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Abstract

We propose a practical inexact augmented Lagrangian method (iALM) for noncon-
vex problems with nonlinear constraints. We characterize the total computational
complexity of our method subject to a verifiable geometric condition, which is
closely related to the Polyak-Lojasiewicz and Mangasarian-Fromowitz conditions.

In particular, when a first-order solver is used for the inner iterates, we prove that
iALM finds a first-order stationary point with Õ(1/ε3) calls to the first-order oracle.
If, in addition, the problem is smooth and a second-order solver is used for the
inner iterates, iALM finds a second-order stationary point with Õ(1/ε5) calls to
the second-order oracle. These complexity results match the known theoretical
results in the literature.

We also provide strong numerical evidence on large-scale machine learning prob-
lems, including the Burer-Monteiro factorization of semidefinite programs, and
a novel nonconvex relaxation of the standard basis pursuit template. For these
examples, we also show how to verify our geometric condition.

1 Introduction
We study the nonconvex optimization problem

min
x∈Rd

f(x) + g(x) s.t. A(x) = 0, (1)

where f : Rd → R is a continuously-differentiable nonconvex function and A : Rd → Rm is a
nonlinear operator. We assume that g : Rd → R ∪ {∞} is a proximal-friendly convex function [47].

A host of problems in computer science [33, 37, 70], machine learning [40, 59], and signal pro-
cessing [57, 58] naturally fall under the template (1), including max-cut, clustering, generalized
eigenvalue decomposition, as well as the quadratic assignment problem (QAP) [70].

To solve (1), we propose an intuitive and easy-to-implement augmented Lagrangian algorithm, and
provide its total iteration complexity under an interpretable geometric condition. Before we elaborate
on the results, let us first motivate (1) with an application to semidefinite programming (SDP):

Vignette: Burer-Monteiro splitting. A powerful convex relaxation for max-cut, clustering, and
many others is provided by the trace-constrained SDP

min
X∈Sd×d

〈C,X〉 s.t. B(X) = b, tr(X) ≤ α, X � 0, (2)
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where C ∈ Rd×d, X is a positive semidefinite d× d matrix, and B : Sd×d → Rm is a linear operator.
If the unique-games conjecture is true, the SDP (2) obtains the best possible approximation for the
underlying discrete problem [53].

Since d is often large, many first- and second-order methods for solving such SDP’s are immedi-
ately ruled out, not only due to their high computational complexity, but also due to their storage
requirements, which are O(d2).

A contemporary challenge in optimization is therefore to solve SDPs using little space and in a
scalable fashion. The recent homotopy conditional gradient method, which is based on linear
minimization oracles (LMOs), can solve (2) in a small space via sketching [69]. However, such
LMO-based methods are extremely slow in obtaining accurate solutions.

A different approach for solving (2), dating back to [14, 15], is the so-called Burer-Monteiro (BM)
factorization X = UU>, where U ∈ Rd×r and r is selected according to the guidelines in [49, 1],
which is tight [63]. The BM factorization leads to the following nonconvex problem in the template (1):

min
U∈Rd×r

〈C,UU>〉 s.t. B(UU>) = b, ‖U‖2F ≤ α, (3)

The BM factorization does not introduce any extraneous local minima [15]. Moreover, [13] establishes
the connection between the local minimizers of the factorized problem (3) and the global minimizers
for (2). To solve (3), the inexact Augmented Lagrangian method (iALM) is widely used [14, 15, 35],
due to its cheap per iteration cost and its empirical success.

Every (outer) iteration of iALM calls a solver to solve an intermediate augmented Lagrangian
subproblem to near stationarity. The choices include first-order methods, such as the proximal
gradient descent [47], or second-order methods, such as the trust region method and BFGS [44].1

Unlike its convex counterpart [41, 36, 65], the convergence rate and the complexity of iALM for (3)
are not well-understood, see Section 5 for a review of the related literature. Indeed, addressing this
important theoretical gap is one of the contributions of our work. In addition,

. We derive the convergence rate of iALM to first-order optimality for solving (1) or second-order
optimality for solving (1) with g = 0, and find the total iteration complexity of iALM using different
solvers for the augmented Lagrangian subproblems. Our complexity bounds match the best theoretical
results in optimization, see Section 5.

. Our iALM framework is future-proof in the sense that different subsolvers can be substituted.

. We propose a geometric condition that simplifies the algorithmic analysis for iALM, and clarify its
connection to well-known Polyak-Lojasiewicz [32] and Mangasarian-Fromovitz [3] conditions. We
also verify this condition for key problems in Appendices D and E.

2 Preliminaries
Notation. We use the notation 〈·, ·〉 and ‖ · ‖ for the standard inner product and the norm on Rd. For
matrices, ‖ · ‖ and ‖ · ‖F denote the spectral and the Frobenius norms, respectively. For the convex
function g : Rd → R, the subdifferential set at x ∈ Rd is denoted by ∂g(x) and we will occasionally
use the notation ∂g(x)/β = {z/β : z ∈ ∂g(x)}. When presenting iteration complexity results, we
often use Õ(·) which suppresses the logarithmic dependencies.

We denote δX : Rd → R as the indicator function of a set X ⊂ Rd. The distance function from
a point x to X is denoted by dist(x,X ) = minz∈X ‖x − z‖. For integers k0 ≤ k1, we use the
notation [k0 : k1] = {k0, . . . , k1}. For an operator A : Rd → Rm with components {Ai}mi=1,
DA(x) ∈ Rm×d denotes the Jacobian of A, where the ith row of DA(x) is the vector∇Ai(x) ∈ Rd.

Smoothness. We assume smooth f : Rd → R and A : Rd → Rm; i.e., there exist λf , λA ≥ 0 s.t.

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖, ‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, ∀x, x′ ∈ Rd. (4)

Augmented Lagrangian method (ALM). ALM is a classical algorithm, which first appeared
in [29, 51] and extensively studied afterwards in [3, 8]. For solving (1), ALM suggests solving the

1BFGS is in fact a quasi-Newton method that emulates second-order information.
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problem
min
x

max
y
Lβ(x, y) + g(x), (5)

where, for penalty weight β > 0, Lβ is the corresponding augmented Lagrangian, defined as

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)‖2. (6)

The minimax formulation in (5) naturally suggests the following algorithm for solving (1):

xk+1 ∈ argmin
x

Lβ(x, yk) + g(x), (7)

yk+1 = yk + σkA(xk+1),

where the dual step sizes are denoted as {σk}k. However, computing xk+1 above requires solving
the nonconvex problem (7) to optimality, which is typically intractable. Instead, it is often easier to
find an approximate first- or second-order stationary point of (7).

Hence, we argue that by gradually improving the stationarity precision and increasing the penalty
weight β above, we can reach a stationary point of the main problem in (5), as detailed in Section 3.

