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Abstract

Deep neural networks as image priors have been recently introduced for problems
such as denoising, super-resolution and inpainting with promising performance
gains over hand-crafted image priors such as sparsity. Unlike learned generative
priors they do not require any training over large datasets. However, few theoretical
guarantees exist in the scope of using untrained network priors for inverse imaging
problems. We explore new applications and theory for untrained neural network
priors. Specifically, we consider the problem of solving linear inverse problems,
such as compressive sensing, as well as non-linear problems, such as compressive
phase retrieval. We model images to lie in the range of an untrained deep generative
network with a fixed seed. We further present a projected gradient descent scheme
that can be used for both compressive sensing and phase retrieval and provide
rigorous theoretical guarantees for its convergence. We also show both theoretically
as well as empirically that with deep neural network priors, one can achieve better
compression rates for the same image quality as compared to when hand crafted
priors are used.

1 Introduction

1.1 Motivation

Deep neural networks have led to unprecedented success in solving several problems, specifically in
the domain of inverse imaging. Image denoising [1], super-resolution [2], inpainting and compressed
sensing [3], and phase retrieval [4] are among the many imaging applications that have benefited
from the usage of deep convolutional networks (CNNs) trained with thousands of images.

Apart from supervised learning, deep CNN models have also been used in unsupervised setups, such
as Generative Adversarial Networks (GANs). Here, image priors based on a generative model [5] are
learned from training data. In this context, neural networks emulate the probability distribution of the
data inputs. GANs have been used to model signal prior by learning the distribution of training data.
Such learned priors have replaced hand-crafted priors with high success rates [3, 6, 7, 8]. However,
the main challenge with these approaches is the requirement of massive amounts of training data. For
instance, super-resolution CNN [2] uses ImageNet which contains millions of images. Moreover,
convergence guarantees for training such networks are limited [7].

In contrast, there has been recent interest in using untrained neural networks as an image prior. Deep
Image Prior [9] and variants such as Deep Decoder [10] are capable of solving linear inverse imaging
problems with no training data whatsover, while merely imposing an auto-encoder [9] and decoder
[10] architecture as a structural prior. For denoising, inpainting and super-resolution, deep image
priors have shown superior reconstruction performance as compared to conventional methodologies
such as basis pursuit denoising (BPDN) [11], BM3D [12] as well as convolutional sparse coding
[13]. Similar emperical results have been claimed very recently in the context of time-series data
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for audio applications [14, 15]. The theme in all of these approaches is the same: to design a prior
that exploits local image correlation, instead of global statistics, and find a good low-dimensional
neural representation of natural images. However, most of these works have very limited [16, 10] or
no theoretical guarantees.

Neural networks priors for compressive imaging has only recently been explored. In the context
of compressive sensing (CS), [17] uses Deep Image Prior along with learned regularization for
reconstructing images from compressive measurements [18]. However, the model described still relies
on training data for learning appropriate regularization parameters. For the problem of compressive
sensing, priors such as sparsity [19] and structured sparsity [20] have been traditionally used.

Phase retrieval is another inverse imaging problem in several Fourier imaging applications, which
involves reconstructing images from magnitude-only measurements. Compressive phase retrieval
(CPR) models use sparse priors for reducing sample requirements; however, standard techniques from
recent literature [21] suggest a quadratic dependence of number of measurements on the sparsity level
for recovering sparse images from magnitude-only Gaussian measurements and the design of a smart
initialization scheme [22, 21]. If a prior is learned via a GAN [7], [23], then this requirement can be
brought down; however one requires sufficient training data, which can be prohibitively expensive to
obtain in domains such as medical or astronomical imaging.

1.2 Our contributions

In this paper, we explore, in depth, the use of untrained deep neural networks as an image prior for
inverting images from under-sampled linear and non-linear measurements. Specifically, we assume
that the image, x∗d×1 has d pixels. We further assume that the image x∗ belongs to the range spanned
by the weights of a deep under-parameterized untrained neural network G(w; z), which we denote
by S, where w is a set of the weights of the deep network and z is the latent code. The compressive
measurements are stored in vector y = f(x∗), where f embeds either compressive linear (defined
by operator A(·)) or compressive magnitude-only (defined by operator |A(·)|) measurements. The
task is to reconstruct image x̂ which corresponds to small measurement error minx∈S ‖f(x)− y‖22.
With this setup, we establish theoretical guarantees for successful image reconstruction from both
measurement schemes under untrained network priors.

Our specific contributions are as follows:

• We first present a new variant of the Restricted Isometry Property (RIP) [18] via a covering number
argument for the range of images S spanned by a deep untrained neural network. We use this result
to guarantee unique image reconstruction for two different compressive imaging schemes.

• We propose a projected gradient descent (PGD) algorithm for solving the problem of compressive
sensing with a deep untrained network prior. To our knowledge this is the first paper to use deep
neural network priors for compressive sensing 1, which relies on no training data2. We analyze the
conditions under which PGD provably converges and report the sample complexity requirements
corresponding to it. We also show superior performance of this framework via empirical results.

• We are the first to use deep network priors in the context of phase retrieval. We introduce a
novel formulation, to solve compressive phase retrieval with fewer measurements as compared
to state-of-art. We further provide preliminary guarantees for the convergence of a projected
gradient descent scheme to solve the problem of compressive phase retrieval. We empirically show
significant improvements in image reconstruction quality as compared to prior works.

We note that our sample complexity results rely on the number of parameters of the assumed deep
network prior. Therefore, to get meaningful bounds, our network priors are under-parameterized,
in that the total number of unknown parameters of the deep network is smaller than the dimension
of the image. To ensure this, we build upon the formulation of the deep decoder [10], which is a
special network architecture resembling the decoder of an autoencoder (or generator of a GAN). The
requirement of under-parameterization of deep network priors is natural; the goal is to design priors
that concisely represent natural images. Moreover, this also ensures that the network does not fit noise
[10]. Due to these merits, we use select the deep decoder architecture for all analyses in this paper.

1We note recent concurrent work in [24] which explores a similar approach for compressive sensing; however
our paper focuses theoretical guarantees rooted in an algorithmic procedure.

2[17] requires training data for learning a regularization function.
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1.3 Prior work

Sparsifying transforms have long been used to constrain the solutions of inverse imaging problems
in the context of denoising or inpainting. Conventional approaches to solve these problems include
Basis Pursuit Denoising (BPDN) or Lasso [11], TVAL3 [25], which rely on using `0, `1 and total
variation (TV) regularizations on the image to be recovered. Sparsity based priors are highly effective
and dataset independent, however it heavily relies on choosing a good sparsifying basis [26].

Instead of hand-picking the sparsifying transform, in dictionary learning one learns both the sparsify-
ing transform and the sparse code [27]. The dictionary captures global statistics of a given dataset 3.
Multi-layer convolutional sparse coding [16] is an extension of sparse coding which models a given
dataset in the form of a product of several linear dictionaries, all of which are convolutional in nature
and this problem is challenging.

Generative adversarial networks (GAN) [5] have been used to generate photo-realistic images in
an unsupervised fashion. The generator consists of stacked convolutions and maps random low-
dimensional noise vectors to full sized images. GAN priors have been successfully used for inverse
imaging problems [6, 7, 28, 29, 8]. The shortcomings of this approach are two-fold: test images are
strictly restricted to the range of a trained generator, and the requirement of sufficient training data.

