77

Amin et al. [2014] develop a no-regret policy in a setting without market noise. Recently, Golrezaei78

et al. [2018] enrich the model by incorporating market noise and design a no-regret policy for cases79

where the market noise is known exactly or adversarially selected from a set of distributions. All80

these results are no-regret against the optimal static mechanism as a benchmark, whereas our policy81

is no-regret against a constant-factor approximation of the optimal dynamic mechanism which has all82

distributional information available in advance.83

2 Preliminaries84

In a dynamic auction a seller (he) sells a stream of T items that arrive online, based on bids placed85

by strategic buyers. An item must be sold when it arrives. For the sake of simplicity we will focus86

on the case of a single buyer (she) throughout this paper.1 At the beginning of stage t a new item87

arrives and the buyer’s valuation vt ∈ [0, at] for the item is drawn independently from a distribution88

1Our results can be extended to multi-buyer settings by using the techniques from Cai et al. [2012] and Mir-
rokni et al. [2018].
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Ft with density ft. The distributions are not necessarily identical across stages. We assume that ft is89

continuous and upper bounded by cf/at where cf is a constant. The domain bounds at are known to90

the seller and may vary across stages to reflect the fact that item valuations may have different scales.291

As a special case of this framework, in a contextual auction the item at stage t is represented by an92

observable feature vector ζt ∈ Rd with ‖ζt‖2 ≤ 1. In line with the literature, we assume that the93

feature vectors are drawn independently from a fixed distribution D with positive-definite covariance94

matrix [Golrezaei et al., 2018]. The buyer’s preferences are encoded by a fixed vector σ ∈ Rd and95

the buyer’s valuation at stage t takes the form vt = at(〈σ, ζt〉+ εt), where εt is a noise term with96

cumulative distribution Mt. The distribution Mt and the feature vector ζt are observed by the seller97

but the buyer’s preference vector σ remains private. We make the following technical assumption on98

the sequence of at:99

Assumption 1. For all t,
∑
t′≤t at′ ≤ ca · t where ca is a constant.100

Assumption 1 limits the portion of welfare and revenue that can arise in the first t stages, for any t.101

Its purpose is to rule out situations where a large fraction of revenue comes from the initial stages,102

under which a large revenue loss may be inevitable since it is impossible for the seller to obtain a103

good estimate of σ from just the first few stages.104

Once the buyer learns her valuation vt at stage t, she then submits a bid bt ∈ [0, at] to the seller who105

then decides whether to allocate the item (perhaps stochastically) and what payment to charge. We106

write V t to denote the set of all possible sequences (b1, . . . , bt) of buyer bids for the first t stages,107

and similarly we write (∆V )t to denote the set of all possible independent distributions over the108

sequence of first t bids. The seller’s distributional beliefs over the buyer’s values across stages are109

denoted as F̂(1,T ) = (F̂1, F̂2, . . . , F̂T ). Throughout the paper we will use the notation F̂(t′,t′′) to110

represent (F̂t′ , . . . , F̂t′′), and similarly for F(t′,t′′), v(t′,t′′), and b(t′,t′′). A dynamic mechanism is111

represented by sequences (x1, . . . , xT ) and (p1, . . . , pT ) where xt and pt denote the allocation rule112

and the payment rule at stage t, respectively. We refer to 〈xt, pt〉 as the stage mechanism at stage t.113

Non-Clairvoyant Dynamic Mechanism. In a non-clairvoyant environment, the seller obtains an114

estimated distribution F̂t only at stage t and not before, so the mechanism at stage t can only depend115

on F̂(1,t). The allocation function xt maps the history of bids b(1,t) and distribution F̂(1,t) to an116

allocation probability, xt : V t × (∆V )t → [0, 1]. The payment function pt maps the history of bids117

b(1,t) and the distribution F̂(1,t) to a real-valued payment, pt : V t × (∆V )t → R. In line with the118

literature, we assume the buyer has a quasi-linear utility such that the buyer’s utility from bidding bt119

at stage t is ut
(
vt; b(1,t); F̂(1,t)

)
= vt ·xt

(
b(1,t); F̂(1,t)

)
− pt

(
b(1,t); F̂(1,t)

)
. In the contextual auction120

setting the seller maintains a model σ̂t for the buyer’s preference vector estimated from prior bidding121

behavior, and combines with at, ζt, and noise modelMt, which can only be observed at the beginning122

of stage t and not before, to compute F̂t.123

Utility-Maximizing Buyer. We assume that the buyer knows the true distributions F(1,T ) in advance124

so that she can reason about how the mechanism will evolve over time and compute a bidding125

strategy that maximizes her utility. Specifically, we consider a buyer who aims to maximize her time126

discounted utility
∑T
t′=t γ

t′−t · E[ut] at stage t where γ ∈ [0, 1) is the discounting factor and the127

expectation is taken with respect to F(1,T ). We note that it is impossible to obtain a no-regret policy128

when the buyer is as patient as the seller (the case of γ = 1) [Amin et al., 2013].129

Incentive Constraints. In a dynamic environment, the buyer’s best response at stage t depends on130

her strategy in the future stages. When the seller has perfect distributional information, the classic131

notion of dynamic incentive-compatibility (DIC) requires that the buyer is incentivized to report132

truthfully assuming that she plays optimally in the future [Mirrokni et al., 2018].3 When the seller133

only has approximate distributional information this is no longer possible to achieve, so we introduce134

the notion of η(1,T )-approximate DIC, which requires that the buyer’s bid deviate from the truth by135

at most ηt at stage t, assuming the buyer plays optimally in the future (note that optimally now no136

longer means truthfully). Formally, at each stage t, there exists b̂t ∈ [vt − ηt, vt + ηt] such that137

b̂t ∈ arg max
bt

ut
(
vt; b(1,t); F̂(1,t)

)
+ γ · Ut

(
b(1,t);F(1,T ); F̂(1,T )

)
(η(1,T )-DIC)

2For instance, in a dynamic auction for display advertising, the value of a video ad may be orders of
magnitude larger than the value of a text ad.

3Interested readers can refer to [Mirrokni et al., 2018] for discussions on the choice of DIC notions.
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for all vt, b(1,t−1), F(t+1,T ), and F̂(t+1,T ), where Ut(b(1,t);F(1,T ); F̂(1,T )) is the continuation
utility that the buyer obtains in the future: UT

(
b(1,T );F(1,T ); F̂(1,T )

)
= 0, and for t < T

Ut
(
b(1,t);F(1,T ); F̂(1,T )

)
is defined as

Evt+1∼Ft+1

[
max
bt+1

ut+1

(
vt+1; b(1,t+1); F̂(1,t+1)

)
+ γ · Ut+1

(
b(1,t+1);F(1,T ); F̂(1,T )

)]
.

Participation Constraints. We assume that the buyer weighs realized past utilities equally. There-138

fore, ex-post individual rationality requires that for all F̂(1,T ) and for all v(1,T ),139

T∑
t=1

ut
(
vt; v(1,t); F̂(1,t)

)
≥ 0. (ex-post IR)

For convenience, we will use the phrase “for F(1,T )” to indicate the environment where the buyer’s140

true distribution is F(1,T ). For example, when we say that a mechanism is η(1,T )-DIC for F(1,T ) we141

mean that it is η(1,T )-DIC when the buyer’s true distribution is F(1,T ).142

No-Regret Policy. Our task is to design a policy π that includes both a learning policy for σ143

and an associated dynamic mechanism policy to extract revenue. At the beginning of stage t, the144

learning policy estimates F̂t using information a(1,t), ζ(1,t), M(1,t), and b(1,t−1), while the dynamic145

mechanism policy computes the stage mechanism 〈xt, pt〉 at stage t using F̂(1,t) and b(1,t−1). Let146

Rev(π;F(1,T )) and Rev(B;F(1,T )) be the revenue of implementing policy π and mechanism B for147

F(1,T ), respectively. Moreover, let B∗(F(1,T )) denote the revenue-optimal clairvoyant dynamic148

mechanism that knows F(1,T ) in advance. The regret of policy π against a c-approximation of the149

dynamic benchmark is defined as Regretπ(F(1,T )) = c · Rev
(
B∗(F(1,T ));F(1,T )

)
− Rev(π;F(1,T )).150

Our objective is to design a policy with sublinear regret.4151

3 Robust Non-clairvoyant Mechanism152

The literature on dynamic mechanism design relies on the strong assumption that the seller has153

perfect distributional information at each stage, F̂(1,T ) = F(1,T ) [Ashlagi et al., 2016, Mirrokni154

et al., 2016b,a, 2018]. However, in a learning setting like that of contextual auctions, the seller155

can only obtain a sequence of estimated distributions by estimating σ. In this section, we design a156

non-clairvoyant mechanism that is robust to misspecifications in the value distribution in the sense157

that the buyer is incentivized to place a bid within known bounds from its value, which ultimately158

allows us to relate the mechanism revenue under the estimated and true value distributions. The159

misspecifications handled by the mechanism are captured by the following assumption.160