Optimality conditions. First-order necessary optimality conditions for (1) are well-studied. Indeed,
x ∈ Rd is a first-order stationary point of (1) if there exists y ∈ Rm such that

−∇xLβ(x, y) ∈ ∂g(x), A(x) = 0, (8)

which is in turn the necessary optimality condition for (5). Inspired by this, we say that x is an (εf , β)
first-order stationary point of (5) if there exists a y ∈ Rm such that

dist(−∇xLβ(x, y), ∂g(x)) ≤ εf , ‖A(x)‖ ≤ εf , (9)

for εf ≥ 0. In light of (9), a metric for evaluating the stationarity of a pair (x, y) ∈ Rd × Rm is

dist (−∇xLβ(x, y), ∂g(x)) + ‖A(x)‖, (10)

which we use as the first-order stopping criterion. As an example, for a convex set X ⊂ Rd, suppose
that g = δX is the indicator function on X . Let also TX (x) ⊆ Rd denote the tangent cone to X at x,
and with PTX (x) : Rd → Rd we denote the orthogonal projection onto this tangent cone. Then, for
u ∈ Rd, it is not difficult to verify that

dist (u, ∂g(x)) = ‖PTX (x)(u)‖. (11)

When g = 0, a first-order stationary point x ∈ Rd of (1) is also second-order stationary if

λmin(∇xxLβ(x, y)) ≥ 0, (12)

where ∇xxLβ is the Hessian of Lβ with respect to x, and λmin(·) returns the smallest eigenvalue of
its argument. Analogously, x is an (εf , εs, β) second-order stationary point if, in addition to (9), it
holds that

λmin(∇xxLβ(x, y)) ≥ −εs, (13)
for εs ≥ 0. Naturally, for second-order stationarity, we use λmin(∇xxLβ(x, y)) as the stopping
criterion.

Smoothness lemma. This next result controls the smoothness of Lβ(·, y) for a fixed y. The proof
is standard but nevertheless is included in Appendix C for completeness.
Lemma 2.1 (smoothness). For fixed y ∈ Rm and ρ, ρ′ ≥ 0, it holds that

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, (14)

for every x, x′ ∈ {x′′ : ‖x′′‖ ≤ ρ, ‖A(x′′)‖ ≤ ρ′}, where

λβ ≤ λf +
√
mλA‖y‖+ (

√
mλAρ

′ + dλ′2A)β =: λf +
√
mλA‖y‖+ λ′′(A, ρ, ρ′)β. (15)

Above, λf , λA were defined in (4) and

λ′A := max
‖x‖≤ρ

‖DA(x)‖. (16)
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3 Algorithm

To solve the equivalent formulation of (1) presented in (5), we propose the inexact ALM (iALM),
detailed in Algorithm 1. At the kth iteration, Step 2 of Algorithm 1 calls a solver that finds an
approximate stationary point of the augmented Lagrangian Lβk

(·, yk) with the accuracy of εk+1, and
this accuracy gradually increases in a controlled fashion. The increasing sequence of penalty weights
{βk}k and the dual update (Steps 4 and 5) are responsible for continuously enforcing the constraints
in (1). The appropriate choice for {βk}k will be specified in Corrollary Sections A.1 and A.2.

The particular choice of the dual step sizes {σk}k in Algorithm 1 ensures that the dual variable yk
remains bounded.

Algorithm 1 Inexact ALM
Input: Non-decreasing, positive, unbounded sequence {βk}k≥1, stopping thresholds τf , τs > 0.
Initialization: Primal variable x1 ∈ Rd, dual variable y0 ∈ Rm, dual step size σ1 > 0.
for k = 1, 2, . . . do

1. (Update tolerance) εk+1 = 1/βk.
2. (Inexact primal solution) Obtain xk+1 ∈ Rd such that

dist(−∇xLβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

for first-order stationarity

λmin(∇xxLβk
(xk+1, yk)) ≥ −εk+1

for second-order-stationarity, if g = 0 in (1).
3. (Update dual step size)

σk+1 = σ1 min
( ‖A(x1)‖ log2 2

‖A(xk+1)‖(k + 1) log2(k + 2)
, 1
)
.

4. (Dual ascent) yk+1 = yk + σk+1A(xk+1).
5. (Stopping criterion) If

dist(−∇xLβk
(xk+1), ∂g(xk+1)) + ‖A(xk+1)‖ ≤ τf ,

for first-order stationarity and if also λmin(∇xxLβk
(xk+1, yk)) ≥ −τs for second-order

stationarity, then quit and return xk+1 as an (approximate) stationary point of (5).
end for

4 Convergence Rate

This section presents the total iteration complexity of Algorithm 1 for finding first and second-order
stationary points of problem (5). All the proofs are deferred to Appendix B. Theorem 4.1 characterizes
the convergence rate of Algorithm 1 for finding stationary points in the number of outer iterations.
Theorem 4.1. (convergence rate) For integers 2 ≤ k0 ≤ k1, consider the interval K = [k0 :
k1], and let {xk}k∈K be the output sequence of Algorithm 1 on the interval K.2 Let also ρ :=
supk∈[K] ‖xk‖.3 Suppose that f and A satisfy (4) and let

λ′f = max
‖x‖≤ρ

‖∇f(x)‖, λ′A = max
‖x‖≤ρ

‖DA(x)‖, (17)

be the (restricted) Lipschitz constants of f and A, respectively. With ν > 0, assume that

ν‖A(xk)‖ ≤ dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
, (18)

for every k ∈ K. We consider two cases:
2The choice of k1 = ∞ is valid here too.
3If necessary, to ensure that ρ <∞, one can add a small factor of ‖x‖2 to Lβ in (6). Then it is easy to verify

that the iterates of Algorithm 1 remain bounded, provided that the initial penalty weight β0 is large enough,
supx ‖∇f(x)‖/‖x‖ <∞, supx ‖A(x)‖ <∞, and supx ‖DA(x)‖ <∞.
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• If a first-order solver is used in Step 2, then xk is an (εk,f , βk) first-order stationary point of (5)
with

εk,f =
1

βk−1

(
2(λ′f + λ′Aymax)(1 + λ′Aσk)

ν
+ 1

)
=:

Q(f, g, A, σ1)

βk−1
, (19)

for every k ∈ K, where ymax(x1, y0, σ1) := ‖y0‖+ c‖A(x1)‖.

• If a second-order solver is used in Step 2, then xk is an (εk,f , εk,s, βk) second-order stationary
point of (5) with εk,s specified above and with

εk,s = εk−1 + σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
=
ν + σk

√
mλA2λ′f + 2λ′Aymax

νβk−1
=:

Q′(f, g, A, σ1)

βk−1
.

