
Random Path Selection for Incremental Learning

Jathushan Rajasegaran Munawar Hayat Salman Khan

Fahad Shahbaz Khan Ling Shao

Inception Institute of Artificial Intelligence
first.last@inceptioniai.org

Abstract

Incremental life-long learning is a main challenge towards the long-standing goal
of Artificial General Intelligence. In real-life settings, learning tasks arrive in a
sequence and machine learning models must continually learn to increment already
acquired knowledge. Existing incremental learning approaches, fall well below the
state-of-the-art cumulative models that use all training classes at once. In this paper,
we propose a random path selection algorithm, called RPS-Net, that progressively
chooses optimal paths for the new tasks while encouraging parameter sharing.
Since the reuse of previous paths enables forward knowledge transfer, our approach
requires a considerably lower computational overhead. As an added novelty, the
proposed model integrates knowledge distillation and retrospection along with the
path selection strategy to overcome catastrophic forgetting. In order to maintain
an equilibrium between previous and newly acquired knowledge, we propose a
simple controller to dynamically balance the model plasticity. Through extensive
experiments, we demonstrate that the proposed method surpasses the state-of-the-
art performance on incremental learning and by utilizing parallel computation this
method can run in constant time with nearly the same efficiency as a conventional
deep convolutional neural network.

1 Introduction

The ability to incrementally learn novel tasks and acquire new knowledge is necessary for life-long
machine learning. Deep neural networks suffer from ‘catastrophic forgetting’ [18], a phenomenon
that occurs when a network is sequentially trained on a series of tasks and the learning acquired
on new tasks interferes with the previously learned concepts. As an example, in a typical transfer
learning scenario, when a model pre-trained on a source task is adapted to another task by fine-tuning
its weights, its performance significantly degrades on the source task whose weights are overridden
by the newly learned parameters [13]. It is, therefore, necessary to develop continual learning models
capable of incrementally adding newly available classes without the need to retrain models from
scratch using all previous class-sets (a cumulative setting). .

An ideal incremental learning model must meet the following criterion. (a) As a model is trained
on new tasks, it is desirable to maintain its performance on the old ones, thus avoiding catastrophic
forgetting. (b) The knowledge acquired on old tasks should help in accelerating the learning on new
tasks (a.k.a forward transfer) and vice versa. (c) As the class-incremental learning progresses, the
network must share and reuse the previously tuned parameters to realize a bounded computational
complexity and memory footprint, (d) At all learning phases, the model must maintain a tight

Codes available at https://github.com/brjathu/RPSnet

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/brjathu/RPSnet


equilibrium between the existing knowledge base and newly presented information (stability-plasticity
dilemma).

Despite several attempts, existing incremental learning models partially address the above mentioned
requirements. For example, [16] employs a distillation loss to preserve knowledge across multiple
tasks but requires prior knowledge about the task corresponding to a test sample during inference. An
incremental classifier and representation learning approach [21] jointly uses distillation and prototype
rehearsal but retrains the complete network for new tasks, thus compromising model stability. The
progressive network [22] lacks scalability as it grows paths linearly (and parameters quadratically)
with the number of tasks. The elastic weight consolidation scheme [15] computes synaptic importance
offline using Fisher information metric thus restricting its scalability and while it works well for
permutation tasks, its performance suffers on class-incremental learning [12].

Here, we argue that the most important characteristic of a true incremental learner is to maintain the
right trade-off between ‘stability’ (leading to intransigence) and ‘plasticity’ (resulting in forgetting).
We achieve this requisite via a dynamic path selection approach, called RPS-Net, that proceeds with
random candidate paths and discovers the optimal one for a given task. Once a task is learned, we
fix the parameters associated with it, that can only be shared by future tasks. To complement the
previously learned representations, we propose a stacked residual design that focuses on learning
the supplementary features suitable for new tasks. Besides, our learning scheme leverages exemplar-
based retrospection and introduces an explicit controller module to maintain the equilibrium between
stability and plasticity for all tasks. During training, our approach always operates with a constant
parameter budget that at max equals to a conventional linear model (e.g., resent [6]). Furthermore,
it can be straightforwardly parallelized during both train and test stages. With these novelties, our
approach obtains state-of-the-art class-incremental learning results, surpassing the previous best
model [21] by 7.38% and 10.64% on CIFAR-100 and ImageNet datasets, respectively.

Our main contributions are:

• A random path selection approach that provides faster convergence through path sharing
and reuse.

• The residual learning framework that incrementally learns residual paths which allows
network reuse and accelerate the learning process resulting in faster training.

• Ours is a hybrid approach that combines the respective strengths of knowledge distillation
(via regularization), retrospection (via exemplar replay) and dynamic architecture selection
methodologies to deliver a strong incremental learning performance.

• A novel controller that guides the plasticity of the network to maintain an equilibrium
between the previously learned knowledge and the newly presented tasks.