Sparse signal recovery from linear compressive measurements [18] as well as magnitude-only
compressive measurements [21] has been extensively studied, with several algorithmic approaches
[19, 21]. In all of these approaches, modeling the low-dimensional embedding is challenging and
may not be captured correctly using simple hand-crafted priors such as structured sparsity [20]. Since
it is hard to estimate these hyper-parameters accurately, the number of samples required to reconstruct
the image is often much higher than information theoretic limits [30, 6].

The problem of compressive phase retrieval specifically, is even more challenging because it is non-
convex. Several papers in recent literature [31, 32, 21] rely on the design of a spectral initialization
scheme which ensures that one can subsequently optimize over a convex ball of the problem. However
this initialization requirement results in high sample requirements and is a bottleneck in achieving
information theoretically optimal sample complexity.

Deep image prior [9] (DIP) uses primarily an encoder-decoder as a prior on the image, alongside
an early stopping condition, for inverse imaging problems such as denoising, super-resolution and
inpainting. Deep decoder [10] (DD) improves upon DIP, providing a much simpler, underparameter-
ized architecture, to learn a low-dimensional manifold (latent code) and a decoding operation from
this latent code to the full image. Because it is under parameterized, deep decoder does not fit noise,
and therefore does not require early stopping.

Deep network priors in the context of compressive imaging have only recently been explored [17],
and only in the context of compressive sensing. In contrast with [17] which extends the idea of a Deep
Image Prior to incorporate learned regularizations, in this paper we focus more on theoretical aspects
of the problem and also explore applications in compressive phase retrieval. To our knowledge the
application of deep network priors to compressive phase retrieval is novel.

2 Notation

Throughout the paper, lower case letters denote vectors, such as v and upper case letters for matrices,
such as M . A set of variables subscripted with different indices is represented with bold-faced
shorthand of the following form: w := {W1,W2, . . .WL}. The neural network consists of L layers,
each layer denoted as Wl, with l ∈ {1, . . . L} and are 1× 1 convolutional. Up-sampling operators
are denoted by Ul. Vectorization of a matrix is written as vec(·). The activation function considered
is Rectified Linear Unit (ReLU), denoted as σ(·). Hadamard or element-wise product is denoted by ◦.
Element-wise absolute valued vector is denoted by |v|. Unless mentioned otherwise, ‖v‖ denotes
vector `2-norm and ‖M‖ denotes spectral norm ‖M‖2.

3Local structural information from a single image can also be used to learn dictionaries, by constructing
several overlapping crops or patches of a single image.
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3 Problem setup

3.1 Deep neural network priors

In this paper we discuss the problem of inverting a mapping x→ y of the form:

y = f(x)

where x = vec(X)dk is a d-dimensional signal Xd×k (vectorized image), with k channels and
f : x→ y ∈ Rn captures a compressive measurement procedure, such as a linear operator A(·) or
magnitude only measurements |A(·)| and n < dk. We elaborate further on the exact structure of f in
the next subsection (Section 3.2). The task of reconstructing image x from measurements y can be
formulated as an optimization problem of the form:

min
x∈S
‖y − f(x)‖2 (1)

where we have chosen the `2-squared loss function and where S captures the prior on the image.

If the image x can be represented as the action of a deep generative network G(w; z) with weights w
on some latent code z, such that x = G(w; z), then the set S captures the characteristics of G(w; z).
The latent code z := vec(Z1) with Z1 ∈ Rd1×k1 is a low-dimensional embedding with dimension
d1k1 � dk and its elements are generated from uniform random distribution.

When the networkG(·) and its weights w := {W1, . . .WL} are known (from pre-training a generative
network over large datasets) and fixed, the task is to obtain an estimate x̂ = G(w; ẑ), which indirectly
translates to finding the optimal latent space encoding ẑ . This problem has been studied in [6, 7] in
the form of using learned GAN priors for inverse imaging.

In this paper however, the weights of the generator w are not pre-trained; rather, the task is to
estimate image x̂ = G(ŵ; z) ≈ G(w∗; z) = x∗ and corresponding weights ŵ, for a fixed seed z,
where x∗ is assumed to be the true image and the true weights w∗ (possibly non-unique) satisfy
w∗ = minw ‖x∗ −G(w; z)‖22. Note that the optimization in Eq. 1 is equivalent to substituting the
surjective mapping G : w→ x, and optimizing over w,

min
w
‖y − f(G(w; z))‖2, (2)

and estimate weights ŵ and corresponding image x̂.

Specifically, the untrained network G(w; z) takes the form of an expansive neural network; a decoder
architecture similar to the one in [10] 4. The neural network is composed of L weight layers Wl,
indexed by l ∈ {1, . . . , L} and are 1×1 convolutions, upsampling operators Ul for l ∈ {1, . . . L−1}
and ReLU activation σ(·) and is expressed as follows

x = G(w; z) = UL−1σ(ZL−1WL−1)WL = ZLWL, (3)

where σ(·) represents the action of ReLU operation, Zdi×kii = Ui−1σ(Zi−1Wi−1), for i = 2, . . . L,
z = vec(Z1), dL = d and WL ∈ RkL×k.

To capture the range of images spanned by the deep neural network architecture described above, we
formally introduce the main assumption in our paper through Definition 1. Without loss in generality,
we set k = 1 for the rest of this paper, while noting that the techniques carry over to general k.
Definition 1. A given image x ∈ Rd is said to obey an untrained neural network prior if it belongs
to a set S defined as:

S := {x|x = G(w; z)}
where z is a (randomly chosen, fixed) latent code vector and G(w; z) has the form in Eq. 3.

3.2 Observation models and assumptions

We now discuss the compressive measurement setup in more detail. Compressive measurement
schemes were developed in [18] for efficient imaging and storage of images and work only as long as
certain structural assumptions on the signal (or image) are met. The optimization problem in Eq.1 is

4Alternatively, one may assume the architecture of the generator of a DCGAN [33, 17].
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non-convex in general, partly dictated by the non-convexity of set S . Moreover, in the case of phase
retrieval, the loss function is itself non-convex. Therefore unique signal recovery for either problems
is not guaranteed without making specific assumptions on the measurement setup.

In this paper, we assume that the measurement operation can be represented by the action of a Gaussian
matrix A which is rank-deficient (n < d). The entries of this matrix are such that Aij ∼ N (0, 1/n).
Linear compressive measurements take the form y = Ax and magnitude-only measurements take the
form y = |Ax|. We formally discuss the two different imaging schemes in the next two sections. We
also present algorithms and theoretical guarantees for their convergence. For both algorithms, we
require that a special (S, γ, β)-RIP holds for measurement matrix A, which is defined below.
Definition 2. (S, γ, β)-RIP: Set-Restricted Isometry Property with parameters γ, β:

For parameters γ, β > 0, a matrix A ∈ Rn×d satisfies (S, γ, β)-RIP, if for all x ∈ S,

γ‖x‖2 ≤ ‖Ax‖2 ≤ β‖x‖2.
We refer to the left (lower) inequality as (S, γ)-RIP and right (upper) inequality as (S, β)-RIP.

The (S, 1− α, 1 + α) RIP is achieved by Gaussian matrix A under certain assumptions, which we
state and prove via Lemma 1 as follows.
Lemma 1. If an image x ∈ Rd has a decoder prior (captured in set S), where the decoder consists
of weights w and piece-wise linear activation (ReLU), a random Gaussian matrix A ∈ Rn×d with
elements from N (0, 1/n), satisfies (S, 1− α, 1 + α)-RIP, with probability 1− e−cα2n, as long as

n = O

(
k1
α2

L∑
l=2

kl log d

)
, for small constant c and 0 < α < 1.