(20)

Theorem 4.1 states that Algorithm 1 converges to a (first- or second-) order stationary point of (5)
at the rate of 1/βk, further specified in Corollary 4.2 and Corollary 4.3. A few remarks are in order
about Theorem 4.1.

Regularity. The key geometric condition in Theorem 4.1 is (18) which, broadly speaking, ensures
that the primal updates of Algorithm 1 reduce the feasibility gap as the penalty weight βk grows. We
will verify this condition for several examples in Appendices D and E.

This condition in (18) is closely related to those in the existing literature. In the special case where
g = 0 in (1), (18) reduces to;

‖DA(x)>A(x)‖ ≥ ν‖A(x)‖. (21)

Polyak-Lojasiewicz (PL) condition [32]. Consider the problem with λf̃ -smooth objective,

min
x∈Rd

f̃(x).

f̃(x) satisfies the PL inequality if the following holds for some µ > 0,

1

2
‖∇f̃(x)‖2 ≥ µ(f̃(x)− f̃∗), ∀x (PL inequality)

This inequality implies that gradient is growing faster than a quadratic as we move away from the
optimal. Assuming that the feasible set {x : A(x) = 0} is non-empty, it is easy to verify that 21 is
equivalent to the PL condition for minimizing f̃(x) = 1

2‖A(x)‖2 with ν =
√

2µ [32].

PL condition itself is a special case of Kurdyka-Lojasiewicz with θ = 1/2, see [66, Definition 1.1].
When g = 0, it is also easy to see that (18) is weaker than the Mangasarian-Fromovitz (MF) condition
in nonlinear optimization [10, Assumption 1]. Moreover, when g is the indicator on a convex set,
(18) is a consequence of the basic constraint qualification in [55], which itself generalizes the MF
condition to the case when g is an indicator function of a convex set.

We may think of (18) as a local condition, which should hold within a neighborhood of the constraint
set {x : A(x) = 0} rather than everywhere in Rd. Indeed, the iteration count k appears in (18) to
reflect this local nature of the condition. Similar kind of arguments on the regularity condition also
appear in [10]. There is also a constant complexity algorithm in [10] to reach so-called “information
zone”, which supplements Theorem 4.1.

Penalty method. A classical algorithm to solve (1) is the penalty method, which is characterized by
the absence of the dual variable (y = 0) in (6). Indeed, ALM can be interpreted as an adaptive penalty
or smoothing method with a variable center determined by the dual variable. It is worth noting that,
with the same proof technique, one can establish the same convergence rate of Theorem 4.1 for the
penalty method. However, while both methods have the same convergence rate in theory, we ignore
the uncompetitive penalty method since it is significantly outperformed by iALM in practice.

Computational complexity. Theorem 4.1 specifies the number of (outer) iterations that Algo-
rithm 1 requires to reach a near-stationary point of problem (6) with a prescribed precision and, in
particular, specifies the number of calls made to the solver in Step 2. In this sense, Theorem 4.1 does
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not fully capture the computational complexity of Algorithm 1, as it does not take into account the
computational cost of the solver in Step 2.

To better understand the total iteration complexity of Algorithm 1, we consider two scenarios in the
following. In the first scenario, we take the solver in Step 2 to be the Accelerated Proximal Gradient
Method (APGM), a well-known first-order algorithm [27]. In the second scenario, we will use the
second-order trust region method developed in [17]. We have the following two corollaries showing
the total complexity of our algorithm to reach first and second-order stationary points. Appendix A
contains the proofs and more detailed discussion for the complexity results.
Corollary 4.2 (First-order optimality). For b > 1, let βk = bk for every k. If we use APGM from [27]
for Step 2 of Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point of (5), after T
calls to the first-order oracle, where

T = O
(
Q3ρ2

ε3
logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε3

)
. (22)

For Algorithm 1 to reach a near-stationary point with an accuracy of εf in the sense of (9) and with
the lowest computational cost, we therefore need to perform only one iteration of Algorithm 1, with
β1 specified as a function of εf by (19) in Theorem 4.1. In general, however, the constants in (19) are
unknown and this approach is thus not feasible. Instead, the homotopy approach taken by Algorithm 1
ensures achieving the desired accuracy by gradually increasing the penalty weight. This homotopy
approach increases the computational cost of Algorithm 1 only by a factor logarithmic in the εf , as
detailed in the proof of Corollary 4.2.
Corollary 4.3 (Second-order optimality). For b > 1, let βk = bk for every k. We assume that

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (23)

If we use the trust region method from [17] for Step 2 of Algorithm 1, the algorithm finds an
ε-second-order stationary point of (5) in T calls to the second-order oracle where

T = O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (24)

Remark. These complexity results for first and second-order are stationarity with respect to (6). We
note that these complexities match [18] and [7]. However, the stationarity criteria and the definition
of dual variable in these papers differ from ours. We include more discussion on this in the Appendix.

Effect of βk in 18. We consider two cases, when g is the indicator of a convex set (or 0), the
subdifferential set will be a cone (or 0), thus βk will not have an effect. On the other hand, when g is
a convex and Lipschitz contiunous function defined on the whole space, subdifferential set will be
bounded [54, Theorem 23.4]. This will introduce an error term in 18 that is of the order (1/βk). One
can see that bk choice for βk causes a linear decrease in this error term. In fact, all the examples in
this paper fall into the first case.

5 Related Work

ALM has a long history in the optimization literature, dating back to [29, 51]. In the special case
of (1) with a convex function f and a linear operator A, standard, inexact, and linearized versions of
ALM have been extensively studied [36, 41, 61, 65].

Classical works on ALM focused on the general template of (1) with nonconvex f and nonlinear A,
with arguably stronger assumptions and required exact solutions to the subproblems of the form (7),
which appear in Step 2 of Algorithm 1, see for instance [4].

A similar analysis was conducted in [22] for the general template of (1). The authors considered
inexact ALM and proved convergence rates for the outer iterates, under specific assumptions on the
initialization of the dual variable. However, in contrast, the authors did not analyze how to solve the
subproblems inexactly and did not provide total complexity results with verifiable conditions.

Problem (1) with similar assumptions to us is also studied in [7] and [18] for first-order and second-
order stationarity, respectively, with explicit iteration complexity analysis. As we have mentioned
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in Section 4, our iteration complexity results matches these theoretical algorithms with a simpler
algorithm and a simpler analysis. In addition, these algorithms require setting final accuracies since
they utilize this information in the algorithm while our Algorithm 1 does not set accuracies a priori.

[16] also considers the same template (1) for first-order stationarity with a penalty-type method
instead of ALM. Even though the authors show O(1/ε2) complexity, this result is obtained by
assuming that the penalty parameter remains bounded. We note that such an assumption can also be
used to improve our complexity results to match theirs.