Assumption 2. For all t, let v̂t be the random variable that is drawn from F̂t. We assume that the161

buyer’s true valuation vt = v̂t + at · εt with εt ∈ [−∆,∆]. Here v̂t and εt are not necessarily162

independent and arbitrary correlation between v̂t and εt is allowed.163

3.1 The Mechanism164

Building on the 1
3 -approximation non-clairvoyant mechanism from Mirrokni et al. [2018], we design165

our robust non-clairvoyant mechanism by mixing their mechanism with a random posted-price166

auction. The mechanism is an instance of a bank account mechanism where the state information is167

captured by a single scalar balt.168

Mechanism 1. The robust non-clairvoyant mechanism B(F̂(1,T ), λ) consists of a mixture of four169

mechanisms: the give-for-free mechanism, the posted-price auction with extra fee, the Myerson’s170

auction, and the random posted-price auction. The stage mechanism at stage t is parameterized by a171

non-negative balance balt. When the buyer submits a bid bt:172

4Note that sublinear revenue loss is only meaningful if the available revenue to extract is itself at least linear,
which is the case when

∑T
t=1 at = Ω(T ) since the revenue obtained by the optimal dynamic mechanism is

Ω(
∑

t at) in our setting. In fact, a static mechanism can already achieve Ω(
∑

t at) revenue by offering a posted
price pat with p = 1/(2cf ) at stage t which induces revenue at least pat(1 − pcf ) = at/(4cf ) from stage t.
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Give-for-free Mechanism. Allocate the item no matter what the buyer’s bid is and increase the173

balance by the buyer’s bid: xGt = 1, pGt = 0, and balGt+1 = balt + bt174

Posted-price Auction with Extra Fee. Let feet(balt; F̂t) = min(3balt,Evt∼F̂t [vt]) and rt(balt) be175

the posted-price such that Evt∼F̂t
[(
vt − rt(balt)

)+]
= feet(balt; F̂t). The mechanism charges the176

buyer feet(balt; F̂t) before the buyer learns her valuation and then runs a posted-price auction with177

price rt(balt): xPt = 1{bt ≥ rt(balt)} and pPt = feet(balt; F̂t) + rt(balt) · 1{bt ≥ rt(balt)}, and178

decrease the balance by feet(balt; F̂t): balPt+1 = balt − feet(balt; F̂t).179

Myerson’s Auction. Let r∗t (F̂t) be Myerson’s optimal reserve price, i.e., r∗t (F̂t) = arg maxr r ·180 (
1− F̂t(r)

)
and run a posted-price auction with price r∗t (F̂t) without changing the balance: xMt =181

1{bt ≥ r∗t (F̂t)}, pMt = r∗t (F̂t) · 1{bt ≥ r∗t (F̂t)}, and balMt+1 = balt.182

Random Posted-price Auction. Let r̂t be random reserve price drawn from [0, at] uniformly and183

run a posted-price auction with price r̂t without changing the balance: xRt = 1{bt ≥ r̂t}, pRt =184

r̂t · 1{bt ≥ r̂t}, and balRt+1 = balt.185

The robust non-clairvoyant mechanism at stage t is: xt = λ · xRt + 1−λ
3

[
xGt + xPt + xMt

]
, pt =186

λ · pRt + 1−λ
3

[
pGt + pPt + pMt

]
, and balt = λ · balRt + 1−λ

3

[
balGt + balPt + balMt

]
.187

The following central result gives a guarantee on the revenue performance of our robust non-188

clairvoyant mechanism against a utility-maximizing buyer subject to an estimation error ∆.189

Theorem 3.1. Rev
(
B(F̂(1,T ), λ), F(1,T )

)
≥ 1

3Rev
(
B∗(F(1,T )), F(1,T )

)
−O

(
λT +

√
∆
λ T
)

.190

At the optimal choice of λ = ∆
1
3 the revenue loss is O

(
∆

1
3T
)

. The remainder of this section is191

devoted to proving Theorem 3.1.192

3.2 Analysis193

We start by describing the incentive properties that B(F̂(1,T ), λ) satisfies for F̂(1,T ). First notice that194

all four base mechanisms are variants of posted-price auctions, and therefore, all of them are stage-IC:195

196

∀bt, vt · xt(bal, vt)− pt(bal, vt) ≥ vt · xt(bal, bt)− pt(bal, bt). (stage-IC)

In particular, all mechanisms except the posted-price auction with extra fee are stage-IR:197

∀vt, vt · xt(vt)− pt(vt) ≥ 0 (stage-IR)

We emphasize that the posted-price auction with extra fee is different from a classic posted-price198

auction: the posted-price auction with extra fee will charge the buyer an extra payment feet(balt; F̂t)199

no matter what the buyer’s bid is, and therefore, it is not stage-IR. Moreover, each stage mechanism200

is balance-independent (BI) with respect to the estimated distribution F̂t: there exists a constant ct,201

Evt∼F̂t [vt · xt(bal, vt)− pt(bal, vt)] = ct. (BI)

In particular, the give-for-free mechanism, the Myerson’s auction, and the random posted-price202

auction are static and independent of the balance; as for the posted-price auction with extra fee, it203

ensures that the buyer’s expected utility is always 0 for all balt ≥ 0 under F̂t.204

The combination of stage-IC and BI implies that the mechanism is DIC: since the mechanism205

promises the buyer that all future stage mechanisms are BI, the buyer can infer that her action at the206

current stage does not impact her expected utility in the future. Moreover, notice that the non-negative207

balance bal always lower-bounds the buyer’s cumulative utility, and therefore,B(F̂(1,T ), λ) is ex-post208

IR under the estimated distributions F̂(1,T ).209

Proposition 3.1. B(F̂(1,T ), λ) is stage-IC, BI, DIC, and ex-post IR for F̂(1,T ).210

We next turn to the mechanism’s properties under the true distributions F(1,T ).211
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3.2.1 Mismatch between F̂(1,T ) and F(1,T )212

We first bound the revenue loss due to the mismatch between F̂(1,T ) and F(1,T ). Observe that one can213

interpret the estimation error under Assumption 2 as the buyer’s misreport: when the buyer reports214

truthfully under F(1,T ) this is equivalent to the case in which the buyer misreports by a magnitude at215

most at ·∆ under F̂(1,T ). We develop a program for computing the revenue of our mechanism even216

when the buyer misreports. For a non-clairvoyant mechanism B(F̂(1,T ), λ), we consider a program217

ψt(bal, F̂(1,T );F(1,T )) to keep track on the revenue of implementing B(F̂(1,T ), λ) when the buyer’s218

true distribution is F(1,T ). We define ψT (bal) = 0 and for t < T ,219

ψt−1(bal, F̂(1,T );F(1,T )) = Evt∼Ft
[

1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{v′t ≥ r∗t (F̂t)}

+ ψt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t), F̂(1,T );F(1,T )

)]
(1)

where v′t is the buyer’s reported bid that maximizes her continuation utility when her true value is vt.220

Note that we omit the revenue rt(balt) obtained from the posted-price auction with extra fee and the221

revenue from the random posted-price auction.222

Proposition 3.2. Rev
(
B(F̂(1,T ), λ);F(1,T )

)
≥ (1− λ) · ψ0(0, F̂(1,T );F(1,T )).223

According to the revenue analysis in [Mirrokni et al., 2018], we can still obtain 1
3 -approximation of224

the optimal revenue even when the revenue rt(balt) is omitted.225

Lemma 3.1. [Mirrokni et al., 2018] ψ0(0, F(1,T );F(1,T )) ≥ 1
3 · Rev

(
B∗(F(1,T )), F(1,T )

)
.226

The following lemma establishes a connection between the change of the balance and the change of227

the revenue, when the seller’s distributional information is perfect.228

Lemma 3.2. For all 0 ≤ t ≤ T and δ ≥ 0,229

ψt(bal + δ, F(1,T );F(1,T ))− δ ≤ ψt(bal, F(1,T );F(1,T )) ≤ ψt(bal + δ, F(1,T );F(1,T )).

