
On the Hardness of Robust Classification: Appendix

A Learning Theory Basics

A.1 The PAC framework

We study the problem of robust classification. This is a generalization of standard classification tasks,
which are defined on an input space Xn of dimension n and finite output space Y . Common examples
of input spaces are {0, 1}n, [0, 1]n, and Rn. We focus on binary classification in the realizable

setting, where Y = {0, 1}, and we get access to a sample S = {(xi, yi)}mi=1 where the xi’s are drawn
i.i.d. from an unknown underlying distribution D, and there exists c : X ! Y such that yi = c(xi),
namely, there exists a target concept that has labeled the sample. In the PAC framework [27], our
goal is to find a function h that approximates c with high probability over the training sample. This
means we are allowing a small chance of having a sample that is not representative of the distribution.
As we require our confidence to increase, we require more data. PAC learning is formally defined for
concept classes Cn ✓ {0, 1}Xn as follows.
Definition 14 (PAC Learning). Let Cn be a concept class over Xn and let C =

S
n2N Cn. We say that

C is PAC learnable using hypothesis class H and sample complexity function p(·, ·, ·) if there exists

an algorithm A that satisfies the following: for all n 2 N, for every c 2 Cn, for every D over Xn, for

every 0 < ✏ < 1/2 and 0 < � < 1/2, if whenever A is given access to m � p(n, 1/✏, 1/�) examples

drawn i.i.d. from D and labeled with c, A outputs h 2 H such that with probability at least 1� �,

P
x⇠D

(c(x) 6= h(x))  ✏ .

We say that C is statistically efficiently PAC learnable if p is polynomial in n, 1/✏ and 1/�, and

computationally efficiently PAC learnable if A runs in polynomial time in n, 1/✏ and 1/�.

PAC learning is distribution-free, in the sense that no assumptions are made about the distribution
from which the data comes from. The setting where C = H is called proper learning, and improper

learning otherwise.

A.2 Monotone Conjunctions

A conjunction c over {0, 1}n can be represented a set of literals l1, . . . , lk, where, for x 2 Xn,
c(x) =

V
k

i=1 li. For example, c(x) = x1 ^ x̄2 ^ x5 is a conjunction. Monotone conjunctions are the
subclass of conjunctions where negations are not allowed, i.e. all literals are of the form li = xj for
some j 2 [n].

The standard PAC learning algorithm to learn monotone conjunctions is as follows. We start with
the hypothesis h(x) =

V
i2Ih

xi, where Ih = [n]. For each example x in S, we remove i from Ih if
c(x) = 1 and xi = 0.

When one has access to membership queries, one can easily exactly learn monotone conjunctions
over the whole input space: we start with the instance where all bits are 1 (which is always a
positive example), and we can test whether each variable is in the target conjunction by setting the
corresponding bit to 0 and requesting the label.

We refer the reader to [23] for an in-depth introduction to machine learning theory.

A.3 Log-Lipschitz Distributions

Definition 15. A distribution D on {0, 1}n is said to be ↵-log-Lipschitz if for all input points

x, x
0
2 {0, 1}n, if dH(x, x0) = 1, then | log(D(x))� log(D(x0))|  log(↵).

The intuition behind log-Lipschitz distributions is that points that are close to each other must not
have frequencies that greatly differ from each other. Note that, by definition, D(x) > 0 for all inputs
x. Moreover, the uniform distribution is log-Lipschitz with parameter ↵ = 1. Another example of
log-Lipschitz distributions is the class of product distributions where the probability of drawing a 0

(or equivalently a 1) at index i is in the interval
h

1
1+↵

,
↵

1+↵

i
. Log-Lipschitz distributions have been

studied in [2], and its variants in [15, 18].
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Log-Lipschitz distributions have the following useful properties, which we will often refer to in our
proofs.
Lemma 16. Let D be an ↵-log-Lipschitz distribution over {0, 1}n. Then the following hold:

1. For b 2 {0, 1},
1

1+↵
 P

x⇠D

(xi = b)  ↵

1+↵
.

2. For any S ✓ [n], the marginal distribution DS̄ is ↵-log-Lipschitz, where DS̄(y) =P
y02{0,1}S D(yy0).

3. For any S ✓ [n] and for any property ⇡S that only depends on variables xS , the marginal

with respect to S̄ of the conditional distribution (D|⇡S)S̄ is ↵-log-Lipschitz.

4. For any S ✓ [n] and bS 2 {0, 1}S , we have that

⇣
1

1+↵

⌘|S|
 P

x⇠D

(xi = b) 
⇣

↵

1+↵

⌘|S|
.

