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Abstract

We give the first polynomial-time algorithm for robust regression in the list-1

decodable setting where an adversary can corrupt a greater than 1/2 fraction2

of examples.3

For any α < 1, our algorithm takes as input a sample {(xi, yi)}i≤n of n linear4

equations where αn of the equations satisfy yi = 〈xi, `∗〉+ ζ for some small noise5

ζ and (1− α)n of the equations are arbitrarily chosen. It outputs a list L of size6

O(1/α) - a fixed constant - that contains an ` that is close to `∗.7

Our algorithm succeeds whenever the inliers are chosen from a certifiably anti-8

concentrated distributionD. In particular, this gives a (d/α)O(1/α8) time algorithm9

to find a O(1/α) size list when the inlier distribution is standard Gaussian. For10

discrete product distributions that are anti-concentrated only in regular directions,11

we give an algorithm that achieves similar guarantee under the promise that `∗ has12

all coordinates of the same magnitude. To complement our result, we prove that the13

anti-concentration assumption on the inliers is information-theoretically necessary.14

To solve the problem we introduce a new framework for list-decodable learning15

that strengthens the “identifiability to algorithms” paradigm based on the sum-of-16

squares method.17

1 Introduction18

In this work, we design algorithms for the problem of linear regression that are robust to training sets19

with an overwhelming (� 1/2) fraction of adversarially chosen outliers.20

Outlier-robust learning algorithms have been extensively studied (under the name robust statistics)21

in mathematical statistics [54, 45, 31, 29]. However, the algorithms resulting from this line of work22

usually run in time exponential in the dimension of the data [7]. An influential line of recent work23

[35, 1, 18, 39, 9, 36, 37, 30, 16, 19, 34] has focused on designing efficient algorithms for outlier-robust24

learning.25

Our work extends this line of research. Our algorithms work in the “list-decodable learning” frame-26

work. In this model, a majority of the training data (a 1− α fraction) can be adversarially corrupted27

leaving only an α� 1/2 fraction of “inliers”. Since uniquely recovering the underlying parameters28

is information-theoretically impossible in such a setting, the goal is to output a list (with an absolute29

constant size) of parameters, one of which matches the ground truth. This model was introduced30

in [3] to give a discriminative framework for clustering. More recently, beginning with [9], various31

works [20, 36] have considered this as a model of “untrusted” data.32

There has been phenomenal progress in developing techniques for outlier-robust learning with a33

small (� 1/2)-fraction of outliers (e.g. outlier “filters” [15, 16, 11, 17], separation oracles for34

inliers [15] or the sum-of-squares method [37, 30, 36, 34]). In contrast, progress on algorithms that35

tolerate the significantly harsher conditions in the list-decodable setting has been slower. The only36
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prior works [9, 20, 36] in this direction designed list-decodable algorithms for mean estimation via37

problem-specific methods.38

In this paper, we develop a principled technique to give the first efficient list-decodable learning39

algorithm for the fundamental problem of linear regression. Our algorithm takes a corrupted set40

of linear equations with an α � 1/2 fraction of inliers and outputs a O(1/α)-size list of linear41

functions, one of which is guaranteed to be close to the ground truth (i.e., the linear function that42

correctly labels the inliers). A key conceptual insight in this result is that list-decodable regression43

information-theoretically requires the inlier-distribution to be “anti-concentrated”. Our algorithm44

succeeds whenever the distribution satisfies a stronger “certifiable anti-concentration” condition that45

is algorithmically “usable’. This class includes the standard gaussian distribution and more generally,46

any spherically symmetric distribution with strictly sub-exponential tails.47

Prior to our work1, the state-of-the-art outlier-robust algorithms for linear regression [34, 21, 14,48

49] could handle only a small (< 0.1)-fraction of outliers even under strong assumptions on the49

underlying distributions.50

List-decodable regression generalizes the well-studied [12, 32, 26, 57, 2, 10, 58, 51, 42] and easier51

problem of mixed linear regression: given k “clusters” of examples that are labeled by one out of k52

distinct unknown linear functions, find the unknown set of linear functions. All known techniques53

for the problem rely on faithfully estimating certain moment tensors from samples and thus, cannot54

tolerate the overwhelming fraction of outliers in the list-decodable setting. On the other hand, since55

we can take any cluster as inliers and treat rest as outliers, our algorithm immediately yields new56

efficient algorithms for mixed linear regression. Unlike all prior works, our algorithms work without57

any pairwise separation or bounded condition-number assumptions on the k linear functions.58