Applying Lemma 3.2, we can bound the revenue loss due to the mismatch between F(1,T ) and F̂(1,T ).230

Lemma 3.3. ψ0(0, F̂(1,T ); F̂(1,T )) ≥ ψ0(0, F(1,T );F(1,T ))−O(∆T ).231

3.2.2 The Buyer’s Misreport232

Note that in a single-buyer environment, the properties stage-IC and ex-post IR do not depend on233

the underlying distributions, and therefore, B(F̂(1,T ), λ) is also stage-IC and ex-post IR for F(1,T ).234

However, B(F̂(1,T ), λ) is no longer BI for F(1,T ), which is the key property to ensure DIC. To235

circumvent this difficulty, we generalize the definition of BI to approximate balance-independence.236

Definition 3.1. A dynamic mechanism is β(1,T )-BI for F(1,T ) if ∀t, there exists a constant ct:237

∀bal ≥ 0,Evt∼Ft [vt · xt(bal, vt)− pt(bal, vt)] ∈ [ct −
βt
2
, ct +

βt
2

] (β(1,T )-BI)

Since with the same stage mechanism, the difference between the expected utility under F̂t and Ft is238

at most ∆at (Corollary A.1), B(F̂(1,T ), λ) is β(1,T )-BI with βt = 2∆at.239

Proposition 3.3. B(F̂(1,T ), λ) is stage-IC, β(1,T )-BI with βt = 2∆at, and ex-post IR for F(1,T ).240

For a dynamic mechanism satisfying β(1,T )-BI for F(1,T ), the range of the expected utility is βt in241

the t-th stage. Therefore, no matter how the buyer misreports in the first (t− 1) stages, her expected242

utility in the t-th stage can only fluctuate at most βt if she reports truthfully at stage t. Combining243

this with the fact that the stage mechanisms are stage-IC, we have244

Lemma 3.4. For a dynamic mechanism that is stage-IC and β(1,T )-BI for F(1,T ), for any b(1,t−1) and245

vt, the difference between the continuation utility of reporting any bt ∈ [0, at] and the continuation246

utility of reporting vt truthfully is bounded by
∑T
t′=t+1 γ

t′−t · βt′ .247
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As a result, once the mechanism posts a risk for misreporting, we are able to bound the magnitude of248

the buyer’s misreport. This is the purpose of mixing in the random posted-price mechanism at each249

stage t: it can be shown that a misreport with magnitude mt will cause the buyer a utility loss λ · m
2
t

2at
.250

Lemma 3.5. B(F̂(1,T ), λ) is η(1,T )-DIC with ηt =
√

2at
λ ·

∑T
t′=t+1 γ

t′−tβt′ .251

Applying Lemma 3.2, we can show that B(F̂(1,T ), λ) is robust against the buyer’s misreport.252

Lemma 3.6. ψ0(0, F̂(1,T );F(1,T )) ≥ ψ0(0, F̂(1,T ); F̂(1,T ))−O
(√

∆
λ T
)

.253

Finally, combining Proposition 3.2, Lemma 3.3 and Lemma 3.6, completes the proof of Theorem 3.1.254

4 No-Regret Policy in Contextual Auctions255

4.1 Learning Policy256

Our learning policy is adapted from the contextual robust pricing policy proposed in [Golrezaei et al.,257

2018]. Our learning policy partitions the entire time horizon into K = dlog T e phases where T is the258

time horizon, such that the partition is specified by (`1 = 1, `2, · · · , `K , `K+1 = T + 1), in which259

`k = 2k−1. The k-th phase spans between the `k-th stage and the (`k+1 − 1)-th stage, and therefore,260

the length of phase k is exactly `k. Note that the partition can be implemented even when T is not261

known in advance. We use Ek = {`k, · · · , `k+1 − 1} to refer to the stages in the k-th phase.262

At the beginning of the k-th phase, we update the estimation of the buyer’s preference vector σ using263

the buyer’s bids from the (k − 1)-th phase, denoted by σ̂k. To estimate σ̂k, we sample wt uniformly264

from [0, 1] for t ∈ Êk−1, where Êk−1 = {t ∈ Ek−1 | `k − t > c log `k} for some constant c. In265

other words, we will only use the information from the stages that are at least c log `k ahead of the end266

of phase (k − 1). σ̂k is set to be arg min‖σ‖≤1 Lk−1(σ), where Lk−1(σ) = −
∑
t∈Êk−1

[
1{bt ≥267

at ·wt} log
(
1−Mt(wt−〈σ, ζt〉)

)
+ 1{bt < at ·wt} log

(
Mt(wt−〈σ, ζt〉)

)]
. Note that when the268

buyer reports truthfully, Lk−1(σ) is exactly the negative of log-likelihood corresponding to σ. We269

do not change our estimation throughout the k-th phase and the next update happens at the beginning270

of the (k + 1)-phase. As a result, based on the estimate σ̂k, we compute the estimated distribution in271

phase k as F̂t(vt) = Mt

(
vt
at
− 〈σ̂k, ζt〉

)
for all t ∈ Ek.272

We say a lie is a misreport from the buyer that results in 1{bt ≥ at · wt} 6= 1{vt ≥ at · wt}. Let273

Lk−1 =
{
t ∈ Êk−1 | 1{bt ≥ at · wt} 6= 1{vt ≥ at · wt}

}
be the set of stages in which the buyer274

lies. For a dynamic mechanism that is η(1,T )-DIC, we have vt − ηt ≤ bt ≤ vt + ηt. Hence, if275

|at · wt − vt| > ηt, any misreport from the buyer does not result in a lie. Moreover, the buyer has an276

additional motivation to misreport to change the seller’s estimation for the future phases. However,277

for t ∈ Êk−1, such a gain is relatively small since the buyer discounts the future.278

Let B(F̂(1,T ), λ(1,K)) be a mechanism generalized from B(F̂(1,T ), λ) such that for t ∈ Ek,279

B(F̂(1,T ), λ(1,K)) offers the random posted-price auction with probability λk instead of λ.280

Lemma 4.1. In B(F̂(1,T ), λ(1,K)), the additional misreport at stage t ∈ Êk is O( 1√
λk·`2k

). Moreover,281

|Lk| = O
(

log `k +
∑
t∈Êk

ηt
at

)
with probability 1− 1

`k
.282

Given this upper bound on |Lk−1|, the following lemma bounds the estimation error of σ̂k.283

Lemma 4.2 (Proposition 7.1 [Golrezaei et al., 2018]). With probability 1− 1
`k

, the estimation error284

for phase k is ∆k ≡ ‖σ̂k − σ‖ = O
(
d · |Lk−1|

`k−1
+
√

log(`k−1·d)
`k−1

)
.285

4.2 Dynamic Mechanism Policy286

We develop a hybrid non-clairvoyant mechanism to reduce the number of lies by reducing the287

magnitude of misreports. To do so, observe that the buyer has no incentive to misreport in order288
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to affect future stage mechanisms when the latter are static. However, as previously mentioned,289

offering a purely static mechanism may forego a large amount of revenue [Papadimitriou et al., 2016].290

Motivated by this insight, our hybrid mechanism contains both dynamic stages dependent on the291

history and static stages independent of the history. We adapt B(F̂(1,T ), λ(1,K)) to obtain a hybrid292

non-clairvoyant mechanism Bhybrid(F̂(1,T ), λ(1,K), ω, τ), which is parameterized by ω ∈ (0, 1) and293

a function τ : Z+ → R+ that maps the phase number to a real number. The stage mechanism at stage294

t is parameterized by at, two balances balt and sbalt, and an additional parameter swt.295

We provide a high level description of our mechanism in this section while a detailed description296

is deferred to Appendix. Let Eωk = {t ∈ Ek | at < `ωk }. Intuitively, the hybrid non-clairvoyant297

mechanism runs different stage mechanisms conditioned on whether t ∈ Eωk or not: the stage298

mechanism is dynamic for t 6∈ Eωk and the stage mechanism is static for t ∈ Eωk with high probability.299

More precisely, for t 6∈ Eωk , the stage mechanisms are exactly the same as B(F̂(1,T ), λ(1,K)) and in300

particular, the posted-price auction with extra fee only uses the balance from balt. For t ∈ Eωk , the301

give-for-free mechanism and the Myerson’s auction remain the same. We use swt to keep track of the302

summation of expected valuations, i.e., swt = 1
3

∑
t′∈Eωk ,t′<t

Evt′∼F̂t′ [vt′ ]. If swt < τ(k), we turn303

the posted-price auction with extra fee into a give-for-free mechanism, but we increase the balance304

sbal instead of bal; otherwise, we run the posted-price auction with extra fee, except that it only uses305

the balance from sbal and it will in addition deposit the buyer’s utility to sbal.306

For t ∈ Eωk and swt < τ(k), the stage mechanism is static since it in fact runs a give-for-free307

mechanism with probability 2(1−λk)
3 and a Myerson’s auction with probability 1−λk

3 , both of which308

are independent of the history. For t ∈ Eωk and swt ≥ τ(k), by choosing τ properly, we show that309

with high probability, even if the buyer plays strategically, 3sbalt ≥ Evt∼F̂t [vt], which implies that310

min
(

3sbalt,Evt∼F̂t [vt]
)

= Evt∼F̂t [vt] so that the posted-price would be 0. Therefore, with high311

probability, the hybrid posted-price auction with extra fee is a give-for-free mechanism with fee312

Evt∼F̂t [vt], which is static and independent of balt and sbalt. To formally prove these statements,313

we exploit the fact that the dynamics of sbalt forms a martingale for stage t with swt ≥ τ(k).314

Lemma 4.3. With τ(k) = Ω
(
`

1
2 (1+ω)

k

√
log `k +

√
∆k

λk
`k

)
for all k, we have315

Rev
(
Bhybrid(F̂(1,T ), λ(1,K), ω, τ), F(1,T )

)
≥ 1

3
Rev
(
B∗(F(1,T )), F(1,T )

)
−
∑
k

(τ(k) + λk · `k)

and with probability at least 1− 1
`k

,
∑
t∈Êk

ηt
at
≤ Õ

(
`1−ωk

)
.316

4.3 The Final Policy317

Learning Policy: At the start of phase k, estimate σ̂k = arg min‖σ‖≤1 Lk−1(σ).