Proof sketch: We use a union of sub-spaces model, similar to that developed in [6] which was
developed for GAN priors, to capture the range of a deep untrained network.

Our method uses a linearization principle. If the output sign of any ReLU activation σ(·) on its
inputs were known a priori, then the mapping x = G(w; z) becomes a product of linear weight
matrices and linear upsampling operators acting on the latent code z. The bulk of the proof relies on
constructing a counting argument for the number of such linearized networks; call that number N .
For a fixed linear subspace, the image x has a representation of the form x = UZw, where U absorbs
all upsampling operations, Z is latent code which is fixed and known and w is the direct product of
all weight matrices with w ∈ Rk1 . An oblivious subspace embedding (OSE) of x takes the form

(1− α)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + α)‖x‖2,
where A is a Gaussian matrix, and holds for all k1-dimensional vectors w, with high probability as
long as n = O(k1/α

2). We further require to take a union bound over all possible such linearized
networks, which is given by N . The sample complexity corresponding to this bound is then computed
to complete the set-restricted RIP result. The complete proof can be found in Appendix D and a
discussion on the sample complexity is presented in Appendix B.

4 Linear compressive sensing with deep network prior

We now analyze linear compressed Gaussian measurements of a vectorized image x, with a deep
network prior. The reconstruction problem assumes the following form:

min
x

‖y −Ax‖2 s.t. x = G(w; z), (4)

whereA ∈ Rn×d is Gaussian matrix with n < d, unknown weight matrices w and latent code z which
is fixed. We solve this problem via Algorithm 1, Network Projected Gradient Descent (Net-PGD) for
compressed sensing recovery.

Specifically, we break down the minimization into two parts; we first solve an unconstrained loss
minimization of the objective function in Eq. 4 by implementing one step of gradient descent in Step
3 of Algorithm 1. The update vt typically does not adhere to the deep network prior constraint vt 6∈ S .
To ensure that this happens, we solve a projection step in Line 4 of Algorithm 1, which happens to be
the same as fitting a deep network prior to a noisy image. We iterate through this procedure in an
alternating fashion until the estimates xt converge to x∗ within error factor ε.

We further establish convergence guarantees for Algorithm 1 in Theorem 1.

5



Algorithm 1 Net-PGD for compressed sensing recovery.
1: Input: y,A, z = vec(Z1), η, T = log 1

ε
2: for t = 1, · · · , T do
3: vt ← xt − ηA>(Axt − y) {gradient step for least squares}
4: wt ← arg min

w
‖vt −G(w; z)‖ {projection to range of deep network}

5: xt+1 ← G(wt; z)
6: end for
7: Output x̂← xT .

Theorem 1. Suppose the sampling matrix An×d satisfies (S, 1−α, 1 +α)-RIP with high probability
then, Algorithm 1, with η small enough, produces x̂ such that ‖x̂− x∗‖ ≤ ε and requires T ∝ log 1

ε
iterations.

Proof sketch: The proof of this theorem predominantly relies on our new set-restricted RIP result
and uses standard techniques from compressed sensing theory. Indicating the loss function in Eq.
4 as L(xt) = ‖y − Axt‖2, we aim to establish a contraction of the form L(xt+1) < νL(xt), with
ν < 1. To achieve this, we combine the projection criterion in Step 4 of Algorithm 1, which strictly
implies that

‖xt+1 − vt‖ ≤ ‖x∗ − vt‖
and vt = xt−ηA>(Axt−y) from Step 3 of Algorithm 1, where η is chosen appropriately. Therefore,

‖xt+1 − xt + ηA>A(xt − x∗)‖2 ≤ ‖x∗ − xt + ηA>A(xt − x∗)‖2.

Furthermore, we utilize (S, 1− α, 1 + α)-RIP and its Corollary 1 (refer Appendix D) which apply to
x∗, xt, xt+1 ∈ S, to show that

L(xt+1) ≤ νL(xt)

and subsequently the error contraction ‖xt+1 − x∗‖ ≤ νo‖xt − x∗‖, with ν, νo < 1 to guarantee
linear convergence of Net-PGD for compressed sensing recovery. This convergence result implies
that Net-PGD requires T ∝ log 1/ε iterations to produce x̂ within ε-accuracy of x∗. The complete
proof of Theorem 1 can be found in Appendix D. In Appendix A we provide some exposition on the
projection step (line 4 of Algorithm 1).

5 Compressive phase retrieval under deep image prior

In compressive phase retrieval, one wants to reconstruct a signal x ≈ x∗ ∈ S from measurements of
the form y = |Ax∗| and therefore the objective is to minimize the following

min
x

‖y − |Ax|‖2 s.t. x = G(w; z), (5)

where n < d and A is Gaussian, z is a fixed seed and weights w need to be estimated. We propose a
Network Projected Gradient Descent (Net-PGD) for compressive phase retrieval to solve this problem,
which is presented in Algorithm 2.

Algorithm 2 broadly consists of two parts. For the first part, in Line 3 we estimate the phase of the
current estimate and in Line 4 we use this to compute the Wirtinger gradient [31] and execute one
step for solving an unconstrained phase retrieval problem with gradient descent. The second part of
the algorithm is (Line 5), estimating the weights of the deep network prior with noisy input vt. This is
the projection step and ensures that the output wt and subsequently the image estimate xt = G(wt; z)
lies in the range of the decoder G(·) outlined by set S.

We highlight that the problem in Eq. 5 is significantly more challenging than the one in Eq. 4.
The difficulty hinges on estimating the missing phase information accurately. For a real-valued
vectors, there are 2n different phase vectors p = sign(Ax) for a fixed choice of x, which satisfy
y = |Ax|, moreover the entries of p are restricted to {1,−1}. Hence, phase estimation is a non-
convex problem. Therefore, with Algorithm 2 the problem in Eq.5 can only be solved to convergence
locally; an initialization scheme is required to establish global convergence guarantees. We highlight
the guarantees of Algorithm 2 in Theorem 2.
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Algorithm 2 Net-PGD for compressive phase retrieval.
1: Input: A, z = vec(Z1), η, T = log 1

ε , x
0 s.t. ‖x0 − x∗‖ ≤ δi‖x∗‖.

2: for t = 1, · · · , T do
3: pt ← sign(Axt) {phase estimation}
4: vt ← xt − ηA>(Axt − y ◦ pt) {gradient step for phase retrieval}
5: wt ← arg min

w
‖vt −G(w; z)‖ {projection to range of deep network}

6: xt+1 ← G(wt; z)
7: end for
8: Output x̂← xT .

Theorem 2. Suppose the sampling matrixAn×d with Gaussian entries satisfies (S, 1−α, 1+α)-RIP
with high probability, Algorithm 2 solves Eq. 5 with η small enough, such that ‖x̂−x∗‖ ≤ ε, as long as

the weights are initialized appropriately and the number of measurements is n = O

(
k1

L∑
l=2

kl log d

)
.

Proof sketch: The proof for Theorem 2 relies on two important results; (S, 1− α, 1 + α)-RIP and
Lemma 2 which establishes a bound on the phase estimation error. Formally, the update in Step 4 of
Algorithm 2 can be re-written as

vt+1 = xt − ηA>
(
Axt −Ax∗ ◦ sign(Ax∗) ◦ sign(Axt)

)
= xt − ηA>

(
Axt −Ax∗

)
− ηεtp

where εtp := A>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt)) is phase estimation error.