[10] studies the general template (1) with specific assumptions involving local error bound conditions
for the (1). These conditions are studied in detail in [9], but their validity for general SDPs (2) has
never been established. This work also lacks the total iteration complexity analysis presented here.

Another work [20] focused on solving (1) by adapting the primal-dual method of Chambolle and
Pock [19]. The authors proved the convergence of the method and provided convergence rate by
imposing error bound conditions on the objective function that do not hold for standard SDPs.

[14, 15] is the first work that proposes the splitting X = UU> for solving SDPs of the form (2).
Following these works, the literature on Burer-Monteiro (BM) splitting for the large part focused on
using ALM for solving the reformulated problem (3).

However, this proposal has a few drawbacks: First, it requires exact solutions in Step 2 of Algorithm 1
in theory, which in practice is replaced with inexact solutions. Second, their results only establish con-
vergence without providing the rates. In this sense, our work provides a theoretical understanding of
the BM splitting with inexact solutions to Step 2 of Algorithm 1 and complete iteration complexities.

[6, 48] are among the earliest efforts to show convergence rates for BM splitting, focusing on
the special case of SDPs without any linear constraints. For these specific problems, they prove
the convergence of gradient descent to global optima with convergence rates, assuming favorable
initialization. These results, however, do not apply to general SDPs of the form (2) where the difficulty
arises due to the linear constraints.

Another popular method for solving SDPs are due to [12, 11, 13], focusing on the case where the
constraints in (1) can be written as a Riemannian manifold after BM splitting. In this case, the authors
apply the Riemannian gradient descent and Riemannian trust region methods for obtaining first- and
second-order stationary points, respectively. They obtain O(1/ε2) complexity for finding first-order
stationary points and O(1/ε3) complexity for finding second-order stationary points.

While these complexities appear better than ours, the smooth manifold requirement in these works
is indeed restrictive. In particular, this requirement holds for max-cut and generalized eigenvalue
problems, but it is not satisfied for other important SDPs such as quadratic programming (QAP),
optimal power flow and clustering with general affine constraints. In addition, as noted in [11], per
iteration cost of their method for max-cut problem is an astronomical O(d6).

Lastly, there also exists a line of work for solving SDPs in their original convex formulation, in a
storage efficient way [42, 68, 69]. These works have global optimality guarantees by their virtue of
directly solving the convex formulation. On the downside, these works require the use of eigenvalue
routines and exhibit significantly slower convergence as compared to nonconvex approaches [31].

6 Numerical Evidence

We first begin with a caveat: It is known that quasi-Newton methods, such as BFGS and lBFGS,
might not converge for nonconvex problems [21, 38]. For this reason, we have used the trust region
method as the second-order solver in our analysis in Section 4, which is well-studied for nonconvex
problems [17]. Empirically, however, BFGS and lBGFS are extremely successful and we have
therefore opted for those solvers in this section since the subroutine does not affect Theorem 4.1 as
long as the subsolver performs well in practice.

6.1 Clustering

Given data points {zi}ni=1, the entries of the corresponding Euclidean distance matrix D ∈ Rn×n

are Di,j = ‖zi − zj‖2. Clustering is then the problem of finding a co-association matrix Y ∈ Rn×n
such that Yij = 1 if points zi and zj are within the same cluster and Yij = 0 otherwise. In [50], the
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Figure 1: Clustering running time comparison.

authors provide a SDP relaxation of the clustering problem, specified as

min
Y ∈Rnxn

tr(DY ) s.t. Y 1 = 1, tr(Y ) = s, Y � 0, Y ≥ 0, (25)

where s is the number of clusters and Y is both positive semidefinite and has nonnegative entries.
Standard SDP solvers do not scale well with the number of data points n, since they often require
projection onto the semidefinite cone with the complexity of O(n3). We instead use the BM
factorization to solve (25), sacrificing convexity to reduce the computational complexity. More
specifically, we solve the program

min
V ∈Rn×r

tr(DV V >) s.t. V V >1 = 1, ‖V ‖2F ≤ s, V ≥ 0, (26)

where 1 ∈ Rn is the vector of all ones. Note that Y ≥ 0 in (25) is replaced above by the much
stronger but easier-to-enforce constraint V ≥ 0 in (26), see [35] for the reasoning behind this
relaxation. Now, we can cast (26) as an instance of (1). Indeed, for every i ≤ n, let xi ∈ Rr denote
the ith row of V . We next form x ∈ Rd with d = nr by expanding the factorized variable V , namely,
x := [x>1 , · · · , x>n ]> ∈ Rd, and then set

f(x) =

n∑
i,j=1

Di,j 〈xi, xj〉 , g = δC , A(x) = [x>1

n∑
j=1

xj − 1, · · · , x>n
n∑
j=1

xj − 1]>,

where C is the intersection of the positive orthant in Rd with the Euclidean ball of radius
√
s. In

Appendix D, we verify that Theorem 4.1 applies to (1) with f, g, A specified above.

In our simulations, we use two different solvers for Step 2 of Algorithm 1, namely, APGM and
lBFGS. APGM is a solver for nonconvex problems of the form (7) with convergence guarantees
to first-order stationarity, as discussed in Section 4. lBFGS is a limited-memory version of BFGS
algorithm in [24] that approximately leverages the second-order information of the problem. We
compare our approach against the following convex methods:

• HCGM: Homotopy-based Conditional Gradient Method in [69] which directly solves (25).
• SDPNAL+: A second-order augmented Lagrangian method for solving SDP’s with nonneg-

ativity constraints [67].

As for the dataset, our experimental setup is similar to that described by [39]. We use the publicly-
available fashion-MNIST data in [64], which is released as a possible replacement for the MNIST
handwritten digits. Each data point is a 28× 28 gray-scale image, associated with a label from ten
classes, labeled from 0 to 9. First, we extract the meaningful features from this dataset using a simple
two-layer neural network with a sigmoid activation function. Then, we apply this neural network to
1000 test samples from the same dataset, which gives us a vector of length 10 for each data point,
where each entry represents the posterior probability for each class. Then, we form the `2 distance
matrix D from these probability vectors. The solution rank for the template (25) is known and it is
equal to number of clusters k [35, Theorem 1]. As discussed in [60], setting rank r > k leads more
accurate reconstruction in expense of speed. Therefore, we set the rank to 20. For iAL lBFGS, we
used β1 = 1 and σ1 = 10 as the initial penalty weight and dual step size, respectively. For HCGM,
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we used β0 = 1 as the initial smoothness parameter. We have run SDPNAL+ solver with 10−12

tolerance. The results are depicted in Figure 1. We implemented 3 algorithms on MATLAB and used
the software package for SDPNAL+ which contains mex files. It is predictable that the performance
of our nonconvex approach would even improve by using mex files.