Dynamic Mechanism Policy: Bhybrid(F̂(1,T ), λ(1,K),
1
2 , τ): at phase k

• λk = `
− 1

6

k and τ(k) = c∗`
5
6

k ;

• Compute the distributional information F̂t for t ∈ Ek according to the estimation σ̂k;

Figure 1: Robust Non-clairvoyant Dynamic Contextual Auction Policy

We are now ready to combine our learning policy and dynamic mechanism policy to obtain our318

no-regret policy for contextual auctions in a non-clairvoyant environment (Figure 1). For our hybrid319

non-clairvoyant mechanism, we will set ω = 1
2 , λk = `

− 1
6

k , and τ(k) = c∗`
5
6

k with a large enough320

constant c∗. In particular, the estimation error for σ̂k is ∆k = O(`
− 1

2

k ) under our policy.321

Theorem 4.1. The T -stage regret of the robust non-clairvoyant dynamic contextual auction policy is322

Õ(T
5
6 ) against 1

3 -approximation of the optimal clairvoyant dynamic mechanism.323
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Appendix363

A Helper Lemmas364

Lemma A.1. In a single buyer setting, every stage IC and IR mechanism 〈x, p〉 can be represented365

by a mixture of posted-price auctions such that the probability density to offer a posted price r is366

f(r) = dx(r)
dr .367

Proof. We show that such a mixture of posted price auctions preserve the allocation rule and payment368

rule. By the celebrated Myerson’s lemma [Myerson, 1981], a mechanism is IC if and only if the369

allocation rule is monotonically non-decreasing, i.e., dx(r)
dr ≥ 0 for all valid r. Therefore, the density370

function of posted prices f(r) is well-defined. Moreover, for a buyer with bid b, his allocation371

probability is
∫ b

0
f(r)dr =

∫ b
0
dx(r)
dr dr = x(r), which implies that the allocation probability is372

preserved. Moreover, Myerson’s lemma [Myerson, 1981] demonstrated that the payment rule is373

uniquely determined by the allocation rule: p(b) =
∫ b

0
r · dx(r)

dr dr, which is exactly the payment374

collected from our mixture of posted price auctions for valuation v.375

Lemma A.2. For v ∈ [v̂ −∆, v̂ + ∆] and any stage IC and IR mechanism 〈x, p〉, we have376

u(v)−∆ ≤ u(v̂) ≤ u(v) + ∆

where u(v) = x(v) · v − p(v).377

Proof. Since 〈x, p〉 is a stage IC and IR mechanism, by Lemma A.1, we can equivalently offer a378

mixture of posted price auctions such that the probability density to post a price r is f(r) = dx(r)
dr .379

Therefore, we can express the utility of the buyer for valuation vt as
∫ dx(r)

dr (v − r)+dr. We first380

show the first inequality:381

x(v) · v − p(v) =

∫
dx(r)

dr
(v − r)+dr

≤
∫
dx(r)

dr
(v̂ + ∆− r)+dr

≤
∫
dx(r)

dr
(v̂ − r)+dr + ∆

= x(v̂) · v̂ − p(v̂) + ∆

where the first equality follows that 〈x, p〉 is stage-IC and Lemma A.1. By a similar argument, we382

can prove the second inequality.383

The following is a corollary of Lemma A.2, which demonstrates that the difference of expected utility384

due to the mismatch of distributional information can be related to the estimation error.385

Corollary A.1. For F(1,T ) and F̂(1,T ) satisfying Assumption 2, and for any stage IC and IR mecha-386

nism 〈x, p〉, we have387

Evt∼Ft [u(vt)]−∆at ≤ Evt∼F̂t [u(vt)] ≤ Evt∼Ft [u(vt)] + ∆at.

The following lemma demonstrates that the difference of expected welfare due to the mismatch of388

distributional information can be related to the estimation error.389

Lemma A.3. For F(1,T ) and F̂(1,T ) satisfying Assumption 2, and for any stage IC and IR mechanism390

〈x, p〉, we have391

Evt∼Ft [xt(vt) · vt]− (cf + 1)∆at ≤ Evt∼F̂t [xt(vt) · vt] ≤ Evt∼Ft [xt(vt) · vt] + (cf + 1)∆at

Proof. Since 〈x, p〉 is an stage IC and IR mechanism, by Lemma A.1, we can equivalently offer a392

mixture of posted price auctions such that the probability density to post a price r is f(r) = dx(r)
dr .393

Denote the distribution that εt follows as Gt.394
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We first show the first inequality:395

Evt∼Ft [xt(vt) · vt] = Evt∼F̂t,εt∼Gt [xt(vt + εtat) · (vt + εtat)]

=

∫
dxt(r)

dr
· Evt∼F̂t,εt∼Gt [1{vt + εtat ≥ r} · (vt + εtat)]dr

≤
∫
dxt(r)

dr
· Evt∼F̂t,εt∼Gt [1{vt + ∆at ≥ r} · (vt + ∆at)]dr

≤
∫
dxt(r)

dr
· Evt∼F̂t [1{vt + ∆at ≥ r} · (vt + ∆at)]dr

≤
∫
dxt(r)

dr
· Evt∼F̂t [1{vt + ∆at ≥ r} · vt]dr + ∆at

=

∫
dxt(r)

dr
· Evt∼F̂t [1{vt ≥ r} · vt + 1{r −∆at ≤ vt ≤ r} · vt]dr + ∆at

= Evt∼F̂t [xt(vt) · vt] +

∫
dxt(r)

dr
·
[∫ r

r−∆at

vt · ft(vt)dvt
]
dr + ∆at

≤ Evt∼F̂t [xt(vt) · vt] + (cf + 1)∆at (2)

where the last inequality follows that vt ≤ at and ft(vt) ≤ cf
at

. By a similar argument, we can prove396

the second inequality.397

B Omitted Proofs in Section 3398

B.1 Proof of Lemma 3.2399

Proof. For ease of presentation, let ψt(bal) = ψt(bal, F(1,T ), F(1,T )) and feet(bal) = feet(bal, Ft).400

We use a backward induction from t = T to t = 0 to show that for all t and bal ≥ 0, the inequalities401

in the statement hold.402

For the base case, it is true since for all bal ≥ 0, ψT (bal) = 0. Assume the induction hypothesis403

is true for all t′ ≥ t. Then for t − 1, first notice that by the computation of feet(bal), we have404

feet(bal + δ) = feet(bal) + δ′ with 0 ≤ δ′ ≤ 3δ. Therefore, we first have405

ψt−1(bal + δ) = Evt∼Ft
[

1

3
feet(bal + δ) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ ψt

(
bal + δ +

1

3
vt −

1

3
feet(bal + δ)

)]
≥ Evt∼Ft

[
1

3
feet(bal) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ ψt

(
bal +

1

3
vt −

1

3
feet(bal)

)]
= ψt−1(bal)

where the inequality follows δ − 1
3 feet(bal + δ) ≥ − 1

3 feet(bal) and the induction hypothesis. We406

also have407

ψt−1(bal + δ) = Evt∼Ft
[

1

3
feet(bal + δ) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ ψt

(
bal + δ +

1

3
vt −

1

3
feet(bal + δ)

)]
= Evt∼Ft

[
1

3
feet(bal) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+

1

3
δ′ + ψt

(
bal + δ +

1

3
vt −

1

3
feet(bal)− 1

3
δ′
)]

≤ Evt∼Ft
[

1

3
feet(bal) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+

1

3
δ′ + ψt

(
bal +

1

3
vt −

1

3
feet(bal)

)
+ δ − 1

3
δ′
]

= ψt−1(bal) +
1

3
δ′ + (δ − 1

3
δ′)

= ψt−1(bal) + δ.

where the inequality uses the fact that δ − 1
3δ
′ ≥ 0 and follows the induction hypothesis.408

B.2 Proof of Lemma 3.3409

Proof. For ease of presentation, let φt(bal) = ψt(bal, F̂(1,T ); F̂(1,T )) and θt(bal) =410

ψt(bal, F(1,T );F(1,T )). We proceed by a backward induction from t = T to t = 0 to show that for411
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all t,412

φt(bal) ≥ θt(bal)− (
1

3
cf +

5

3
)∆

T∑
t′=t+1

at′ .