If sign(Ax∗) ≈ sign(Axt), then the above resembles the gradient step from the linear compressive
sensing formulation. Thus, if x0 is initialized well, the error due to phase mis-match εtp can be
bounded, and subsequently, a convergence result can be formulated.

Next, Step 5 of Algorithm 2 learns weights wt that produce xt = G(wt; z), such that

‖xt+1 − vt‖ ≤ ‖xt − vt‖

for t = {1, 2, . . . T}. Then, the above projection rule yields:

‖xt+1 − vt+1 + vt+1 − x∗‖ ≤ ‖xt+1 − vt+1‖+ ‖x∗ − vt+1‖ ≤ 2‖x∗ − vt+1‖,

Using the update rule from Eq. 12 and plugging in for vt+1:

1

2
‖xt+1 − x∗‖ ≤ ‖(1− ηA>A)ht‖+ ‖εtp‖

where η is chosen appropriately. The rest of the proof relies on bounding the first term via matrix norm
inequalities using Corollary 2 (in Appendix D) of (S, 1−α, 1+α)-RIP as ‖(1−ηA>A)ht‖ ≤ ρo‖ht‖
and the second term is bounded via Lemma 2 as ‖εtp‖ ≤ δo‖xt−x∗‖ as long as ‖x0−x∗‖ ≤ δi‖x∗‖.
Hence we obtain a convergence criterion of the form

‖xt+1 − x∗‖ ≤ 2(ρo + ηδo)‖xt − x∗‖ := ρ‖xt − x∗‖.

where ρ < 1. Note that this proof relies on a bound on the phase error ‖εtp‖ which is established
via Lemma 2. The complete proof for Theorem 2 can be found in Appendix D. In Appendix A we
provide some exposition on the projection step (line 5 of Algorithm 2). In our experiments (Section
6) we note that a uniform random initialization of the weights w0 (which is common in training
neural networks), to yield x0 = G(w0; z) is sufficient for Net-PGD to succeed for compressive phase
retrieval. In Appendix C we show experimental evidence to support this claim.

6 Experimental results

Dataset: We use images from the MNIST database and CelebA database to test our algorithms and
reconstruct 6 grayscale (MNIST, 28 × 28 pixels (d = 784)) and 5 RGB (CelebA) images. The
CelebA dataset images are center cropped to size 64× 64× 3 (d = 12288). The pixel values of all
images are scaled to lie between 0 and 1.
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Figure 1: (CS) Reconstructed images from linear measurements (at compression rate n/d = 0.1)
with (a) n = 78 measurements for examples from MNIST, (b) n = 1228 measurements for examples
from CelebA, and (c) nMSE at different compression rates f = n/d for MNIST.

Original Compressed Net-GD Net-PGD Sparta
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Figure 2: (CPR) Reconstructed images from magnitude-only measurements (a) at compression rate
of n/d = 0.3 for MNIST, (b) at compression rates of n/d = 0.1, 0.5 for CelebA with (row 1,3)
Net-GD and (row 2,4) Net-PGD, (c) nMSE at different compression rates f = n/d for MNIST.

Deep network architecture: We first optimize the deep network architecture which fit our example
images such that x∗ ≈ G(w∗; z) (referred as “compressed” image). For MNIST images, the
architecture was fixed to a 2 layer configuration k1 = 15, k2 = 15, k3 = 10, and for CelebA images,
a 3 layer configuration with k1 = 120, k2 = 15, k3 = 15, k4 = 10. Both architectures use bilinear
upsampling operations. Further details on this setup can be found in Appendix C.

Measurement setup: We use a Gaussian measurement matrix of size n× d with n varied such that
(i) n/d = 0.08, 0.1, 0.15, 0.2, 0.25, 0.3 for compressive sensing and (ii) n/d = 0.1, 0.2, 0.3, 0.5, 1, 3
for compressive phase retrieval. The elements of A are picked such that Ai,j ∼ N (0, 1/n) and we
report averaged reconstruction error values over 10 different instantiations of A for a fixed image
(image of digit ‘0’ from MNIST), network configuration and compression ratio n/d .

6.1 Compressive sensing

Algorithms and baselines: We implement 4 schemes based on untrained priors for solving CS, (i)
gradient descent with deep network prior which solves Eq.2 (we call this Net-GD), similar to [17] but
without learned regularization (ii) Net-PGD, (iii) Lasso (`1 regularization) with sparse prior in DCT
basis and finally (iv) TVAL3 [25] (Total Variation regularization). The TVAL3 code only works for
grayscale images, therefore we do not use it for CelebA examples. The reconstructions are shown in
Figure 1 for images from (a) MNIST and (b) CelebA datasets. The implementation details can be
found in Appendix C.
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Performance metrics: We compare reconstruction quality using normalized Mean-Squared Error
(nMSE), which is calculated as ‖x̂− x∗‖2/‖x∗‖2. We plot the variation of the nMSE with different
compression rates f = n/d for all the algorithms tested averaged over all trials for MNIST in Figure
1 (c). We note that both Net-GD and Net-PGD produce superior reconstructions as compared to state
of art. Running time performance is reported in Appendix C.

6.2 Compressive phase retrieval

Algorithms and baselines: We implement 3 schemes based on untrained priors for solving CPR , (i)
Net-GD (ii) Net-PGD and finally (iii) Sparse Truncated Amplitude Flow (Sparta) [22], with sparse
prior in DCT basis for both datasets. The reconstructions are shown in Figure 2 for (a) MNIST and
(b) CelebA datasets. We plot nMSE at varying compression rates for all algorithms averaged over all
trials for MNIST in Figure 2(c) and note that both Net-GD and Net-PGD outperform Sparta. Running
term performance as well as goodness of random initialization scheme are discussed in Appendix C.

7 Acknowledgments

This work was supported in part by NSF grants CAREER CCF-2005804, CCF-1815101, and a faculty
fellowship from the Black and Veatch Foundation.

9



References
[1] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked denoising autoen-

coders: Learning useful representations in a deep network with a local denoising criterion.
Journal of machine learning research, 11(Dec):3371–3408, 2010.

[2] C. Dong, C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks.
IEEE transactions on pattern analysis and machine intelligence, 38(2):295–307, 2016.

[3] J. Chang, C. Li, B. Póczos, and B. Kumar. One network to solve them all—solving linear
inverse problems using deep projection models. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 5889–5898. IEEE, 2017.

[4] C. Metzler, P. Schniter, A. Veeraraghavan, and R. Baraniuk. prdeep: Robust phase retrieval with
a flexible deep network. In International Conference on Machine Learning, pages 3498–3507,
2018.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

[6] A. Bora, A. Jalal, E. Price, and A. Dimakis. Compressed sensing using generative models.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
537–546. JMLR. org, 2017.

[7] P. Hand, O. Leong, and V. Voroninski. Phase retrieval under a generative prior. In Advances in
Neural Information Processing Systems, pages 9136–9146, 2018.

[8] T. Lillicrap Y. Wu, M. Rosca. Deep compressed sensing. arXiv preprint arXiv:1905.06723,
2019.

[9] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 9446–9454, 2018.