6.2 Additional demonstrations

We provide several additional experiments in Appendix E. Section E.1 discusses a novel nonconvex
relaxation of the standard basis pursuit template which performs comparable to the state of the art
convex solvers. In Section E.2, we provide fast numerical solutions to the generalized eigenvalue
problem. In Section E.3, we give a contemporary application example that our template applies,
namely, denoising with generative adversarial networks. Finally, we provide improved bounds for
sparse quadratic assignment problem instances in Section E.4.

7 Conclusions

In this work, we have proposed and analyzed an inexact augmented Lagrangian method for solving
nonconvex optimization problems with nonlinear constraints. We prove convergence to the first
and second order stationary points of the augmented Lagrangian function, with explicit complexity
estimates. Even though the relation of stationary points and global optima is not well-understood in
the literature, we find out that the algorithm has fast convergence behavior to either global minima or
local minima in a wide variety of numerical experiments.
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A Complexity Results

A.1 First-Order Optimality

Let us first consider the case where the solver in Step 2 is is the first-order algorithm APGM, described
in detail in [27]. At a high level, APGM makes use of ∇xLβ(x, y) in (6), the proximal operator
proxg , and the classical Nesterov acceleration [43] to reach first-order stationarity for the subproblem
in (7). Suppose that g = δX is the indicator function on a bounded convex set X ⊂ Rd and let

ρ = max
x∈X
‖x‖, (27)

be the radius of a ball centered at the origin that includes X . Then, adapting the results in [27] to our
setup, APGM reaches xk in Step 2 of Algorithm 1 after

O

(
λ2
βk
ρ2

εk+1

)
(28)

(inner) iterations, where λβk
denotes the Lipschitz constant of ∇xLβk

(x, y), bounded in (15). For
the clarity of the presentation, we have used a looser bound in (28) compared to [27]. Using (28), we
derive the following corollary, describing the total iteration complexity of Algorithm 1 in terms of the
number calls made to the first-order oracle in APGM.
Corollary A.1. For b > 1, let βk = bk for every k. If we use APGM from [27] for Step 2 of
Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point, after T calls to the first-order
oracle, where

T = O
(
Q3ρ2

ε3
logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε3

)
. (29)

Proof. Let K denote the number of (outer) iterations of Algorithm 1 and let εf denote the desired
accuracy of Algorithm 1, see (9). Recalling Theorem 4.1, we can then write that

εf =
Q

βK
, (30)

or, equivalently, βK = Q/εf . We now count the number of total (inner) iterations T of Algorithm 1
to reach the accuracy εf . From (15) and for sufficiently large k, recall that λβk

≤ λ′′βk is the
smoothness parameter of the augmented Lagrangian. Then, from (28) ad by summing over the outer
iterations, we bound the total number of (inner) iterations of Algorithm 1 as

T =

K∑
k=1

O

(
λ2
βk−1

ρ2

εk

)

=

K∑
k=1

O
(
β3
k−1ρ

2
)

(Step 1 of Algorithm 1)

≤ O
(
Kβ3

K−1ρ
2
)

({βk}k is increasing)

≤ O

(
KQ3ρ2

ε3f

)
. (see (30)) (31)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,

βK = bK =⇒ K = logb

(
Q

εf

)
, (32)

which, after substituting into (31) gives the final bound in Corollary 4.2.

A.2 Second-Order Optimality

Let us now consider the second-order optimality case where the solver in Step 2 is the the trust region
method developed in [17]. Trust region method minimizes a quadratic approximation of the function
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within a dynamically updated trust-region radius. Second-order trust region method that we consider
in this section makes use of Hessian (or an approximation of Hessian) of the augmented Lagrangian
in addition to first order oracles.

As shown in [45], finding approximate second-order stationary points of convex-constrained problems
is in general NP-hard. For this reason, we focus in this section on the special case of (1) with g = 0.

Let us compute the total computational complexity of Algorithm 1 with the trust region method in
Step 2, in terms of the number of calls made to the second-order oracle. By adapting the result in [17]
to our setup, we find that the number of (inner) iterations required in Step 2 of Algorithm 1 to produce
xk+1 is

O

(
λ2
βk,H

(Lβk
(x1, y)−minx Lβk

(x, y))

ε3k

)
, (33)

where λβ,H is the Lipschitz constant of the Hessian of the augmented Lagrangian, which is of the
order of β, as can be proven similar to Lemma 2.1 and x1 is the initial iterate of the given outer loop.
In [17], the term Lβ(x1, y)−minx Lβ(x, y) is bounded by a constant independent of ε. We assume
a uniform bound for this quantity for every βk, instead of for one value of βk as in [17]. Using (33)
and Theorem 4.1, we arrive at the following:
Corollary A.2. For b > 1, let βk = bk for every k. We assume that

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (34)

If we use the trust region method from [17] for Step 2 of Algorithm 1, the algorithm finds an
ε-second-order stationary point of (1) in T calls to the second-order oracle where

T = O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (35)

Before closing this section, we note that the remark after Corollary 4.2 applies here as well.

A.3 Approximate optimality of (1).

Corollary 4.2 establishes the iteration complexity of Algorithm 1 to reach approximate first-order
stationarity for the equivalent formulation of (1) presented in (5). Unlike the exact case, approximate
first-order stationarity in (5) does not immediately lend itself to approximate stationarity in (1), and
the study of approximate stationarity for the penalized problem (special case of our setting with dual
variable set to 0) has also precedent in [5]. For a precedent in convex optimization for relating the
convergence in augmented Lagrangian to the constrained problem using duality, see [62]. For the
second-order case, it is in general not possible to establish approximate second-order optimality for
(5) from Corollary 4.3, with the exception of linear constraints. [45] provides an hardness result by
showing that checking an approximate second-order stationarity is NP-hard.

B Proof of Theorem 4.1

For every k ≥ 2, recall from (6) and Step 2 of Algorithm 1 that xk satisfies
dist(−∇f(xk)−DA(xk)>yk−1

− βk−1DA(xk)>A(xk), ∂g(xk))

= dist(−∇xLβk−1
(xk, yk−1), ∂g(xk)) ≤ εk. (36)

With an application of the triangle inequality, it follows that
dist(−βk−1DA(xk)>A(xk), ∂g(xk))

≤ ‖∇f(xk)‖+ ‖DA(xk)>yk−1‖+ εk, (37)
which in turn implies that

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≤ ‖∇f(xk)‖
βk−1

+
‖DA(xk)>yk−1‖

βk−1
+

εk
βk−1

≤
λ′f + λ′A‖yk−1‖+ εk

βk−1
, (38)
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where λ′f , λ
′
A were defined in (17). We next translate (38) into a bound on the feasibility gap ‖A(xk)‖.