Proof. To prove (1), fix i 2 [n] and b 2 {0, 1} and denote by x
�i the result of flipping the i-th bit of

x. Note that

P
x⇠D

(xi = b) =
X

z2{0,1}n:
zi=b

D(z) =
X

z2{0,1}n:
zi=b

D(z)

D(z�i)
D(z�i)  ↵

X

z2{0,1}n:
zi=b

D(z�i) = ↵ P
x⇠D

(xi 6= b) .

The result follows from solving for P
x⇠D

(xi = b).

Without loss of generality, let S̄ = {1, . . . , k} for some k  n. Let x, x
0
2 {0, 1}S̄ with

dH(x, x0) = 1.

To prove (2), let DS̄ be the marginal distribution. Then,

DS̄(x) =
X

y2{0,1}S

D(xy) =
X

y2{0,1}S

D(xy)

D(x0y)
D(x0

y)  ↵

X

y2{0,1}S

D(x0
y) = ↵DS̄(x

0) .

To prove (3), denote by X⇡S the set of points in {0, 1}S satisfying property ⇡S , and by xX⇡S the
set of inputs of the form xy, where y 2 X⇡S . By a slight abuse of notation, let D(X⇡S ) be the
probability of drawing a point in {0, 1}n that satisfies ⇡S . Then,

D(xX⇡S ) =
X

y2X⇡S

D(xy) =
X

y2X⇡S

D(xy)

D(x0y)
D(x0

y)  ↵

X

y2X⇡S

D(x0
y) = ↵D(x0

X⇡S ) .

We can use the above and show that

(D|⇡S)S̄(x) =
D(xX⇡S )

D(x0X⇡S )

D(x0
X⇡S )

D(X⇡S )
 ↵(D|⇡S)S̄(x

0) .

Finally, (4) is a corollary of (1)–(3).

B Discussion on the Relationship between Robust and Zero-Risk Learning

We saw that, for both robust risks RC

⇢
and RE

⇢
, zero-risk learning does not necessarily imply robust

learning. Moreover, as shown in Section 3, efficient distribution-free robust learning is not possible
even in the realizable setting. What can be said if we have access to a robust learning algorithm for
a specific distribution on the boolean hypercube? We will show that distribution-dependent robust
learning implies zero-risk learning for both robust risk definitions, under certain conditions on the
measure of balls in the support of the distribution. Let us start with Definition 1, where we require
the hypothesis to be exact in the ⇢-balls around a point.
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Proposition 17. For any probability measure µ on {0, 1}n, robustness parameter ⇢ and concepts h, c,

there exists ✏ > 0 such that if RE

⇢
(h, c) < ✏ then h(x) = c(x) for any x 2 X such that µ(B⇢(x)) > 0.

In particular, one has that h and c agree on the support of µ.

Proof. Suppose there exists x⇤
2 X with µ(B⇢(x⇤)) > 0 such that h(x⇤) 6= c(x⇤). Then for any

z 2 B⇢(x⇤), we have that RE

⇢
(h, c, z), the robust risk of h with respect to c at point z, is 1. Let

X̃ := {x 2 X : µ (B⇢(x)) > 0}, and ✏ = min
x2X̃ µ(B⇢(x)). We have that

RE

⇢
(h, c) �

X

z2B⇢(x⇤)

µ({z})`R
⇢
(h, c, z) = µ(B⇢(x

⇤)) � ✏ .

Corollary 18. For any fixed distribution D, robust learning with respect to D implies zero-risk

learning with respect to D for any robustness parameter as long as ✏ in Proposition 17 satisfies

✏
�1 = poly(n).

Proof. Fix a distribution D 2 D on X . Suppose that we have a ⇢-robust learning algorithm A
R

F (D)
for F , namely for all ✏, �, ⇢ > 0, for all c 2 F , if A

R

F (D) has access to a sample S of size
m � poly( 1

✏
,
1
�
, size(c), n), it returns f 2 F such that

P
S⇠Dm

�
`
R

⇢
(f, c) < ✏

�
� 1� � . (1)

By Proposition 17, we can choose ✏ such that RE

⇢
(h, c) < ✏ implies that h(x) = c(x) for any x 2 X

such that µ(B⇢(x)) > 0. Note that this ✏ depends on D, ⇢ and n. So we have that

P
x⇠D

(f(x) 6= c(x)) = 0 , (2)

with probability at least 1� � over the training sample S, whose size remains polynomial in 1
�

and n

by the proposition assumptions.