[10] R. Heckel and P. Hand. Deep decoder: Concise image representations from untrained non-
convolutional networks. In International Conference on Learning Representations, 2018.

[11] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM review,
43(1):129–159, 2001.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising with block-matching and
3d filtering. In Image Processing: Algorithms and Systems, Neural Networks, and Machine
Learning, volume 6064, page 606414. International Society for Optics and Photonics, 2006.

[13] V. Papyan, Y. Romano, J. Sulam, and M. Elad. Convolutional dictionary learning via local
processing. In Proceedings of the IEEE International Conference on Computer Vision, pages
5296–5304, 2017.

[14] A. Dimakis S. Ravula. One-dimensional deep image prior for time series inverse problems.
arXiv preprint arXiv:1904.08594, 2019.

[15] L. Wolf M. Michelashvili. Audio denoising with deep network priors. arXiv preprint arXiv:
arXiv:1904.07612, 2019.

[16] J. Sulam, V. Papyan, Y. Romano, and M. Elad. Multilayer convolutional sparse modeling:
Pursuit and dictionary learning. IEEE Transactions on Signal Processing, 66(15):4090–4104,
2018.

[17] D. Van Veen, A. Jalal, E. Price, S. Vishwanath, and A. Dimakis. Compressed sensing with deep
image prior and learned regularization. arXiv preprint arXiv:1806.06438, 2018.

[18] D. Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306,
2006.

10



[19] D. Needell and J. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate
samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.

[20] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing. IEEE
Transactions on Information Theory, 56:1982–2001, 2010.

[21] G. Jagatap and C. Hegde. Fast, sample-efficient algorithms for structured phase retrieval. In
Advances in Neural Information Processing Systems, pages 4917–4927, 2017.

[22] G. Wang, L. Zhang, G. Giannakis, M. Akçakaya, and J. Chen. Sparse phase retrieval via
truncated amplitude flow. IEEE Transactions on Signal Processing, 66(2):479–491, 2017.

[23] F. Shamshad, F. Abbas, and A. Ahmed. Deep ptych: Subsampled fourier ptychography using
generative priors. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7720–7724. IEEE, 2019.

[24] R. Heckel. Regularizing linear inverse problems with convolutional neural networks. arXiv
preprint arXiv:1907.03100, 2019.

[25] C. Li, W. Yin, and Y. Zhang. User’s guide for tval3: Tv minimization by augmented lagrangian
and alternating direction algorithms.

[26] S. Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[27] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on signal processing, 54(11):4311,
2006.

[28] R. Hyder, V. Shah, C. Hegde, and S. Asif. Alternating phase projected gradient descent with
generative priors for solving compressive phase retrieval. arXiv preprint arXiv:1903.02707,
2019.

[29] V. Shah and C. Hegde. Solving linear inverse problems using gan priors: An algorithm with
provable guarantees. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4609–4613. IEEE, 2018.

[30] G. Jagatap and C. Hegde. Sample-efficient algorithms for recovering structured signals from
magnitude-only measurements. IEEE Transactions on Information Theory, 2019.

[31] Y. Chen and E. Candes. Solving random quadratic systems of equations is nearly as easy as
solving linear systems. In Advances in Neural Information Processing Systems, pages 739–747,
2015.

[32] T. Cai, X. Li, and Z. Ma. Optimal rates of convergence for noisy sparse phase retrieval via
thresholded wirtinger flow. The Annals of Statistics, 44(5):2221–2251, 2016.

[33] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[34] S. Oymak and M. Soltanolkotabi. Towards moderate overparameterization: global convergence
guarantees for training shallow neural networks. arXiv preprint arXiv:1902.04674, 2019.

[35] S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations,
2018.

[36] H. Zhang and Y. Liang. Reshaped wirtinger flow for solving quadratic system of equations. In
Advances in Neural Information Processing Systems, pages 2622–2630, 2016.

[37] Huishuai Zhang and Yingbin Liang. Reshaped wirtinger flow for solving quadratic system of
equations. In Advances in Neural Information Processing Systems, pages 2622–2630, 2016.

[38] Tamás S. Improved approximation algorithms for large matrices via random projections. 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 143–152,
2006.

11



A Projection to deep network prior

The projection steps in both Algorithms 1 and 2 represent the problem of fitting an image to an
untrained neural network representation. This is the original setting for denoising and compression
applications in [9] and [10]. The algorithmic approach to solving this problem is via standard solvers
such as gradient descent (GD) or Adam. The problem takes the form:

min
w
L(w; z, v) := min

w
‖v −G(w; z)‖2, (6)

where v is typically a noisy variant of the original image x∗. The problem in Eq.6 is non-convex due
to the structure of G(w; z). Convergence guarantees for deep neural network formulations of this
form that exist are highly restrictive [34, 35]. There exist several papers in recent literature which
allude to (linear) convergence of gradient descent for solving the two-layer neural networks; however
all of the results rely on moderate or extreme overparameterization of the neural network. Therefore,
these results do not apply to our paper and deriving convergence guarantees for the denoising problem
in 6 is an interesting direction for future work.

B Discussion on sample complexity

In compressive imaging literature, for s-sparse signals of dimension d, the sample complexity for
compressive sensing is n = O(s log d) and compressive phase retrieval is n = O(s2 log d), when
Gaussian measurements are considered. If structural constraints are imposed on the sparsity of
images, such as block sparsity, the sample requirements can be brought down to n = O(s/b log d)
and n = O(s2/b log d) for CS and CPR respectively, where b is the block length of each sparse block
[21]. However these gains come at the cost of designing the signal priors carefully.

In contrast, the sample requirements with deep network priors, as we show in this paper is n =

O(k1
∑L
l=2 kl log d). In both datasets that we tested, relatively shallow architectures were sufficient.

Therefore the effective sample complexity is of the order of k1, which is typically much smaller than
the dimension d. We have empirically demonstrated in Section 6 that the sample requirement with
deep network priors is significantly lower than that for the sparse prior setting. Moreover, the design
of the prior is fairly straightforward, and applies for a wide class of images.

C Additional experiments

In this section we present some additional details for the experimental setup in Section 6. We also
present some additional experiments to reinforce the merits of Net-PGD.

All codes were run on a Nvidia GeForce GPU with 8GB RAM.

Deep network architecture: For both MNIST and CelebA images, several architectures were tried
out to pick out the best under-parameterized network which gave low representation error. We found
that for the example images from MNIST, a decoder architecture, as described in Eq. 3 with 2 layers,
and channel configurations k1 = 15, k2 = 15, k3 = 10 and bilinear upsampling operators each with
upsampling factor of 2, U↑2l , l = {1, 2, 3} was sufficient to represent most images. The outputs
after each ReLU operation are normalized, by calling for batch normalization subroutine in Pytorch.
Finally a sigmoid activation is added to the output of the deep network, which smoothens the output;
however this is not mandatory for the deep network configuration to work. For CelebA images,
we fixed the configuration to a 3 layer network with setup k1 = 120, k2 = 15, k3 = 15, k4 = 10.
Note that both of these architectures are underparameterized, unlike the configurations in [9]. The
random seed Z1 is fixed and picked from uniform random distribution 5. We plot the “compressed"
representations of each image, G(w; z) in all Figures for reference.