The base case for t = T is clearly true since φT (bal) = θT (bal) = 0. Assume it is true for all t′ ≥ t413

and we consider for stage t− 1.414

First, if we use r∗t (Ft) as the reserve price for F̂t, then by Lemma A.3 and Corollary A.1, we have415

Evt∼F̂t [r
∗
t (F̂t) · 1{vt ≥ r∗t (F̂t)}] ≥ Evt∼F̂t [r

∗
t (Ft) · 1{vt ≥ r∗t (Ft)}]

≥ Evt∼Ft [r∗t (Ft) · 1{vt ≥ r∗t (Ft)}]− (cf + 2)∆at. (3)

where the first inequality follows that r∗t (F̂t) is the Myerson’s reserve for F̂t. As for the spend, recall416

that feet(bal;Ft) = min(3bal,Evt∼Ft [vt]), and thus, we have417

feet(bal;Ft)−∆at ≤ feet(bal; F̂t) ≤ feet(bal;Ft) + ∆at (4)

Therefore, combining (4) and Lemma 3.2, we have418

θt

(
bal +

1

3
(vt + εtat)−

1

3
feet(bal; F̂t)

)
≥ θt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)
− 2

3
∆at (5)

for |εt| ≤ ∆. Henceforth, we have419

φt−1(bal) = Evt∼F̂t

[
1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{vt ≥ r∗t (F̂t)}+ φt

(
bal +

1

3
vt −

1

3
feet(bal; F̂t)

)]
≥ Evt∼Ft

[
1

3
feet(bal;Ft) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}

]
− (

1

3
cf + 1)∆at

+ Evt∼F̂t

[
θt

(
bal +

1

3
vt −

1

3
feet(bal; F̂t)

)]
− (

1

3
cf +

5

3
)∆

T∑
t′=t+1

at′

≥ Evt∼Ft
[

1

3
feet(bal;Ft) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}

]
+ Evt∼Ft

[
θt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)]
− (

1

3
cf +

5

3
)∆

T∑
t′=t

at′

= θt−1(bal)− (
1

3
cf +

5

3
)∆

T∑
t′=t

at′

where the first inequality follows (3), (4), and the induction hypothesis, and the second inequality420

follows (5).421

B.3 Proof of Lemma 3.4422

Proof. We consider a fixed combination of b(1,t) and vt. Let (Xt′ , Pt′) be a random variable423

representing the stage mechanism at stage t′. Let
(
XOPT
t′ , POPTt′

)T
t′=t+1

be the sequence of424

stage mechanisms corresponding to the optimal play for stages between t and (T − 1) and let425 (
XTruthful
t′ , PTruthfult′

)T
t′=t+1

be the sequence of stage mechanisms corresponding to playing426

truthfully for stages between t and (T − 1).427

By playing truthfully for all stages between t and T , the buyer’s utility is428

uTruthfult = E
(XTruthfult′ ,PTruthful

t′ )
T

t′=t+1

[
T∑

t′=t+1

γt
′−t · Evt′∼Ft′

[
vt′ ·XTruthful

t′ (vt′)− PTruthfult′ (vt′)
]]
.
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As for the optimal play, the buyer’s utility is at most429

uOPTt = E
(XOPTt′ ,POPT

t′ )
T

t′=t+1

[
T∑

t′=t+1

γt
′−t · Evt′∼Ft′

[
max
b

{
vt′ ·XOPT

t′ (b)− POPTt′ (b)
} ]]

= E(XOPTt′ ,POPT
t′ )

T

t′=t+1

[
T∑

t′=t+1

γt
′−t · Evt′∼Ft′

[
vt′ ·XOPT

t′ (vt′)− POPTt′ (vt′)
]]
.

where the second equality is due to the fact that the mechanism is stage-IC for F(1,T ). Since the430

mechanism is β(1,T )-BI, we have431

Ut(b(1,t);F(1,T ); F̂(1,T )) ≤ uOPTt

≤ uTruthfult +

T∑
t′=t+1

γt
′−t · βt′

≤ Ut(b(1,t−1), vt;F(1,T ); F̂(1,T )) +

T∑
t′=t+1

γt
′−t · βt′ .

432

B.4 Proof of Lemma 3.5433

Proof. By Lemma 3.4, for a buyer who discounts the future with discounting factor γ, the expected434

gain in the future by misreporting at round t is at most
∑T
t′=t+1 γ

t′−tβt′ . However, in the random435

posted-price mechanism at round t, the utility loss of a buyer with true valuation vt from overbidding436

in a magnitude of mt is437 ∫ vt+mt

vt

b− vt
at

db =
m2
t

2at
.

By a similar calculation, the utility loss of a buyer with true valuation vt from underbidding in a438

magnitude of mt is also m2
t

2at
. Thus, we have439

m2
t

2at
≤

T∑
t′=t+1

γt
′−tβt′ ⇒ mt ≤

√√√√2at
λ
·

T∑
t′=t+1

γt′−tβt′ .

440

B.5 Proof of Lemma 3.6441

Proof. For ease of presentation, let φt(bal) = ψt(bal, F̂(1,T );F(1,T )) and θt(bal) =442

ψt(bal, F̂(1,T ); F̂(1,T )). We proceed by a backward induction from t = T to t = 0 to show that for443

all t,444

φt(bal) ≥ θt(bal)− (
1

3
cf +

5

3
)

T∑
t′=t+1

(∆at′ + ηt′)

The base case for t = T is clearly true since φT (bal) = θT (bal) = 0. Assume it is true for all t′ ≥ t445

and we consider for stage t− 1. First, recall that446

φt−1(bal) = Evt∼Ft
[

1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{v′t ≥ r∗t (F̂t)}+ φt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t)

)]
= Evt∼F̂t,εt

[
1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{v′t ≥ r∗t (F̂t)}+ φt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t)

)]
where in the last equality, vt is the valuation drawn from F̂t and v′t is the reported bid given the buyer’s447

true valuation is vt + εtat with |εt| ≤ ∆t. Therefore, we have v′t ∈ [vt −∆at − ηt, vt + ∆at + ηt].448

By Lemma A.3 and Corollary A.1,449

Evt∼F̂t,εt [r
∗
t (F̂t) · 1{v′t ≥ r∗t (F̂t)}] ≥ Evt∼F̂t [r

∗
t (F̂t) · 1{vt ≥ r∗t (F̂t)}]− (cf + 2)(∆at + ηt).

(6)
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As for the spend, by Lemma 3.2 and the fact that feet(bal; F̂t) ≤ feet(bal;Ft) + ∆at we first have450

θt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t)

)
≥ θt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)
− 2

3
∆at −

1

3
ηt (7)

Henceforth, we have451

φt−1(bal) = Evt∼Ft
[

1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{v′t ≥ r∗t (F̂t)}+ φt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t)

)]
≥ Evt∼F̂t

[
1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{vt ≥ r∗t (F̂t)}

]
− (

1

3
cf + 1)(∆at + ηt)

+ Evt∼F̂t

[
θt

(
bal +

1

3
v′t −

1

3
feet(bal; F̂t)

)]
− (

1

3
cf +

5

3
)

T∑
t′=t+1

(∆at′ + ηt′)

≥ Evt∼F̂t

[
1

3
feet(bal; F̂t) +

1

3
r∗t (F̂t) · 1{vt ≥ r∗t (F̂t)}

]
+ Evt∼F̂t

[
θt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)]
− (

1

3
cf +

5

3
)

T∑
t′=t

(∆at′ + ηt′)

= θt−1(bal)− (
1

3
cf +

5

3
)

T∑
t′=t

(∆at′ + ηt′)

where the first inequality follows (6) and the induction hypothesis, and the second inequality follows452

(7).453

Moreover, notice that we have454

∑
t

ηt =
∑
t

√√√√4at∆

λ
·

T∑
t′=t+1

γt′−tat′ =

√
4∆

λ

∑
t

√
at

√√√√ T∑
t′=t+1

γt′−tat′

≤
√

4∆

λ

√∑
t

at

√√√√∑
t

T∑
t′=t+1

γt′−tat′ ≤
√

4∆

λ

√∑
t

at

√
1

1− γ
∑
t

at

≤

√
4∆

(1− γ)λ
· caT.

where the first inequality follows the Cauchy-Schwarz inequality and the last inequality is due to455

Assumption 1.456

C Proof of Lemma 4.1457

Sketch: Recall that in a contextual auction, the buyer’s true valuation is vt = at(〈σ, ζt〉+ εt) where458

at is the intrinsic value of the item, ζt is the contextual vector, and εt is a random variable following459

the market noise distribution Mt. Notice that Mt(wt − 〈σ, ζt〉) is the probability of the event that460

〈σ, ζt〉+ εt = vt
at
≤ wt, which is equivalent to vt ≤ at · wt. As a result, assuming the buyer reports461

truthfully, Lk−1(σ) is exactly the negative of log-likelihood corresponding to σ.462

Under truthful reporting, we have 1{bt ≥ at · wt} = 1{vt ≥ at · wt}. For a η(1,T )-DIC robust463

dynamic mechanism, we have vt − ηt ≤ bt ≤ vt + ηt. As a result, if |at · wt − vt| > ηt, then any464

misreport from the buyer does not result in a lie. Therefore, a lie occurs only if the true valuation465

vt ∈ [at · wt − ηt, at · wt + ηt]. By a martingale argument on the sequence of lies, we can obtain466

that the total number of lies caused by the dynamic mechanism within phase k is O
(∑

t∈Êk−1

ηt
at

)
.467

Moreover, the buyer has an additional motivation to misreport to change the seller’s estimation for the468

future phases. However, for t ∈ Êk−1, the gain from changing the mechanism for the future phases469

via changing the seller’s estimation is relatively small, since the buyer discounts the future.470
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Proof. First, since the mechanism is η(1,T )-DIC, the misreport within phase k at stage t is bounded by471