Using the regularity condition (18), the left-hand side of (38) can be bounded below as

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1) ≥ ν‖A(xk)‖. (see (18)) (39)

By substituting (39) back into (38), we find that

‖A(xk)‖ ≤
λ′f + λ′A‖yk−1‖+ εk

νβk−1
. (40)

In words, the feasibility gap is directly controlled by the dual sequence {yk}k. We next establish that
the dual sequence is bounded. Indeed, for every k ∈ K, note that

‖yk‖ = ‖y0 +

k∑
i=1

σiA(xi)‖ (Step 5 of Algorithm 1)

≤ ‖y0‖+

k∑
i=1

σi‖A(xi)‖ (triangle inequality)

≤ ‖y0‖+

k∑
i=1

‖A(x1)‖ log2 2

k log2(k + 1)
(Step 4)

≤ ‖y0‖+ c‖A(x1)‖ log2 2 =: ymax, (41)

where

c ≥
∞∑
i=1

1

k log2(k + 1)
. (42)

Substituting (41) back into (40), we reach

‖A(xk)‖ ≤
λ′f + λ′Aymax + εk

νβk−1

≤
2λ′f + 2λ′Aymax

νβk−1
, (43)

where the second line above holds if k0 is large enough, which would in turn guarantees that
εk = 1/βk−1 is sufficiently small since {βk}k is increasing and unbounded. It remains to control
the first term in (10). To that end, after recalling Step 2 of Algorithm 1 and applying the triangle
inequality, we can write that

dist(−∇xLβk−1
(xk, yk), ∂g(xk))

≤ dist(−∇xLβk−1
(xk, yk−1), ∂g(xk))

+ ‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖. (44)

The first term on the right-hand side above is bounded by εk, by Step 5 of Algorithm 1. For the
second term on the right-hand side of (44), we write that

‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖
= ‖DA(xk)>(yk − yk−1)‖ (see (6))

≤ λ′A‖yk − yk−1‖ (see (17))

= λ′Aσk‖A(xk)‖ (see Step 5 of Algorithm 1)

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax). (see (43)) (45)

By combining (44,45), we find that

dist(∇xLβk−1
(xk, yk), ∂g(xk))

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk. (46)
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By combining (43,46), we find that

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤
(

2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk

)
+ 2

(
λ′f + λ′Aymax

νβk−1

)
. (47)

Applying σk ≤ σ1, we find that

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤ 2λ′Aσ1 + 2

νβk−1
(λ′f + λ′Aymax) + εk. (48)

For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to write

λmin(∇xxLβk−1
(xk, yk−1)) ≥ λmin(∇xxLβk−1

(xk, yk))

− σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖. (49)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We next
bound the second term on the right-hand side above as

σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖

≤ σk
√
mmax

i
‖Ai(xk)‖‖∇2Ai(xk)‖

≤ σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

where the last inequality is due to (4,43). Plugging into (49) gives

λmin(∇xxLβk−1
(xk, yk−1))

≥ −εk−1 − σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

which completes the proof of Theorem 4.1.

C Proof of Lemma 2.1

Proof. Note that

Lβ(x, y) = f(x) +

m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (50)

which implies that

∇xLβ(x, y)

= ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (51)

where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x)

+ β

m∑
i=1

∇Ai(x)∇Ai(x)>. (52)
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It follows that

‖∇2
xLβ(x, y)‖

≤ ‖∇2f(x)‖+ max
i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1)

+ β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (53)

For every x such that ‖x‖ ≤ ρ and ‖A(x)‖ ≤ ρ, we conclude that

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ′) + β max

‖x‖≤ρ
‖DA(x)‖2F , (54)

which completes the proof of Lemma 2.1.

D Clustering

We only verify the condition in (18) here. Note that

A(x) = V V >1− 1, (55)

DA(x) =

 w1,1x
>
1 · · · w1,nx

>
1

...
wn,1x

>
n · · · wn,n1x>n


= [ V · · · V ] +

 x>1
. . .

x>n

 , (56)

where wi.i = 2 and wi,j = 1 for i 6= j. In the last line above, n copies of V appear and the last
matrix above is block-diagonal. For xk, define Vk accordingly and let xk,i be the ith row of Vk.
Consequently,

DA(xk)>A(xk) =

 (V >k Vk − In)V >k 1
...

(V >k Vk − In)V >k 1


+

 xk,1(VkV
>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

 , (57)

where In ∈ Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First, we
assume that ‖xk‖ <

√
s (which can be enforced in the iterates by replacing C with (1− ε)C for a

small positive ε in the subproblems). Under this assumption, it follows that

(∂g(xk))i =

{
0 (xk)i > 0

{a : a ≤ 0} (xk)i = 0,
i ≤ d. (58)

Second, we assume that Vk has nearly orthonormal columns, namely, V >k Vk ≈ In. This can also be
enforced in each iterate of Algorithm 1 and naturally corresponds to well-separated clusters. While a
more fine-tuned argument can remove these assumptions, they will help us simplify the presentation
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here. Under these assumptions, the (squared) right-hand side of (18) becomes

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

=
∥∥∥(−DA(xk)>A(xk)

)
+

∥∥∥2

(a+ = max(a, 0))

=

∥∥∥∥∥∥∥
 xk,1(VkV

>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n


∥∥∥∥∥∥∥

2

(xk ∈ C ⇒ xk ≥ 0)

=

n∑
i=1

‖xk,i‖2(VkV
>
k 1− 1)2

i

≥ min
i
‖xk,i‖2 ·

n∑
i=1

(VkV
>
k 1− 1)2

i

= min
i
‖xk,i‖2 · ‖VkV >k 1− 1‖2. (59)

Therefore, given a prescribed ν, ensuring mini ‖xk,i‖ ≥ ν guarantees (18). When the algorithm
is initialized close enough to the constraint set, there is indeed no need to separately enforce (59).
In practice, often n exceeds the number of true clusters and a more intricate analysis is required to
establish (18) by restricting the argument to a particular subspace of Rn.

E Additional Experiments

E.1 Basis Pursuit

Basis Pursuit (BP) finds sparsest solutions of an under-determined system of linear equations by
solving

min
z
‖z‖1 s.t. Bz = b, (60)

where B ∈ Rn×d and b ∈ Rn. Various primal-dual convex optimization algorithms are available
in the literature to solve BP, including [61, 19]. We compare our algorithm against state-of-the-art
primal-dual convex methods for solving (60), namely, Chambole-Pock [19], ASGARD [62] and
ASGARD-DL [61].