C.1 Compressed sensing recovery

Implementation details: For CS recovery with deep network priors, both Net-GD and Net-PGD were
implemented using the PyTorch framework with Python 3 and using GPU support. For Net-GD, SGD

5Gaussian distributed entries as well as randomly picked rows of Hadamard matrices also work.
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(alternatively, Adam) optimizer is used. For Net-PGD, SGD (alternatively, Adam) optimizer is used
for the projection step and SGD optimizer for the gradient step in Step 3 of Alg. 1 and Step 4 of Alg.
2. For implementing Lasso algorithm, Python’s sklearn.linear_model library was used and we
set the regularization factor α = 10−5. The MATLAB code for TVAL3 [25] made available on the
author’s website was used with its default settings.

Running time: We also report the average running times for different algorithms across different
measurement levels for examples from MNIST is 5.86s (Net-GD), 5.46s (Net-PGD), 2.43s (Lasso-
DCT), 0.82s (TVAL3). We note that the running time of both GD and PGD for CS-UNP are
competitive.

C.2 Compressive phase retrieval

Implementation details: For compressive phase retrieval with deep network priors, both Net-GD and
Net-PGD were implemented using the PyTorch framework with Python 3 and using GPU support.
All optimization procedures were implemented using SGD optimizer. For implementing Sparta
algorithm, the algorithm from [22] was implemented in MATLAB.

We also report the average running times for different algorithms across different measurement levels
for examples from MNIST is 25.59s (Net-GD), 28.46s (Net-PGD), 3.80s (Sparta-DCT).

Goodness of random initialization: Our theoretical guarantees for phase retrieval hold only as long as
the initialization x0 is close to the ground truth x∗. We perform rigorous experiments to assert that
uniform random initialization of the weights w0 of the neural network, ensure that the initial estimate
x0 = G(w0; z) is good. We denote the distance of initialization as δi = ‖x0 − xT ‖/‖xT ‖ (xT = x̂)
and report the values of δi for the trials in which ‖xT − x∗‖/‖x∗‖ < 0.1. We plot the average values
of δi in Table 1.

Table 1: Distance of initial estimate x0

n/d d channel configuration nMSE of x̂ average δi values
0.2 784 (MNIST) 15, 15, 10 0.098 0.914
0.5 784 (MNIST) 15, 15, 10 0.018 0.942
0.4 12288 (CelebA) 120, 15, 15,10 0.020 0.913
0.6 12288 (CelebA) 120, 15, 15,10 0.015 0.915

From our observation, uniform random initialization suffices to ensure that the conditions for Theorem
2 are met and δi < 1.

D Proofs and supporting lemmas

In this section we proofs for the theorems discussed in the main body of this paper as well as present
supporting Lemmas.

We first discuss the set-restricted restricted isometry property.

The (S, γ, β) RIP holds for Gaussian matrixA with high probability, as long as certain dimensionality
requirements are met. We show this via Lemma 1 as follows:

Lemma 1. If an image x ∈ Rd has a decoder prior (captured in set S), where the decoder consists
of weights w and piece-wise linear activation (ReLU), a random Gaussian matrix A ∈ Rn×d with
elements from N (0, 1/n), satisfies (S, 1− α, 1 + α)-RIP, with probability 1− e−cα2n, as long as

n = O

(
k1
α2

L∑
l=2

kl log d

)
, for small constant c and 0 < α < 1.

Proof. We first describe the two layer setup.

Consider the action of measurement matrix A defined on vector h, where h := U1σ(ZW1)W2 below:

u = Ah = AU1σ(Z1W1)W2.

where W k1×k2
1 , W k2×1

1 and Ud×d11 with d > d1.
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We would like to estimate the dimensionality of A, required to ensure that the action of A on set
restricted vector h ∈ S, is bounded as:

γ‖h‖2 ≤ ‖Ah‖2 ≤ β‖h‖2

with high probability. To establish this, consider the following argument which is similar to the union
of subspaces argument from [6].

The action of ReLU on input (Z1W1) partitions the input space of variable W1 into a union of
linear subspaces. In particular, consider a single column of w1,j of W1, indexed by j, which is k1
dimensional. Then, σ(Z1w1,j) partitions the k1-dimensional input space into (dk11 ) k1-spaces. Since
there are k2 such columns, effectively the k1× k2 dimensional space of W1 is partitioned into (dk11 )k,
(k1 × k2)-spaces.

Then, we can consider the union of dk1k21 subspaces with linearized mappings of the form:

u1 = AU1(Z1W
′
1)W2

where W ′1 belongs to one of the dk1k21 subspaces and u1 is the mapping corresponding to that.

If the dimensionalities are chosen such that they satisfy d > k2, and A,U1, Z1 are known matrix
operators, then the effectively wk1×1 := W ′1W2 represents the accumulated action of the weights,
belonging to one of the dk1k21 subspaces, (U1Z1)d×k1 is a linear transformation from a lower di-
mensional space to a higher dimensional space. Then, if A is designed as an oblivious subspace
embedding (OSE) (Lemma 3 in Appendix D) of U1Z1w, for a single k1-dimensional subspace of w,
one requires m = O

(
k1
α2

)
samples to embed the vector w, as

(1− α)‖h‖2 ≤ ‖Ah‖2 ≤ (1 + α)‖h‖2, (7)

with probability 1 − e−cα2
1n, for constant α1 < α. Since there are dk1k21 such subspaces, then for

the OSE to hold for all subspaces, one requires to take a union bound as 1− dkiki e−cα
2
1n. Therefore

the expression in Eq. 7 holds for all h ∈ S, with probability 1− e−cα2
2n and α2 < α1. Therefore,

one requires n = O
(
k1k2 log d1

α2
1

)
, to ensure that A satisfies (S, 1− α, 1 + α)-RIP with probability

1− e−cα2
2n.

Multiple layers: A similar argument can be extended for multiple layers. Consider an L layer
formulation:

u = AUL−1σ(. . . σ(U1σ(Z1W1)W2)W3 . . . )WL

with W kL×1
L and Ud×dL−1

L−1 .

The first non-linearity partitions the space into dk1k21 k1 × k2-dimensional spaces. Thus we have the
part-linearized mapping of the form:

u1 = AUL−1σ(· · ·U2σ(U1Z1W
′
1W2)W3 · · · )WL

and there are dk1k21 of these.

The second non-linearity acts on input (U1Z1)d2×k1 · (W ′1W2)k1×k3 of each of these partitions, and
creates more partitions; dk1k32 partitions of the k1×k3 space. This creates effectively dk1k21 ×dk1k32 ≤
d
k1(k2+k3)
2 (since d2 > d1) partitions in total and these constitute linearized embeddings of the form:

u = AUL−1σ(. . . σ(U2U1Z1W
′
1W
′
2)W3 . . . )WL

where W ′1W
′
2 belong to one of the dk1k21 · dk1k32 subspaces.

Extending the same argument to all subsequent non-linearities (total (L− 1) such) and linearizing,
we have mappings of the form

uL−1 = AUL−1(. . . (U2U1Z1W
′
1W
′
2)W ′3 . . . )WL

hL−1 =

((
L−1∏
l=1

Ul

)
Z1

)
·

(
L∏
l=1

Wl

)
= B · w (8)
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whereB :=
(∏L−1

l=1 Ul

)
Z1 andw :=

(∏L
l=1Wl

)
∈ Rk1 . The total number of partitions are dk1k21 ×

dk1k32 . . . dk1kLL−1 ≤ dk1
∑L

l=2 kl , since d > dL−1 > . . . d1, via upsampling operations. Effectively we
consider a union of dk1

∑L
l=2 kl subspaces of dimension k1.