2 Related Work

The catastrophic interference problem was first noted to hinder the learning of connectionist networks
by [18]. This highlights the stability-plasticity dilemma in neural networks [1] i.e., a rigid and stable
model will not be able to learn new concepts while an easily adaptable model is susceptible to forget
old concepts due to major parameter changes. The existing continual learning schemes can be divided
into a broad set of three categories: (a) regularization schemes, (b) memory based retrospection and
replay, and (c) dynamic sub-network training and expansion.

A major trend in continual learning research has been on proposing novel regularization schemes
to avoid catastrophic forgetting by controlling the plasticity of network weights. [16] proposed a
knowledge distillation loss [7] which forces the network to retain its predictions on the old tasks.
Kirkpatrick et al. [15] proposed an elastic weight consolidation mechanism that quantifies the
relevance of parameters to a particular task and correspondingly adjusts the learning rate. In a similar
spirit, [28] designed intelligent synapses which measure their relevance to a particular task and
consequently adjust plasticity during learning to minimize interference with old tasks.

Rebuffi et al. [21] proposed a distillation scheme intertwined with exemplar-based retrospection to
retain the previously learned concepts. [8] considered a similar approach for cross-dataset continual
learning [16]. The combination of episodic (short-term) and semantic (long-term) memory was
studied in [11, 5, 10] to perform memory consolidation and retrieval. Particularly, [10, 11] help avoid
explicitly storing exemplars in the memory, rather using a generative process to recall memories.

2



Figure 1: An overview of our RPS-Net: The network architecture utilizes a parallel residual design
where the optimal path is selected among a set of randomly sampled candidate paths for new tasks.
The residual design allows forward knowledge transfer and faster convergence for later tasks. The
random path selection approach is trained with a hybrid objective function that ensures the right
trade-off between network stability and plasticity, thus avoiding catastrophic forgetting.

The third stream of works explores dynamically adapting network architectures to cope with the
growing learning tasks. [22] proposed a network architecture that progressively adds new branches
for novel tasks that are laterally connected to the fixed existing branches. Similarly, [26] proposed a
network that not only grows incrementally but also expands hierarchically. Specific paths through the
network were selected for each learning task using a genetic algorithm in PathNet [4]. Afterwards,
task-relevant paths were fixed and reused for new tasks to speed-up the learning efficiency.

The existing adaptive network architectures come with their respective limitations e.g., [22]’s com-
plexity grows linearly with the tasks, [26] has an expensive training procedure and a somewhat rigid
architecture and [4] does not allow incrementally learning new classes due to a detached output
layer and a relatively expensive genetic learning algorithm used in [4]. In comparison, we propose a
random path selection methodology that provides a significant boost and enables faster convergence.
Furthermore, our approach combines the respective strengths of the above two types of methods by
introducing a distillation procedure alongside an exemplar-based memory replay to avoid catastrophic
forgetting.

3 Method

We consider the recognition problem in an incremental setting where new tasks are sequentially added.
Assuming a total of K tasks, each comprising of U classes. Our goal is to sequentially learn a deep
neural network, that not only performs well on the new tasks but also retains its performance on the
old tasks. To address this problem, we propose a random path selection approach (RPS-Net) for new
tasks that progressively builds on the previously acquired knowledge to facilitate faster convergence
and better performance. In the following, we explain our network architecture, the path selection
strategy, a hybrid objective function and the training procedure for incremental learning.

3.1 RPS-Net Architecture

Our network consists of L distinct layers (see Figure 1). Each layer ` ∈ [1, L] is constitutes a set of
basic building blocks, called modulesM`. For simplicity, we consider each layer to contain an equal
number of M modules, stacked in parallel, i.e.,M` = {M`

m}Mm=1, along with a skip connection
module M`

skip that carries the bypass signal. The skip connection module M`
skip is an identity

function when the feature dimensions do not change and a learnable module when the dimensions
vary between consecutive layers. A moduleM`

m is a learnable sub-network that maps the input
features to the outputs. In our case, we consider a simple combination of (conv-bn-relu-conv-bn)
layers for each module, similar to a single resnet block [6]. In contrast to a residual block which

3



consists of a single identity connection and a residual branch, we have one skip connection and M
residual blocks stacked in parallel. The intuition behind developing such a parallel architecture is to
ensure multiple tasks can be continually learned without causing catastrophic interference with other
paths, while simultaneously providing parallelism to ensure efficiency.

Towards the end of each layer in RPS-Net, all the residual connections, as well as skip connections,
are combined together using element-wise addition to aggregate complimentary task-specific features
obtained from different paths. Remarkably, for the base-case when M = 1, the network is identical
to a conventional resnet model. After the Global Average Pooling (GAP) layer that collapses the
input feature maps to generate a final feature f ∈ RD, we use a fully connected layer classifier with
weights Wfc ∈ RD×C (C being the total number of classes) that is shared among all tasks.

For a given RPS-Net with M modules and L layers, we can define a path Pk ∈ RL×M for a task k:

Pk(`,m) =

{
1, if the moduleM`

m is added to the path,
0, otherwise.