ηt. We next bound the additional misreport for changing the estimation for the next phase. Note that472

the utility gain starting from phase k is at most
∑
t′≥`k γ

t′−t · at′ . Under Assumption 1, at′ ≤ ca · t′.473

Therefore, we have for t ∈ Êk−1,474 ∑
t′≥`k

γt
′−t · at′ ≤ ca ·

γ`k−t

(1− γ)2
≤ ca

(1− γ)2 · `5k

Recall that at round t, our robust dynamic mechanism is mixed with a random posted price auction475

with price uniformly drawn from [0, at] with probability λ. Therefore, the additional misreport m̄t476

for t ∈ Êk−1 is at most477

λk ·
m̄2
t

2at
≤ ca

(1− γ)2 · `5k
⇒ m̄t ≤

√
2ca · at

λk · (1− γ)2 · `5k
≤
√

2

λ
· ca

(1− γ) · `2k

where the last inequality is due to at ≤ ca · t ≤ ca · `k.478

To bound the number of lies, for t ∈ Êk−1, Let L(j) be the number of lies for the first j stages in479

Êk−1 and EL(j) be the expected number of lies from stage (`k−1 + j). Recall that since we sample480

wt uniformly from [0, 1] and notice that a lie occurs only if481

vt − ηt − m̄t ≤ at · wt ≤ vt + ηt + m̄t,

which happens with probability at most 2cf · ηt+m̄tat
. Therefore,482

EL(j) ≤ 2cf ·

(
ηt
at

+
c′√
λk · `2k

)
.

with t = `k−1 + j and c′ =
√

2ca
1−γ . Notice that E[L(j)− L(j − 1)− EL(j)] = 0, which implies that483

L(j) −
∑j
j′=0 EL(j′) forms a martingale. Henceforth, by multiplicative Azuma’s inequality (see484

Lemma 10 [Koufogiannakis and Young, 2014]) and denoting ` = |Êk−1|, we have485

Pr[L(`) ≥ 2(1 + δ)

`−1∑
j′=0

EL(j′)] ≤ exp

−δ
2
·
`−1∑
j′=0

EL(j′)


By setting δ = 2 log `k/

(∑`−1
j′=0 EL(j′)

)
, with probability at least 1− 1

`k
, we have486

L(`) = O

log `k +
∑
t∈Êk

(
ηt
at

+
1√

λk · `2k

) = O

log `k +
∑
t∈Êk

ηt
at

 .

487

D Hybrid Non-clairvoyant Mechanism488

We adapt B(F̂(1,T ), λ(1,K)) to obtain a hybrid non-clairvoyant mechanism489

Bhybrid(F̂(1,T ), λ(1,K), ω, τ), which is parameterized by a real number ω ∈ (0, 1) and a490

function τ : Z+ → R+ that maps the phase number to a real number. The stage mechanism at stage t491

is parameterized by two non-negative balances balt and sbalt, and an additional parameter swt. In492

particular, swt is reset to 0 at the beginning of each phase, i.e., for t = `k.493

For the give-for-free mechanism, the Myerson’s auction, and the random posted-price auction, their494

allocation rules, payment rules, and the update rule for bal remain the same, while they keep sw and495

sbal the same, i.e., swt+1 = swt and sbalt+1 = sbalt. We replace the posted-price auction with496

extra fee by a hybrid posted-price auction with extra fee.497

Definition D.1 (Hybrid Posted-price Auction with Extra Fee). For t ∈ Ek, let Eωk = {t | at < `ωk }.498
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• If t 6∈ Eωk : let feebt(balt; F̂t) = min
(

3balt,Evt∼F̂t [vt]
)

and rt(balt) be the posted-price499

such that500

Evt∼F̂t
[(
vt − rt(balt)

)+]
= feebt(balt; F̂t).

The mechanism charges the buyer feebt(balt; F̂t) before the buyer learns her valuation and501

then run a posted-price auction with price rt(balt)502

xHt = 1{bt ≥ rt(balt)},
pHt = feebt(balt; F̂t) + rt(balt) · 1{bt ≥ rt(balt)}

and update the balances: balHt+1 = balt − feebt(balt; F̂t), sbalHt+1 = sbalt, and swH
t+1 =503

swt.504

• otherwise, if t ∈ Eωk : we first update swH
t+1 = swt + Evt∼F̂t [vt];505

– if swt ≥ τ(k), let feest (sbalt; F̂t) = min
(

3sbalt,Evt∼F̂t [vt]
)

and rt(sbalt) be the506

posted-price such that507

Evt∼F̂t
[(
vt − rt(sbalt)

)+]
= feest (sbalt; F̂t)

The mechanism charges the buyer feest (sbalt; F̂t) before the buyer learns her valuation508

and then run a posted-price auction with price rt(sbalt)509

xHt = 1{bt ≥ rt(sbalt)},
pHt = feest (sbalt; F̂t) + rt(sbalt) · 1{bt ≥ rt(sbalt)}

and update the balances: balHt+1 = balt and510

sbalHt+1 = sbalt − feest (sbalt; F̂t) + 1{bt ≥ rt(sbalt)} · (bt − rt(sbalt)) ;

– otherwise: allocate the item no matter what the buyer’s bid is. Moreover, increase the511

balance sbalt by the buyer’s bid:512

xHt = 1, pHt = 0,

balHt+1 = balt, sbalHt+1 = sbalt + bt.

We prove Lemma 4.3 in this section. Lemma 4.3 states that by choosing τ(k) properly: (1) the revenue513

loss from running a hybrid non-clairvoyant mechanism against the non-clairvoyant mechanism is514

small; (2) the number of lies is small. The proof of the first property based on a new revenue515

tracking program that separates the revenue contribution related to bal (from stages t 6∈ Eωk ) and the516

revenue contribution related to sbal (from stages t ∈ Eωk ). The argument for the revenue from stages517

t 6∈ Eωk simply follows the argument of 1
3 -approximation of the non-clairvoyant mechanism, while518

the argument for the revenue from stages t ∈ Eωk exploits the martingale property of sbal and the519

fact that Evt∼F̂t [vt] is exactly the maximum extra fee we can charge in the posted-price auction with520

extra fee (Section D.2). We then combine the martingale natural of sbal and techniques in robust521

non-clairvoyant mechanism to show the number of lies is small (Section D.3).522

D.1 Bank Account Property523

We generalize the definition of BI to accommodate the introduction of sbalt:524

• The mechanism ensures that the expected utility is balance independent if the buyer reports525

truthfully:526

Evt∼F̂t [vt · xt(balt, sbalt, swt, vt)− pt(balt, sbalt, swt, vt)] (sBI)

is a non-negative constant independent of balt and sbalt.527
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• A balance update rule never uses more than the total balance from balt and sbalt, and never528

deposits more than the buyer’s utility into balt and sbalt in total:529

balt+1 ≥ 0, sbalt+1 ≥ 0

balt+1 + sbalt+1 ≤ balt + sbalt + bt · xt(balt, sbalt, swt, bt)− pBt (balt, sbalt, swt, bt)
(sBU)

Notice that we allow dependence on swt in sBI. This is because swt is a global parameter such that it530

is the same at stage t for all possible historical bids in the past.531

Lemma D.1. The hybrid non-clairvoyant mechanism Bhybrid(F̂(1,T ), λ(1,K), ω, τ) is stage-IC, sBI532

and sBU for F̂(1,T ). Therefore, Bhybrid(F̂(1,T ), λ(1,K), ω, τ) is η(1,T )-DIC with ηt = 0 and ex-post533

IR for F̂(1,T ).534

Proof. Since all mechanisms are variants of leave-it-or-take-it mechanisms, the mixture of them is535

clearly stage-IC. For sBU, notice that we only decrease bal and sbal in the posted price auction,536

and moreover, by the construction of rt(balt, sbalt; F̂t), it is at most balt (sbalt) when balt (sbalt)537

is deducted. Furthermore, it is straightforward to verify that the sum of the deposit to bal and538

sbal is at most the buyer’s utility at stage t. Therefore, the mechanism is sBU. To demonstrate the539

mechanism is sBI, notice that when at ≥ `ωk or swt ≥ τ(k), the buyer’s expected utility is exactly540

Evt∼F̂t [vt] + 0 + Evt∼F̂t [(vt − r
∗
t (F̂t)] for all balt and sbalt; otherwise, the buyer’s expected utility541

is 2Evt∼F̂t [vt] + Evt∼F̂t [(vt − r
∗
t (F̂t)] for all balt and sbalt. Thus, the mechanism is sBI.542

Since the mechanism is sBI, the buyer’s historical reports have no impact on her future expected543

utilities, assuming she reports truthfully in the future. Combining with the fact that the mechanism is544

stage-IC for every stage, the mechanism is η(1,T )-DIC with η(1,T ) = (0, . . . , 0). Moreover, by the545

balance update property sBU, the nonnegative balt + sbalt always lower bounds the buyer’s utility546

provided truthful reporting. Thus, the mechanism is ex-post IR.547

D.2 Revenue Tracking Program548

We develop a program to compute the revenue obtained from the hybrid non-clairvoyant mechanism.549