Repeating the argument from the analysis for two layers, if A is designed as an oblivious subspace
embedding (OSE) (Lemma 3 in Appendix D) of B · w, for a single k1-dimensional subspace of Bw,
one requires m = O

(
k1
α2

)
samples to embed the vector w, with the bound in Eq. 7 with probability

1− e−cα2
1n, for constant α1 < α.

Therefore, the embedding from Eq. 7 holds for

h = UL−1σ(. . . σ(U1σ(ZW1)W2)W3 . . . )WL,

as long as n = O
(
k1

∑L
l=2 kl log d

α2
1

)
, with probability 1 − e−cα2

on, which implies that A satisfies
(S, 1− α, 1 + α)-RIP with high probability.

Next, we present some corollaries which will be useful for proving some of our theoretical claims.

Corollary 1. For parameter α > 0, if a matrix A ∈ Rn×d satisfies (S, 1 − α, 1 + α)-RIP with
probability 1− e−cα2

on, for all x ∈ S, then for x1, x2 ∈ S,

(1− α)‖x1 − x2‖2 ≤ ‖A(x1 − x2)‖2 ≤ (1 + α)‖x1 − x2‖2,

holds with probability 1− e−c2α2
on, where c2 < c.

Proof. Since x1, x2 ∈ S, both x1, x2 lie in the union of k1-dimensional subspaces, the difference
vector x3 = x1 − x2 ∈ S ′, lies in a union of 2k1-dimensional subspaces. For (S, 1− α, 1 + α)-RIP

to hold for the difference set, one continues to require n = O
(
k1

∑L
l=2 kl log d

α2
1

)
.

Corollary 2. If A satisfies set-restricted RIP and ht = xt − x∗, with xt, x∗ ∈ S then

‖(1− ηA>A)ht‖ ≤ max{1− ηλmin, ηλmax − 1}‖ht‖

with λmin = (1− α) and λmax = (1 + α).

Proof. Consider h ∈ S ′, where h = ht = xt− x2 and xt, x∗ ∈ S . Then from Set-RIP and Corollary
1,

(1− α)‖h‖2 ≤ ‖Ah‖2 ≤ (1 + α)‖h‖2.
From Eq. 8, if x1, x2 ∈ S, then it is possible to write h to arise from a union of 2k1-dimensional
subspaces of the form h = Bw. Then,

(1− α)‖Bw‖2 ≤ ‖ABw‖2 ≤ (1 + α)‖Bw‖2. (9)

where w ∈ R2k1 . We need to evaluate the eigenvalues of ‖A>A‖ restricted on set S ′, which we can
do by inducing a projection on the union of subspaces B as

‖A>Ah‖ = ‖B>A>ABw‖

Therefore, the minimum and maximum eigenvalues of ‖A>A‖ restricted on set S ′ are

σmin(AB) ≤ ‖B>A>AB̄‖2 ≤ σmax(AB)

Then, using Eq.9, (1− α)σmin(B) ≤ ‖B>A>AB‖2 ≤ (1 + α)σmax(B).

Since B predominantly consists of a product of upsampling matrices and latent code Z1, which can
be always chosen such that σmax(Z1) ≈ σmin(Z1), therefore σmax(B) ≈ σmin(B) ≈ 1.

Next, we discuss the convergence of Net-PGD for compressed sensing recovery via Theorem 1.
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Theorem 1. Suppose the sampling matrix An×d satisfies (S, 1−α, 1 +α)-RIP with high probability
then, Algorithm 1, with η small enough, produces x̂ such that ‖x̂− x∗‖ ≤ ε and requires T ∝ log 1

ε
iterations.

Proof. Using the definition of loss as L(xt) = ‖y −Axt‖2,

L(xt+1)− L(xt) = (‖Axt+1‖2 − ‖Axt‖2)− 2(y>Axt+1 − y>Axt)
= ‖Axt+1 −Axt‖2 − 2(Axt)>(Axt) + 2(Axt)>(Axt+1)

− 2(y>Axt+1 − y>Axt)
= ‖Axt+1 −Axt‖2 − 2(y −Axt)>(Axt+1 −Axt) (10)

We want to establish a contraction of the form L(xt+1) < νL(xt), with ν < 1.

Step 3 of Alg. 1 is solved via gradient descent:

vt = xt − ηA>(Axt −Ax∗) (11)

Subsequently, Step 4 of Algorithm 1 learns weights wt that produce xt = G(wt; z), which lies in the
range of the decoder G(·) and is closest to the estimate vt.

Step 4 of Algorithm 1 produces an update of wt satisfying:

‖G(wt; z)− vt‖ ≤ ‖G(w∗; z)− vt‖

Denoting G(wt; z) := xt and G(w∗; z) := x∗, and using the update rule in Eq. 11,

‖xt+1 − vt‖2 ≤ ‖x∗ − vt‖2

‖xt+1 − xt + ηA>A(xt − x∗)‖2 ≤ ‖x∗ − xt + ηA>A(xt − x∗)‖2

‖xt+1 − xt‖2 + 2η(A(xt − x∗))>A(xt+1 − x∗) ≤ ‖xt − x∗‖2 − 2η‖A(xt − x∗)‖2

1

η
‖xt+1 − xt‖2 + 2(A(xt − x∗))>A(xt+1 − x∗) ≤ 1

η
‖xt − x∗‖2 − 2L(xt)

=⇒ L(xt+1) + L(xt) ≤ 1

η
‖xt − x∗‖2 − 1

η
‖xt+1 − xt‖2

+ ‖A(xt+1 − xt)‖2

where we have used the expansion in Eq. 10. We now use (S, γ, β)-RIP. If a Gaussian measurement
matrix is considered then γ = 1− α and β = 1 + α.

Using (S, γ)-RIP on the first term on the right side,

‖x∗ − xt‖2 ≤ 1

γ
‖A(x∗ − xt)‖2

Second, using (S, β)-RIP on the last term on the right side,

‖A(xt+1 − xt)‖2 ≤ β‖xt+1 − xt‖2

Accumulating these expressions and substituting,

L(xt+1) + L(xt) ≤ 1

ηγ
L(xt) +

(
β − 1

η

)
‖xt+1 − xt‖2

βη<1

≤ 1

ηγ2
L(xt)

=⇒ L(xt+1) ≤ νL(xt)

=⇒ L(xT ) ≤ νTL(x0)

where 0 < ν < 1 and ν =
(

1
ηγ2 − 1

)
and picking η < 1/β. Invoking (S, γ, β)-RIP again,

‖xT − x∗‖2 ≤ 1

γ
‖y −AxT ‖2 ≤ νT

γ
‖y −Ax0‖2 := ε
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Hence to reach ε- accuracy in reconstruction, one requires T iterations where

T = logα

(
‖y −Ax0‖2

γε

)
.

Note that the contraction L(xt+1) ≤ νL(xt) coupled with (S, γ, β)-RIP implies a distance contrac-
tion ‖xt+1 − x∗‖ ≤ νo‖xt − x∗‖, with νo = ν

√
β/γ.

Step 4 of Algorithm 1, which is essentially the case of fitting a noisy image to a deep neural network
prior can be solved via gradient descent. We discuss this projection in further detail in Section A.