Remark 19. The assumption on ✏ in Corollary 18 is necessary to use the robust learning algorithm
as a black box: in Section 4.2, we work under a well-behaved class of distributions that includes
the uniform distribution and show that, for long enough monotone conjunctions and small enough
robustness parameter (with respect to the conjunction length), efficient robust learning is possible.
However, we cannot exactly learn these monotone conjunctions. In the uniform distribution setting,
the ⇢-balls all have the same probability mass and ✏

�1 is essentially superpolynomial in n.

To show the same result for RC

⇢
, where the hypothesis is constant in a ball, we can use the exact same

reasoning as in Corollary 18, except that we need to show the analogue of Proposition 17 for this
setting.
Proposition 20. For any probability measure µ on {0, 1}n and for any concepts h, c, there exists

✏ > 0 such that if RC

⇢
(h, c) < ✏ then h and c agree on the support of µ.

Proof. Fix h, c,D and let ✏ = minx2supp(µ) µ({x}). Suppose there exists x
⇤
2 supp(µ) and z 2

B⇢(x⇤) such that c(x⇤) 6= h(z). Then

RC

⇢
(h, c) = P

x⇠µ

(9z 2 B⇢(x) . c(x) 6= h(z)) � ✏ .

C Proofs from Section 3

Proof of Theorem 5. First, if C is trivial, we need at most one example to identify the target function.

For the other direction, suppose that C is non-trivial. We first start by fixing any learning algorithm
and polynomial sample complexity function m. Let ⌘ = 1

2!(log n) , 0 < � <
1
2 , and note that for any

constant a > 0,
lim

n!1
n
a log(1� ⌘)�1 = 0 ,
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and so any polynomial in n is o
⇣
(log(1/(1� ⌘)))�1

⌘
. Then it is possible to choose n0 such that for

all n � n0,

m 
log(1/�)

2n log(1� ⌘)�1
. (3)

Since C is non-trivial, we can choose concepts c1, c2 2 Cn and points x, x0
2 {0, 1}n such that c1

and c2 agree on x but disagree on x
0. This implies that there exists a point z 2 {0, 1}n such that

(i) c1(z) = c2(z) and (ii) it suffices to change only one bit in I := Ic1 [ Ic2 to cause c1 to disagree
on z and its perturbation. Let D be such that

P
x⇠D

(xi = zi) =

⇢
1� ⌘ if i 2 I

1
2 otherwise

.

Draw a sample S ⇠ D
m and label it according to c ⇠ U(c1, c2). Then,

P
S⇠Dm

(8x 2 S c1(x) = c2(x)) � (1� ⌘)m|I|
. (4)

Bounding the RHS below by � > 0, we get that, as long as

m 
log(1/�)

|I| log(1� ⌘)�1
, (5)

(4) holds with probability at least �. But this is true as Equation (3) holds as well. However, if x = z,
then it suffices to flip one bit of x to get x0 such that c1(x0) 6= c2(x0). Then,

RE

⇢
(c1, c2) � P

x⇠D

(xI = zI) = (1� ⌘)|I| . (6)

The constraints on ⌘ and the fact that |I|  n are sufficient to guarantee that the RHS is ⌦(1). Let
↵ > 0 be a constant such that RE

⇢
(c1, c2) � ↵.

We can use the same reasoning as in Lemma 6 to argue that, for any h 2 {0, 1}X ,

RE

1 (c1, h) + RE

1 (c2, h) � RE

1 (c1, c2) .

Finally, we can show that
E

c⇠U(c1,c2)
E

S⇠Dm

⇥
RR

1 (h, c)
⇤
� ↵�/2,

hence there exists a target c with expected robust risk bounded below by a constant4.

D Proofs from Section 4

D.1 Proof of Lemma 8

Proof. We begin by bounding the probability that c1 and c2 agree on an i.i.d. sample of size m:

P
S⇠Dm

(8x 2 S · c1(x) = c2(x) = 0) =

✓
1�

1

2l

◆2m

. (7)

Bounding the RHS below by 1/2, we get that, as long as

m 
log(2)

2 log(2l/(2l � 1))
, (8)

(7) holds with probability at least 1/2.

Now, if l = !(log(n)), then for a constant a > 0,

lim
n!1

n
a log

✓
2l

2l � 1

◆
= 0 ,

and so any polynomial in n is o
✓⇣

log
⇣

2l

2l�1

⌘⌘�1
◆

.