For convenience, let feebt(bal; F̂t) = 0 for t ∈ Eωk (in which feebt(bal; F̂t) is not defined). Moreover,550

for stage t such that t ∈ Eωk and swt < τ(k) (in which feest (sbal; F̂t) and rt(sbal) are not defined),551

let feest (sbal; F̂t) = rt(sbal) = 0.552

Definition D.2. For a hybrid non-clairvoyant mechanism Bhybrid(F̂(1,T ), λ(1,K), ω, τ), we consider553

revenue tracking programs ψbt (bal, F̂(1,T );F(1,T )) and ψst (sbal, F̂(1,T );F(1,T )) to keep track on the554

revenue of implementing Bhybrid(F̂(1,T ), λ(1,K), ω, τ) when the buyer’s true distribution is F(1,T ).555

We define ψbT (bal) = ψsT (sbal) = 0 and for t < T ,556

ψbt−1(bal, F̂(1,T );F(1,T )) = Evt∼Ft
[

1

3
feebt(bal; F̂t) +

1

3
r∗t (F̂t) · 1{v′t ≥ r∗t (F̂t)}

+ ψbt

(
bal +

1

3
v′t −

1

3
feebt(bal; F̂t), F̂(1,T );F(1,T )

)]
(8)

where v′t is the buyer’s reported bid that maximizes her continuation utility when the buyer’s true557

valuation is vt.558

Moreover, for t 6∈ Eωk , ψst−1(sbal, F̂(1,T );F(1,T )) = ψst (sbal, F̂(1,T );F(1,T )); otherwise,559

ψst−1(sbal, F̂(1,T );F(1,T ))

= Evt∼Ft
[

1

3
feest (sbal; F̂t) + ψst

(
sbal +

1

3

(
v′t − feest (sbal; F̂t)− rt(sbal)

)
, F̂(1,T );F(1,T )

)]
(9)

where v′t is the reported bid when the buyer’s true valuation is vt.560
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Notice that we separate the revenue tracking for bal and sbal. Moreover, the revenue obtained561

from the Myerson’s auction are counted in ψbt . Similar to the revenue tracking program for the562

non-clairvoyant mechanism (1), we record the revenue from each stage t while omitting the possible563

revenue rt(bal) or rt(sbal) from the posted-price auction with extra fee.564

Proposition D.1. Rev
(
Bhybrid(F̂(1,T ), λ(1,K), ω, τ);F(1,T )

)
≥ ψb0(0, F̂(1,T );F(1,T )) +565

ψs0(0, F̂(1,T );F(1,T ))−O(λT ).566

Revenue Performance with Perfect Distributional Information We first compare the revenue567

obtained by the hybrid non-clairvoyant mechanism and the non-clairvoyant mechanism, when the568

seller’s distributional information is perfect, i.e., F̂(1,T ) = F(1,T ). Notice that the definition of ψbt (8)569

is exactly the same as ψt for the non-clairvoyant mechanism (1). However, the difference is that for570

stage t in which at < `ωk , feebt(bal; F̂t) = 0 in the hybrid non-clairvoyant mechanism. Following an571

argument similar to the proof of Lemma 3.2, we have the following lemma:572

Lemma D.2. For any F(1,T ), we have for all 0 ≤ t ≤ T ,573

ψbt (bal + δ, F(1,T );F(1,T ))− δ ≤ ψbt (bal, F(1,T );F(1,T )) ≤ ψbt (bal + δ, F(1,T );F(1,T )).

Therefore, all our results for the robust non-clairvoyant mechanism (Section 3) works for the rev-574

enue obtained from ψbt . We then compute the revenue obtain from ψbt when the seller has perfect575

distributional information.576

Lemma D.3. ψb0(0, F(1,T );F(1,T )) ≥ ψ0(0, F(1,T );F(1,T ))− 1
3

∑
k

∑
t∈Eωk

Evt∼Ft [vt].577

Proof. For simplicity, let φt(bal) = ψbt (bal, F(1,T );F(1,T )) and θt(bal) = ψt(bal, F(1,T );F(1,T )).578

We prove by a backward induction from t = T to t = 0 to show that for all t and bal ≥ 0,579

φt(bal) ≥ θt(bal)− 1

3

∑
k

∑
t′∈Eωk ,t′>t

Evt′∼Ft′ [vt′ ].

The base case is true for t = T since φT (bal) = θT (bal) = 0 for all bal ≥ 0. Assume the580

induction hypothesis is true for t′ ≥ t and we consider stage t− 1. For t ∈ Ek, if t 6∈ Eωk , we have581

feebt(bal;Ft) = feet(bal;Ft). Therefore, we have582

φt−1(bal) = Evt∼Ft
[

1

3
feebt(bal;Ft) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ φt

(
bal +

1

3
vt −

1

3
feebt(bal;Ft)

)]
= Evt∼Ft

[
1

3
feet(bal;Ft) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ φt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)]
= θt−1(bal) + Evt∼Ft

[
φt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)
− θt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)]
≥ θt−1(bal)− 1

3

∑
k

∑
t′∈Eωk ,t′≥t

Evt′∼Ft′ [vt′ ]

where the inequality follows the induction hypothesis. On the other hand, if t ∈ Eωk , we have583

feebt(bal;Ft) = 0. As a result, we have584

φt−1(bal) = Evt∼Ft
[

1

3
feebt(bal;Ft) +

1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ φt

(
bal +

1

3
vt −

1

3
feebt(bal;Ft)

)]
≥ Evt∼Ft

[
1

3
r∗t (Ft) · 1{vt ≥ r∗t (Ft)}+ φt

(
bal +

1

3
vt − feet(bal;Ft)

)]
= θt−1(bal)− 1

3
feet(bal;Ft)

+ Evt∼Ft
[
φt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)
− θt

(
bal +

1

3
vt −

1

3
feet(bal;Ft)

)]
≥ θt−1(bal)− 1

3

∑
k

∑
t′∈Eωk ,t′≥t

Evt′∼Ft′ [vt′ ]
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where the first inequality follows Lemma D.2 and the second inequality uses the induction hypothesis585

and the fact that feet(bal;Ft) ≤ Evt∼Ft [vt].586

Let Ẽωk = {t ∈ Eωk | swt < τ(k)}. Let t∗(k) = max Ẽωk and consider a sequence yt for t ∈ Eωk587

such that588

yt =

{
1
3

∑
t′∈Ek,t′≤tEvt′∼Ft′ [vt′ ] t′ ∈ Ẽωk

yt∗(k) t′ 6∈ Ẽωk
Henceforth, the key observation is that the sequence {sbalt − yt}t∈Eωk forms a martingale with589

bounded difference at at stage t: for t ∈ Ẽωk , we have590

Evt∼Ft [sbalt+1 − sbalt] = Evt∼Ft [sbalt +
1

3
vt − sbalt] =

1

3
Evt∼Ft [vt]

and for t ∈ Eωk \ Ẽωk , we have591

Evt∼Ft [sbalt+1 − sbalt] = Evt∼Ft
[
sbalt +

1

3

(
vt − feest (sbalt;Ft)− rt(sbalt)

)
− sbalt

]
= 0

where the last equality follows the fact that Evt∼F̂t
[(
vt − rt(sbalt)

)+]
= feest (sbalt; F̂t) from the592

construction of the hybrid non-clairvoyant mechanism.593

Lemma D.4. If τ(k) ≥ 4
√
ca · `

1
2 (1+ω)

k

√
log `k, for any t ∈ Eωk \ Ẽωk , Pr

[
sbalt < yt∗(k) − δ

]
≤594

exp
(
− δ2

4ca`
1+ω
k

)
.595

Proof. Notice that yt∗(k) ≥ τ(k) and by Azuma’s inequality, we have for any t ∈ Eωk \ Ẽωk ,596

Pr
[
sbalt < yt∗(k) − δ

]
≤ exp

(
− δ2

2
∑
t∈Eωk

a2
t

)
≤ exp

(
− δ2

4ca`
1+ω
k

)
where the second inequality follows that597 ∑

t∈Eωk

a2
t ≤ (`ωk )2 ·

∑
t∈Eωk

at

`ωk
≤ (`ωk )2 · 2ca`k

`ωk
= 2ca · `1+ω

k

where the second inequality follows Assumption 1.598

Lemma D.5. If τ(k) ≥ 4
√
ca · `

1
2 (1+ω)

k

√
log `k, we have599

ψs0(0, F(1,T );F(1,T )) ≥
1

3

∑
k

∑
t∈Eωk

Evt∼Ft [vt]− τ(k)

− Õ(Tω).