Next, we discuss the main convergence result of Net-PGD for compressive phase retrieval in Theorem
2.
Theorem 2. Suppose the sampling matrixAn×d with Gaussian entries satisfies (S, 1−α, 1+α)-RIP
with high probability, Algorithm 2 solves Eq. 5 with η small enough, such that ‖x̂−x∗‖ ≤ ε, as long as

the weights are initialized appropriately and the number of measurements is n = O

(
k1

L∑
l=2

kl log d

)
.

Proof. Step 4 of Algorithm 2 is solved via a variant of gradient descent called Wirtinger flow [36],
which produces updates of the form:

vt+1 = xt − ηA>
(
Axt −Ax∗ ◦ sign(Ax∗) ◦ sign(Axt)

)
= xt − ηA>

(
Axt −Ax∗

)
− ηA>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt))

= xt − ηA>
(
Axt −Ax∗

)
− ηεtp (12)

where εtp := A>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt)) is phase estimation error.

If sign(Ax∗) ≈ sign(Axt), then the above resembles the gradient step from the linear compressed
sensing formulation. Thus, if x0 is initialized well, the error due to phase mis-match εtp can be
bounded, and subsequently, a convergence result can be formulated.

Next, Step 4 of Algorithm 2 learns weights wt that produce xt = G(wt; z), which lies in the range
of the decoder G(·) and is closest to the estimate vt. We discuss this projection in further detail in
Appendix A.

Step 4 of Algorithm 2 produces an update of wt satisfying:

‖G(wt; z)− vt‖ ≤ ‖G(w∗; z)− vt‖
≡ ‖xt − vt‖ ≤ ‖x∗ − vt‖

for t = {1, 2, . . . T}. Then, the above projection rule yields:

‖xt+1 − vt+1 + vt+1 − x∗‖ ≤ ‖xt+1 − vt+1‖+ ‖x∗ − vt+1‖ ≤ 2‖x∗ − vt+1‖
Using the update rule from Eq. 12 and plugging in for vt+1:

1

2
‖xt+1 − x∗‖2 ≤ ‖(xt − x∗)− (ηA>

(
Axt −Ax∗

)
+ ηεtp)‖2

Defining ht+1 = xt+1 − x∗ and ht = xt − x∗, the above expression is

1

2
‖ht+1‖ ≤ ‖ht − ηA>Aht − ηεtp‖ ≤ ‖(1− ηA>A)ht‖+ η‖εtp‖ (13)

We now bound the two terms in the expression above separately as follows. The first term is bounded
using matrix norm inequalities Using Corollary 2 (in Appendix D) of (S, γ, β)-RIP:

‖(1− ηA>A)ht‖ ≤ max{1− ηλmin, ηλmax − 1}‖ht‖

where λmin and λmax are the minimum and maximum eigenvalues of A>A restricted on set S , and
via Corollary 2, λmin = (1− α), λmax = (1 + α).

Hence the first term in the right side of Eq.13 is bounded as:

‖(1− ηA>A)ht‖ ≤ ρo‖ht‖.
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where ρo = max{1− η(1− α), η(1 + α)− 1}. The second term in Eq.13 is bounded via Lemma 2
as follows:

‖εtp‖ ≤ δo‖xt − x∗‖

as long as ‖x0 − x∗‖ ≤ δi‖x∗‖.
Substituting back in Eq.13,

‖xt+1 − x∗‖ ≤ 2(ρo + ηδo)‖xt − x∗‖ := ρ‖xt − x∗‖.

Then, if we pick constant η = 1
1+α+1−α = 1 that minimizes ρ := 2(max{1− η(1− α), η(1 + α)−

1}+ ηδo), to yield ρ = 2(α+ δo) then we obtain the linear convergence criterion as follows:

‖xt+1 − x‖ ≤ ρ‖xt − x‖.

Here, if we set α = 0.1 and δo = 0.36 from Lemma 2, then ρ = 0.92 < 1. Note that this proof relies
on a bound on the phase error ‖εtp‖ which is established via Lemma 2 as follows:

Lemma 2. Given initialization condition ‖x0 − x∗‖ ≤ δi‖x∗‖, then if one has Gaussian measure-

ments A ∈ Rn×d such that n = O

(
k1

L∑
l=2

kl log d

)
, then with probability 1− e−c2n , the following

holds:
‖εtp‖ = ‖A>Ax∗ ◦ (1− sign(Ax∗) ◦ sign(Axt))‖ ≤ δo‖xt − x∗‖

for constant c2 and δo = 0.36.

Proof. We adapt the proof of Lemma C.1. of [30] as follows.

We define indicator function 1(a>i x
t)(a>i x

∗)<1 = 1
2 (1 − sign(Ax∗) ◦ sign(Axt)) with zeros where

the condition is false and ones where the condition is true.

Then we are required to bound the following expression:

‖εtp‖2 = 2

n∑
i=1

(a>i x
∗)2 · 1(a>i x

t)(a>i x
∗)<1 ≤ δ2o‖xt − x∗‖2

Following the sequence of arguments in Lemma C.1. of [30] (or Lemma C.1 of [37]), one can show
that for a given xt,

‖εtp‖2 ≤ δ2o + κ+
3c1κ

δi
< 0.13 + κ+

3c1κ

δ
(14)

with high probability, 1 − e−cnκ2

, for small constants c, c1, δ, as long as ‖xt − x∗‖ ≤ 0.1‖x∗‖2.
Here the bound on δ2o (in this case 0.13) is a monotonically increasing function of the distance
δti = ‖xt−x∗‖2

‖x∗‖2 .

If the projected gradient scheme produces iterates satisfying

‖xt+1 − x∗‖ < ρ‖xt − x∗‖

with ρ < 1, then the condition in Eq. 14 is satisfied for all t = {1, 2, . . . T} as long as the initialization
x0 satisfies ‖x0 − x∗‖ ≤ 0.1‖x∗‖2 (i.e. δ0i := δi = 0.1).

Now, the expression in Eq. 14 holds for a fixed xt. To ensure that it holds for all possible x ∈ S , we
need to use an epsilon-net argument over the space of variables spanned by S . The cardinality of S is

card(S) < dk1
∑L

l=2 kl

as seen from the derivation of RIP in Lemma 1. Therefore,

‖εtp‖ ≤ 0.13 + κ+
3c1κ

δi
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with probability 1− dk1
∑L

l=2 kle−cnκ
2

for small constant c. To ensure that high probability result
holds for all x ∈ S,

ek1
∑L

l=2 kl log de−cnκ
2

< e−c2n

k1

L∑
l=2

kl log d− cnκ2 < −c2n

n >
1

cκ2 − c2
k1

L∑
l=2

kl log d > c3k1

L∑
l=2

kl log d

for appropriately chosen constants c, c2, c3.

Note that this Theorem requires that the weights are initialized appropriately, satisfying ‖x0 − x∗‖ ≤
δi‖x∗‖. In Section 6 we perform rigorous experiments to show that random initialization suffices to
ensure that δi is small.

Finally we state the statement for Oblivious Subspace Embedding, which is the core theoretical
lemma required for proving our RIP result.
Lemma 3. Oblivious subspace embedding (OSE) [38]. A (k, α, δ)-OSE is a random matrix Πn×d

such that for any fixed k-dimensional subspace S and xd×1 ∈ S, with probability 1 − δ, Π is a
subspace embedding for S with distortion α, where n = O(α−2(k + log( 1

δ ))).

The failure probability is δ = e−cnα
2+ck, for small constant c and the embedding satisfies:

(1− α)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + α)‖x‖2.
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