(1)

The path Pk is basically arranged as a stack of one-hot encoded row vectors e(i) (i-th standard basis):

Pk =
{
Pk(`) ∈ {0, 1}M : Pk(`) = e(i) ≡

M∑
m=1

Pk(`,m) = 1
}
, s.t., i ∼ U

(
{Z ∩ [1,M ]}

)
, (2)

where i is the selected module index, uniformly sampled using U(·) over the set of integers [1,M ].

We define two set of paths Ptr
k and Pts

k that denote the train and inference paths, respectively. Both
are formulated as binary matrices: Ptr,ts

k ∈ {0, 1}L×M . When training the network, any mth module
in lth layer with Ptr

k (l,m) = 1 is activated and all such modules together constitute a training path
Ptr

k for task k. As we will elaborate in Sec. 3.2, the inference path is evolved during training by
sequentially adding newly discovered training paths and ends up in a “common” inference path for all
inputs, therefore our RPS-Net does not require knowledge about the task an input belongs to. Some
previous methods (e.g., [16]) need such information, which limits their applicability to real-world
incremental class-learning settings where one does not know in advance the corresponding task for
an input sample. Similarly, only the modules with Pts

k (`,m) = 1 are used in the inference stage.

3.2 Path Selection

With a total of K tasks, we assume a constant number of U classes that are observed in each kth task,
such that U = C/K. Without loss of generality, the proposed path selection strategy can also be
applied to a variable number of classes occurring in each task. The path selection scheme enables
incremental and bounded resource allocation, with progressive learning that ensures knowledge
exchange between the old and new tasks resulting in positive forward and backward transfer.

To promote resource reuse during training that in turn improves training speed and minimizes
computational requirements, we propose to perform path selection after every J task, where 1<J<K.
As a result, the path selection is performed only dK/Je times in total during the complete training
process. Our experiments show that J can be set to a higher value without sacrificing the incremental
learning performance (see Sec. 4.3). For every J tasks, N paths are randomly chosen and followed
by training process. The best path is then selected from these group of N sub-models and is shared
among the next J tasks. Further, we also stop the training of the old modules (i.e., fix their paths and
parameters) after the training for a particular group of tasks is completed. Hence, at any point, only L
layers with a maximum of one module are being trained.

The random path selection strategy is illustrated in Fig. 2. Our choice of random path generation as a
mechanism to select an optimal path is mainly inspired by the recent works of [27, 30, 20]. These
works show that random search for an optimal network architecture performs almost the same as
other computationally demanding approaches e.g., genetic algorithms and reinforcement learning
(RL) based methods. Besides, some incremental learning approaches resort to adding new resources
to the network, resulting in network expansion [22, 26]. In contrast, our path selection algorithm
does not result in linear expansion of resources since a new path is created only after J tasks and
overlapping modules are reused when the new path is intersecting old paths. Further, even when
all the modules are exhausted (saturated), the skip connections are always trained. We show via an

4



Figure 2: Path Selection Approach: Given a task k, N random paths are initialized. For each path,
only the modules different from the previous inference path Pts

k−1 are used to form the training path
Ptr

k . Among N such paths, the optimal Pk is selected and combined with the Pts
k−1 to obtain Pts

k .
Notably, the path selection is only performed after J tasks. During training, the complexity remains
bounded by a standard single path network and the resources are shared between tasks.

extensive ablation study that even when all paths are saturated, our RPS-Net can still learn useful
representations as the skip connections and classification layer remains tunable in every case.

At any point in time, we train a single path (equivalent to a resnet) while rest of the inference paths
are fixed. Due to this, the path we use for a task k essentially learns the residual signal relative to
the fixed paths that were previously trained for old tasks. For example, if we are training Ptr

k , the
weights of Pts

bk/JcYPtr
k are fixed, where Y denotes the exclusive disjunction (logical XOR operation).

Essentially, the complete Ptr
k is not used for training rather its disjoint portion that has not already

been trained for any of the old tasks is learned i.e., Ptr
k Y (Ptr

k ∧ Pts
bk/Jc). In this way, previous

knowledge is shared across the network via overlapping paths and skip connections. When the
network is already trained for several tasks, a new path for the current task only needs to learn higher
order residuals of the network. This has an added advantage that convergence becomes faster as we
learn more tasks since each new task will be learned taking advantage of the previous information.

The optimal path based on the performance of N path configurations is selected as Pk. All such
task-specific paths are progressively combined together to evolve a common inference path Pts

k ,

Pts
k = Ptr

1 ∨Ptr
2 . . . ∨Ptr

k , (3)

where ∨ denotes the inclusive disjunction (logical OR) operation. At each task k, the inference path
Pts
k is used to evaluate all previous classes.

3.3 Incremental Learning Objective

Loss function: We use a hybrid loss function that combines regular cross-entropy loss as well as a
distillation loss to incrementally train the network.

For a task k ∈ [1,K] with each task having U classes, we calculate the cross-entropy loss as follows,

Lce = −
1

n

∑
i

ti[1 : k ∗ U ] log(softmax(qi[1 : k ∗ U ])), (4)

where i denotes the example index, t(x) is the one-hot encoded true label, q(x) are the logits obtained
from the network’s last layer and n is the mini batch size. To keep the network robust to catastrophic

5