Here, we take a different approach and cast (60) as an instance of (1). Note that any z ∈ Rd
can be decomposed as z = z+ − z−, where z+, z− ∈ Rd are the positive and negative parts of
z, respectively. Then consider the change of variables z+ = u◦21 and z− = u◦22 ∈ Rd, where ◦
denotes element-wise power. Next, we concatenate u1 and u2 as x := [u>1 , u

>
2 ]> ∈ R2d and define

B := [B,−B] ∈ Rn×2d. Then, (60) is equivalent to (1) with
f(x) =‖x‖2, g(x) = 0, s.t. A(x) = Bx◦2 − b. (61)

We draw the entries of B independently from a zero-mean and unit-variance Gaussian distribution.
For a fixed sparsity level k, the support of z∗ ∈ Rd and its nonzero amplitudes are also drawn from
the standard Gaussian distribution. Then the measurement vector is created as b = Bz + ε, where ε
is the noise vector with entries drawn independently from the zero-mean Gaussian distribution with
variance σ2 = 10−6.

The results are compiled in Figure 2. Clearly, the performance of Algorithm 1 with a second-order
solver for BP is comparable to the rest. It is, indeed, interesting to see that these type of nonconvex
relaxations gives the solution of convex one and first order methods succeed.

Discussion: The true potential of our reformulation is in dealing with more structured norms rather
than `1, where computing the proximal operator is often intractable. One such case is the latent group
lasso norm [46], defined as

‖z‖Ω =

I∑
i=1

‖zΩi
‖,
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Figure 2: Basis Pursuit

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we
believe that the nonconvex framework presented in this paper can serve to solve more complicated
problems, such as the latent group lasso. We leave this research direction for future work.

Condition verification: In the sequel, we verify that Theorem 4.1 indeed applies to (1) with the
above f,A, g. Note that

DA(x) = 2Bdiag(x), (62)

where diag(x) ∈ R2d×2d is the diagonal matrix formed by x. The left-hand side of (18) then reads as

dist
(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
= dist

(
−DA(xk)>A(xk), {0}

)
(g ≡ 0)

= ‖DA(xk)>A(xk)‖

= 2‖diag(xk)B
>

(Bx◦2k − b)‖. (see (62)) (63)

To bound the last line above, let x∗ be a solution of (1) and note that Bx◦2∗ = b by definition. Let also
zk, z∗ ∈ Rd denote the vectors corresponding to xk, x∗. Corresponding to xk, also define uk,1, uk,2
naturally and let |zk| = u◦2k,1 + u◦2k,2 ∈ Rd be the vector of amplitudes of zk. To simplify matters, let
us assume also that B is full-rank. We then rewrite the norm in the last line of (63) as

‖diag(xk)B
>

(Bx◦2k − b)‖2

= ‖diag(xk)B
>
B(x◦2k − x◦2∗ )‖2 (Bx◦2∗ = b)

= ‖diag(xk)B
>
B(xk − x∗)‖2

= ‖diag(uk,1)B>B(zk − z∗)‖2

+ ‖diag(uk,2)B>B(zk − z∗)‖2

= ‖diag(u◦2k,1 + u◦2k,2)B>B(zk − z∗)‖2

= ‖diag(|zk|)B>B(zk − z∗)‖2

≥ ηn(Bdiag(|zk|))2‖B(zk − z∗)‖2

= ηn(Bdiag(|zk|))2‖Bzk − b‖2 (Bz∗ = Bx◦2∗ = b)

≥ min
|T |=n

ηn(BT ) · |zk,(n)|2‖Bzk − b‖2, (64)

where ηn(·) returns the nth largest singular value of its argument. In the last line above, BT is the
restriction of B to the columns indexed by T of size n. Moreover, zk,(n) is the nth largest entry of z
in magnitude. Given a prescribed ν, (18) therefore holds if

|zk,(n)| ≥
ν

2
√

min|T |=n ηn(BT )
, (65)

for every iteration k. If Algorithm 1 is initialized close enough to the solution z∗ and the entries of
z∗ are sufficiently large in magnitude, there will be no need to directly enforce (65).
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E.2 Generalized Eigenvalue Problem

(i) C : Gaussian iid (ii) C : Polynomial decay (iii) C : Exponential decay
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Figure 3: (Top) Objective convergence for calculating top generalized eigenvalue and eigenvector ofB
and C. (Bottom) Eigenvalue structure of the matrices. For (i),(ii) and (iii), C is positive semidefinite;
for (iv), (v) and (vi), C contains negative eigenvalues. [(i): Generated by taking symmetric part of
iid Gaussian matrix. (ii): Generated by randomly rotating diag(1−p, 2−p, · · · , 1000−p)(p = 1). (iii):
Generated by randomly rotating diag(10−p, 10−2p, · · · , 10−1000p)(p = 0.0025).]

Generalized eigenvalue problem has extensive applications in machine learning, statistics and data
analysis [26]. The well-known nonconvex formulation of the problem is [13] given by{

min
x∈Rn

x>Cx

x>Bx = 1,
(66)

where B,C ∈ Rn×n are symmetric matrices and B is positive definite, namely, B � 0. The
generalized eigenvector computation is equivalent to performing principal component analysis (PCA)
of C in the norm B. It is also equivalent to computing the top eigenvector of symmetric matrix
S = B−1/2CB1/2 and multiplying the resulting vector by B−1/2. However, for large values of n,
computing B−1/2 is extremely expensive. The natural convex SDP relaxation for (66) involves lifting
Y = xx> and removing the nonconvex rank(Y ) = 1 constraint, namely,{

min
Y ∈Rn×n

tr(CY )

tr(BY ) = 1, X � 0.
(67)
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Here, however, we opt to directly solve (66) because it fits into our template with

f(x) =x>Cx, g(x) = 0,

A(x) =x>Bx− 1. (68)

We compare our approach against three different methods: manifold based Riemannian gradient
descent and Riemannian trust region methods in [11] and the linear system solver in [26], abbrevated
as GenELin. We have used Manopt software package in [12] for the manifold based methods. For
GenELin, we have utilized Matlab’s backslash operator as the linear solver. The results are compiled
in Figure 3.

Condition verification: Here, we verify the regularity condition in (18) for problem (66). Note
that

DA(x) = (2Bx)>. (69)

Therefore,

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

= dist
(
−DA(xk)>A(xk), {0}

)2
(g ≡ 0)

= ‖DA(xk)>A(xk)‖2

= ‖2Bxk(x>k Bxk − 1)‖2 (see (69))

= 4(x>k Bxk − 1)2‖Bxk‖2

= 4‖Bxk‖2‖A(xk)‖2 (see (68))

≥ ηmin(B)2‖xk‖2‖A(xk)‖2, (70)

where ηmin(B) is the smallest eigenvalue of the positive definite matrixB. Therefore, for a prescribed
ν, the regularity condition in (18) holds with ‖xk‖ ≥ ν/ηmin for every k. If the algorithm is initialized
close enough to the constraint set, there will be again no need to directly enforce this latter condition.