Proof. For convenience, let φt(sbal) = ψst (sbal, F(1,T );F(1,T )). Recall that φt−1(sbal) = φt(sbal)600

if t ∈ Ek and t 6∈ Eωk . Moreover, recall that swt is set to 0 at stage `k for all k and when t ∈ Ek and601

swt < τ(k), we in fact offer a give-for-free mechanism in the hybrid posted-price auction. Therefore,602

the mechanism does not accrue any revenue from stages with t ∈ Ẽωk .603

Plugging in δ = τ(k)− 1
3`
ω
k in Lemma D.4, we have604

Pr

[
sbalt <

1

3
`ωk

]
≤ Pr

[
sbalt < yt∗(k) − τ(k) +

1

3
`ωk

]
≤ exp

(
−
(
τ(k)− 1

3`
ω
k

)2
4ca`

1+ω
k

)
≤ 1

`2k

where the first inequality is due to yt∗(k) ≥ τ(k). Applying the union bound, we have605

Pr

[
∃t ∈ Eωk \ Ẽωk , sbalt <

1

3
`ωk

]
≤ 1

`k
.
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Therefore, with probability at least (1− 1
`k

), for all t ∈ Eωk \ Ẽωk , 3sbalt ≥ `ωk ≥ at ≥ Evt∼Ft [vt],606

which implies that feest (sbalt;Ft) = Evt∼Ft [vt]. Thus, combining with the fact that yt∗(k) ≤607

τ(k) + `ωk for all k, we have for the revenue obtained from 1
3 fee

s
t (sbalt;Ft) is at least608

(1− 1

`k
) · 1

3

∑
t∈Eωk

Evt∼Ft [vt]− yt∗(k)

 =
1

3

∑
t∈Eωk

Evt∼Ft [vt]− τ(k)

−O(`ωk )

We conclude the proof of the lemma by taking the summation over all the phases.609

Combining Lemma D.3 and D.5, we can conclude that610

Corollary D.1. By setting τ(k) = 4
√
ca · `

1
2 (1+ω)

k

√
log `k, we have611

ψb0(0, F(1,T );F(1,T )) + ψs0(0, F(1,T );F(1,T )) ≥ ψ0(0, F(1,T );F(1,T ))− Õ
(
T

1
2 (1+ω)

)
.

Therefore, the revenue loss of the hybrid non-clairvoyant mechanism against the optimal clairvoyant612

mechanism is sublinear in T when ω ∈ (0, 1).613

D.3 Analysis on the Misreport614

We analyze the buyer’s misreport in this section. By the discussion in Section 4.1, we focus615

on Êk instead of Ek. We first provide a naive bound for the property of η(1,T )-DIC in Êk for616

Bhybrid(F̂(1,T ), λ(1,K), ω, τ).617

Proposition D.2. In Bhybrid(F̂(1,T ), λ(1,K), ω, τ), for t ∈ Êk, we have618

ηt ≤ 4

√
at∆k

λk
·

∑
t′∈Ek,t′>t

γt′−tat′

and moreover,619 ∑
t∈Êk

ηt = 4ca

√
∆k

(1− γ)λk
· `k.

Proof. By Lemma 3.5, we have620

ηt ≤

√√√√4at∆k

λk
·

T∑
t′=t+1

γt′−tat′

= ηt ≤

√√√√√4at∆k

λk
·

 ∑
t′∈Ek,t′>t

γt′−tat′ +
∑

t′≥`k+1

γt′−tat′



≤ ηt ≤

√√√√√4at∆k

λk
·

 ∑
t′∈Ek,t′>t

γt′−tat′ +
ca

(1− γ)2 · `5k+1



≤ ηt ≤ 4

√√√√√at∆k

λk
·

 ∑
t′∈Ek,t′>t

γt′−tat′


Combining with the argument similar to the proof of Lemma 3.6, we can conclude that621 ∑

t∈Êk

ηt = 4ca

√
∆k

(1− γ)λk
· `k.

622
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For convenience, let Êωk = Eωk ∩ Êk and let623

Aωk = {t ∈ Êωk | next(t) > 6 log1/γ `k}

where next(t) = min ({t′ > t | t′ ∈ Ek \ Eωk } ∪ {`k+1}) − t′. Intuitively, next(t) is the distance624

between stage t and the first future stage not in Eωk . Henceforth, Aωk is a set of stages in which the625

first future stage not in Eωk is at least 6 log1/γ `k far away. By Lemma D.4, with probability at least626

(1− 1
`k

), the mechanism we offer in Eωk is static, which implies that the buyer has little incentive to627

misreport for stages in Aωk since she discounts the future. We formalize this intuition in Lemma D.6.628

For convenience, let629

τ∆k,λk(k) = 4
√
ca · `

1
2 (1+ω)

k

√
log `k + 5ca

√
∆k

(1− γ)λk
· `k + 6`ωk log1/γ `k.

Lemma D.6. In Bhybrid(F̂(1,T ), λ(1,K), ω, τ), if τ(k) ≥ τ∆k,λk(k) then with probability at least630

(1− 1
`k

), for all t ∈ Aωk , ηt ≤ O
(

1√
λk·`2k

)
and moreover,631

ψs`k(0, F̂(`k,`k+1−1);F(`k,`k+1−1)) ≥
1

3

∑
t∈Eωk

Evt∼F̂t [vt]− τ(k)

−O(`ωk ).

Proof. First, plugging δ = τ(k)− 5ca
√

∆k

(1−γ)λk
· `k − 6`ωk log1/γ `k − 1

3`
ω
k into Lemma D.4, then632

conditioned on the assumption that the buyer reports truthfully according to F̂(1,T ), we have633

Pr

[
sbalt < 5ca

√
∆k

(1− γ)λk
· `k + 6`ωk log1/γ `k +

1

3
`ωk

]

≤ Pr

[
sbalt < yt∗(k) −

(
τ(k)− 5ca

√
∆k

(1− γ)λk
· `k − 6`ωk log1/γ `k −

1

3
`ωk

)]

≤ exp

−
(

5
√
ca · `

1
2 (1+ω)

k

√
log `k − 1

3`
ω
k

)2

4ca`
1+ω
k

 ≤ 1

`2k
.

Applying a union bound, we have634

Pr

[
∃t ∈ Aωk , sbalt < 5ca

√
∆k

(1− γ)λk
· `k + 6`ωk log1/γ `k +

1

3
`ωk

]
≤ 1

`k

conditioned on the assumption that the buyer reports truthfully according to F̂(1,T ). If the buyer635

misreports under F(1,T ), then by Proposition D.2 and Assumption 1, we have636

Pr

[
∃t ∈ Aωk , sbalt < 6`ωk log1/γ `k +

1

3
`ωk

]
≤ 1

`k
.

By the definition of Aωk , for t′ ∈
[
t+ 1, t+ 6 log1/γ `k

]
, the mechanism at stage t′ is the same if637

sbalt′ ≥ 1
3`
ω
k , which implies that 3sbalt′ ≥ at′ ≥ Evt∼F̂t [vt]. Moreover, notice that at stage t′, since638

at′ ≤ `ωk , the decrement of sbal is at most `ωk . Therefore, we have639

Pr

[
∃t ∈ Aωk ,∃t < t′ ≤ t+ 6 log1/γ `k, sbalt <

1

3
`ωk

]
≤ 1

`k
.

As a result, for a buyer who misreports at stage t ∈ Aωk , she can only earn benefit from stages at least640

6 log1/γ `k away in the future. Thus, the amount of misreport mt must satisfy641

λk ·
m2
t

2at
≤

∑
t′≥t+6 log1/γ `k

γt
′−tat′ ≤

ca
(1− γ)2 · `5k

⇒ mt = O

(
1√

λk · `2k

)
.
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For the revenue guarantee in phase k, notice that our analysis demonstrates that once swt ≥ τ(k) ≥642

τ∆k,λk(k) for some t, even the buyer misreports, with probability at least (1 − 1
`k

), sbalt′ ≥ 1
3`
ω
k643

for all t′ ≥ t and t′ ∈ Eωk . Therefore, the mechanism can obtain revenue 1
3Evt′∼F̂t′ [vt′ ] for these644

stages.645

We are now ready to bound the estimation error of our learning policy (Section 4.1) in our robust646

hybrid non-clairvoyant bank account mechanism Bhybrid(F̂(1,T ), λ(1,K), ω, τ).647

Lemma D.7. If τ(k) ≥ τ∆k,λk(k) and λk ≥ `−2
k , then with probability at least (1 − 1

`k
),648

Bhybrid(F̂(1,T ), λ(1,K), ω, τ) is η(1,T )-DIC for F(1,T ) such that649 ∑
t∈Êk

ηt
at
≤ Õ

(
`1−ωk

)
.

Proof. First of all, for t ∈ Aωk , by Lemma D.6, we have650 ∑
t∈Aωk

ηt
at
≤
∑
t∈Aωk

ηt = O

(
1√

λk · `k

)

where the inequality is due to at ≥ 1. As for t ∈ Êωk \Aωk , we simply apply the bound ηt
at
≤ 1 since651

ηt ≤ at. Moreover, by the definition of Aωk , for t ∈ Êωk , there are at most |Ek \ Eωk | · 6 log1/γ `k652

stages not in Aωk . In addition, by Assumption 1, we have |Ek \Eωk | = O(`1−ωk ). Therefore, we have653 ∑
t∈Êωk \A

ω
k

ηt
at
≤ |Êωk \Aωk | = Õ

(
`1−ωk

)
.

Finally, for stages in Êk \ Êωk , we have |Êk \ Êωk | = O(`1−ωk ), and therefore,654 ∑
t∈̂̂Ek\Êωk

ηt
at
≤ |Êk \ Êωk | = Õ

(
`1−ωk

)
.

We conclude the proof of the lemma by summing over all three cases.655
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