4For a more detailed reasoning, we refer the reader to the proof of Theorem 9, where we bound the expected
value E

c,S

⇥
RE
⇢ (A(S), c)

⇤
of the robust risk of a target chosen at uniformly random and the hypothesis outputted

by a learning algorithm A on a sample S.
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D.2 Proof of Theorem 10

Proof. We show that the algorithm A for PAC-learning monotone conjunctions (see [23], chapter
2) is a robust learner for an appropriate choice of sample size. We start with the hypothesis h(x) =V

i2Ih
xi, where Ih = [n]. For each example x in S, we remove i from Ih if c(x) = 1 and xi = 0.

Let D be a class of ↵-log-Lipschitz distributions. Let n 2 N and D 2 Dn. Suppose moreover that
the target concept c is a conjunction of l variables. Fix ", � > 0. Let ⌘ = 1

1+↵
, and note that by

Lemma 16, for any S ✓ [n] and bS 2 {0, 1}S , we have that ⌘|S|
 P

x⇠D

(xi = b)  (1� ⌘)|S|.

Claim 1. If m �

l
logn�log �

⌘l+1

m
then given a sample S ⇠ D

m, algorithm A outputs c with probability
at least 1� �.

Proof of Claim 1. Fix i 2 {1, . . . , n}. Algorithm A eliminates i from the output hypothesis just in
case there exists x 2 S with xi = 0 and c(x) = 1. Now we have P

x⇠D

(xi = 0 ^ c(x) = 1) � ⌘
l+1

and hence
P

S⇠D

(8x 2 S · i remains in Ih)  (1� ⌘
l+1)m  e

�m⌘
l+1

=
�

n
.

The claim now follows from union bound over i 2 {1, . . . , n}.

Claim 2. If l � 8
⌘2 log(

1
"
) and ⇢ 

⌘l

2 then P
x⇠D

(9z 2 B⇢(x) · c(z) = 1)  ".

Proof of Claim 2. Define a random variable Y =
P

i2Ic
I(xi = 1). We simulate Y by the following

process. Let X1, . . . , Xl be random variables taking value in {0, 1}, and which may be dependent.
Let Di be the marginal distribution on Xi conditioned on X1, . . . , Xi�1. This distribution is also
↵-log-Lipschitz by Lemma 16, and hence,

P
Xi⇠Di

(Xi = 1)  1� ⌘ . (9)

Since we are interested in the random variable Y representing the number of 1’s in X1, . . . , Xl, we
define the random variables Z1, . . . , Zl as follows:

Zk =

 
kX

i=1

Xi

!
� k(1� ⌘) .

The sequence Z1, . . . , Zl is a supermartingale with respect to X1, . . . , Xl:
E [Zk+1 | X1, . . . , Xk] = E

⇥
Zk +X

0
k+1 � (1� ⌘) | X 0

1, . . . , X
0
k

⇤

= Zk + P
�
X

0
k+1 = 1 | X

0
1, . . . , X

0
k

�
� (1� ⌘)

 Zk . (by (9))
Now, note that all Zk’s satisfy |Zk+1 � Zk|  1, and that Zl = Y � l(1� ⌘). We can thus apply the
Azuma-Hoeffding (A.H.) Inequality to get

P (Y � l � ⇢)  P
⇣
Y � l(1� ⌘) +

p
2 ln(1/")l

⌘

= P
⇣
Zl � Z0 �

p
2 ln(1/")l

⌘

 exp

 
�

p
2 ln(1/")l

2

2l

!
(A.H.)

= " ,

where the first inequality holds from the given bounds on l and ⇢:

l � ⇢ = (1� ⌘)l +
⌘l

2
+

⌘l

2
� ⇢

� (1� ⌘)l +
⌘l

2
(since ⇢ 

⌘l

2 )

� (1� ⌘)l +
p
2 log(1/")l . (since l �

8
⌘2 log(

1
"
))
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This completes the proof of Claim 2.

We now combine Claims 1 and 2 to prove the theorem. Define l0 := max( 2
⌘
log n, 8

⌘2 log(
1
"
)). Define

m :=
l
logn�log �

⌘l0+1

m
. Note that m is polynomial in n, �, ".

Let h denote the output of algorithm A given a sample S ⇠ D
m. We consider two cases. If l  l0

then, by Claim 1, h = c (and hence the robust risk is 0) with probability at least 1� �. If l0  l then,
since ⇢ = log n, we have l �

8
⌘2 log(

1
"
) and ⇢ 

⌘l

2 and so we can apply Claim 2. By Claim 2 we
have

RE

⇢
(h, c)  P

x⇠D

(9z 2 B⇢(x) · c(z) = 1)  "
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