E.3 `∞ Denoising with a Generative Prior

The authors of [56, 30] have proposed to project onto the range of a Generative Adversarial network
(GAN) [28], as a way to defend against adversarial examples. For a given noisy observation x∗ + η,
they consider a projection in the `2 norm. We instead propose to use our augmented Lagrangian
method to denoise in the `∞ norm, a much harder task:

min
x,z

‖x∗ + η − x‖∞
s.t. x = G(z).

(71)

al

Figure 4: Augmented Lagrangian vs Adam and Gradient descent for `∞ denoising

We use a pretrained generator for the MNIST dataset, given by a standard deconvolutional neural
network architecture [52]. We compare the succesful optimizer Adam [34] and gradient Descent
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against our method. Our algorithm involves two forward and one backward pass through the network,
as oposed to Adam that requires only one forward/backward pass. For this reason we let our algorithm
run for 2000 iterations, and Adam and GD for 3000 iterations. Both Adam and gradient descent
generate a sequence of feasible iterates xt = G(zt). For this reason we plot the objective evaluated at
the point G(zt) vs iteration count in figure 4. Our method successfully minimizes the objective value,
while Adam and GD do not.

E.4 Quadratic assginment problem

Let K, L be n× n symmetric metrices. QAP in its simplest form can be written as

max tr(KPLP ), subject to P be a permutation matrix (72)

A direct approach for solving (72) involves a combinatorial search. To get the SDP relaxation of (72),
we will first lift the QAP to a problem involving a larger matrix. Observe that the objective function
takes the form

tr((K ⊗ L)(vec(P )vec(P>))),

where ⊗ denotes the Kronecker product. Therefore, we can recast (72) as

tr((K ⊗ L)Y ) subject to Y = vec(P )vec(P>), (73)

where P is a permutation matrix. We can relax the equality constraint in (73) to a semidefinite
constraint and write it in an equivalent form as

X =

[
1 vec(P )>

vec(P ) Y

]
� 0 for a symmetricX ∈ S(n2+1)×(n2+1)

We now introduce the following constraints such that

Bk(X) = bk, bk ∈ Rmk (74)

to make sure X has a proper structure. Here, Bk is a linear operator on X and the total number of
constraints is m =

∑
kmk. Hence, SDP relaxation of the quadratic assignment problem takes the

form,

max 〈C,X〉
subject to P1 = 1, 1>P = 1, P ≥ 0

trace1(Y ) = I trace2(Y ) = I

vec(P ) = diag(Y )

trace(Y ) = n

[
1 vec(P )>

vec(P ) Y

]
� 0, (75)

where trace1(.) and trace2(.) are partial traces satisfying,

trace1(K ⊗ L) = trace(K)L and trace2(K ⊗ L) = Ktrace(L)

trace∗1(T ) = I ⊗ T and trace∗2(T ) = T ⊗ I
1st set of equalities are due to the fact that permutation matrices are doubly stochastic. 2nd set of
equalities are to ensure permutation matrices are orthogonal, i.e., PP> = P>P = I . 3rd set of
equalities are to enforce every individual entry of the permutation matrix takes either 0 or 1, i.e.,
X1,i = Xi,i ∀i ∈ [1, n2 + 1]. . Trace constraint in the last line is to bound the problem domain. By
concatenating the Bk’s in (74), we can rewrite (75) in standard SDP form as
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Optimality Gap (%)

Data Optimal Value Sparse QAP [23] iAL
r = 10 r = 25 r = 50 r = rm rm

esc16a 68 8.8 11.8 0 0 5.9 157
esc16b 292 0 0 0 0 0 224
esc16c 160 5 5.0 5.0 2.5 3.8 177
esc16d 16 12.5 37.5 0 0 25.0 126
esc16e 28 7.1 7.1 0 14.3 7.1 126
esc16g 26 0 23.1 7.7 0 0 126
esc16h 996 0 0 0 0 0 224
esc16i 14 0 0 0 14.3 0 113
esc16j 8 0 0 0 0 0 106
esc32a 130 93.8 129.2 109.2 104.6 83.1 433
esc32b 168 88.1 111.9 92.9 97.6 69.0 508
esc32c 642 7.8 15.6 14.0 15.0 4.0 552
esc32d 200 21 28.0 28.0 29.0 17.0 470
esc32e 2 0 0 0 0 0 220
esc32g 6 0 33.3 0 0 0 234
esc32h 438 18.3 25.1 19.6 25.1 13.2 570
esc64a 116 53.4 62.1 51.7 58.6 34.5 899
esc128 64 175 256.3 193.8 243.8 215.6 2045

Table 1: Comparison between upper bounds on the problems from the QAP library with (relatively)
sparse L.

max 〈C,X〉
subject to B(X) = b, b ∈ Rm

trace(X) = n+ 1

Xij ≥ 0, i, j G
X � 0, (76)

where G represents the index set for which we introduce the nonnegativities. When G covers the
wholes set of indices, we get the best approximation to the original problem. However, it becomes
computationally undesirable as the problem dimension increases. Hence, we remove the redundant
nonnegativity constraints and enforce it for the indices where Kronecker product between K and L is
nonzero.

We penalize the non-negativity constraints and add it to the augmented Lagrangian objective since a
projection to the positive orthant approach in the low rank space as we did for the clustering does not
work here.

We take [23] as the baseline. This is an SDP based approach for solving QAP problems containing
a sparse graph. We compare against the best feasible upper bounds reported in [23] for the given
instances. Here, optimality gap is defined as

%Gap =
|bound− optimal|

optimal
× 100

We used a (relatively) sparse graph data set from the QAP library. We run our low rank algorithm for
different rank values. rm in each instance corresponds to the smallest integer satisfying the Pataki
bound [49, 1]. Results are shown in Table 1. Primal feasibility values except for the last instance
esc128 is less than 10−5 and we obtained bounds at least as good as the ones reported in [23] for
these problems.

For esc128, the primal feasibility is ≈ 10−1, hence, we could not manage to obtain a good optimality
gap.

24


	Introduction
	Preliminaries 
	Algorithm 
	Convergence Rate 
	Related Work 
	Numerical Evidence 
	Clustering
	Additional demonstrations

	Conclusions
	Complexity Results
	First-Order Optimality 
	Second-Order Optimality 
	Approximate optimality of (1).

	Proof of Theorem 4.1 
	Proof of Lemma 2.1
	Clustering 
	Additional Experiments
	Basis Pursuit
	Generalized Eigenvalue Problem
	 Denoising with a Generative Prior
	Quadratic assginment problem