List-Decodable Learning via the Sum-of-Squares Method Our algorithm relies on a strengthen-59

ing of the robust-estimation framework based on the sum-of-squares (SoS) method. This paradigm60

has been recently used for clustering mixture models [30, 36] and obtaining algorithms for moment61

estimation [37] and linear regression [34] that are resilient to a small (� 1/2) fraction of outliers62

under the mildest known assumptions on the underlying distributions. At the heart of this technique is63

a reduction of outlier-robust algorithm design to just finding “simple” proofs of unique “identifiability”64

of the unknown parameter of the original distribution from a corrupted sample. However, this princi-65

pled method works only in the setting with a small (� 1/2) fraction of outliers. As a consequence,66

the work of [36] for mean estimation in the list-decodable setting relied on “supplementing” the SoS67

method with a somewhat problem-dependent technique.68

As an important conceptual contribution, our work yields a framework for list-decodable learning69

that recovers some of the simplicity of the general blueprint. Central to our framework is a general70

method of rounding by votes for “pseudo-distributions” in the setting with� 1/2 fraction outliers.71

Our rounding builds on the work of [38] who developed such a method to give a simpler proof of the72

list-decodable mean estimation result of [36]. In Section 2, we explain our ideas in detail.73

The results in all the works above hold for any underlying distribution that has upper-bounded low-74

degree moments and such bounds are “captured” within the SoS system. Such conditions are called as75

“certified bounded moment” inequalities. An important contribution of this work is to formalize anti-76

concentration inequalities within the SoS system and prove “certified anti-concentration” for natural77

distribution families. Unlike bounded moment inequalities, there is no canonical encoding within78

SoS for such statements. We choose an encoding that allow proving certified anti-concentration for a79

distribution by showing the existence of a certain approximating polynomial. This allows showing80

certified anti-concentration of natural distributions via a completely modular approach that relies on a81

beautiful line of works that construct “weighted ” polynomial approximators [43].82

We believe that our framework for list-decodable estimation and our formulation of certified anti-83

concentration condition will likely have further applications in outlier-robust learning.84

1.1 Our Results85

We first define our model for generating samples for list-decodable regression.86

1There’s a long line of work on robust regression algorithms (see for e.g. [8, 33]) that can tolerate corruptions
only in the labels. We are interested in algorithms robust against corruptions in both examples and labels.
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Model 1.1 (Robust Linear Regression). For 0 < α < 1 and `∗ ∈ Rd with ‖`∗‖2 ≤ 1, let LinD(α, `∗)87

denote the following probabilistic process to generate n noisy linear equations S = {〈xi, a〉 = yi |88

1 ≤ i ≤ n} in variable a ∈ Rd with αn inliers I and (1− α)n outliers O:89

1. Construct I by choosing αn i.i.d. samples xi ∼ D and set yi = 〈xi, `∗〉 + ζ for additive90

noise ζ,91

2. Construct O by choosing the remaining (1 − α)n equations arbitrarily and potentially92

adversarially w.r.t the inliers I.93

Note that α measures the “signal” (fraction of inliers) and can be� 1/2. The bound on the norm of94

`∗ is without any loss of generality. For the sake of exposition, we will restrict to ζ = 0 for most of95

this paper and discuss (see Remarks 1.6 and 4.4) how our algorithms can tolerate additive noise.96

An η-approximate algorithm for list-decodable regression takes input a sample from LinD(α, `∗) and97

outputs a constant (depending only on α) size list L of linear functions such that there is some ` ∈ L98

that is η-close to `∗.99

One of our key conceptual contributions is to identify the strong relationship between anti-100

concentration inequalities and list-decodable regression. Anti-concentration inequalities are well-101

studied [22, 53, 50] in probability theory and combinatorics. The simplest of these inequalities upper102

bound the probability that a high-dimensional random variable has zero projections in any direction.103

Definition 1.2 (Anti-Concentration). A Rd-valued zero-mean random variable Y has a δ-anti-104

concentrated distribution if Pr[〈Y, v〉 = 0] < δ.105

In Proposition 2.4, we provide a simple but conceptually illuminating proof that anti-concentration is106

sufficient for list-decodable regression. In Theorem 6.1, we prove a sharp converse and show that107

anti-concentration is information-theoretically necessary for even noiseless list-decodable regression.108

This lower bound surprisingly holds for a natural distribution: uniform distribution on {0, 1}d and109

more generally, uniform distribution on [q]d for q = {0, 1, 2 . . . , q}. And in fact, our lower bound110

shows the impossibility of even the “easier” problem of mixed linear regression on this distribution.111

Theorem 1.3 (See Proposition 2.4 and Theorem 6.1). There is a (inefficient) list-decodable regression112

algorithm for LinD(α, `∗) with list size O( 1
α ) whenever D is α-anti-concentrated. Further, there113

exists a distribution D on Rd that is (α + ε)-anti-concentrated for every ε > 0 but there is no114

algorithm for α
2 -approximate list-decodable regression for LinD(α, `∗) that returns a list of size < d.115

116

To handle additive noise of variance ζ2, we need a control of Pr[|〈x, v〉| ≤ ζ]. For our efficient117

algorithms, in addition, we need a certified version of the anti-concentration condition. Intuitively,118

certified anti-concentration asks for a certificate of the anti-concentration property of a random119

variable Y in the “sum-of-squares” proof system (see Section 3 for precise definitions). SoS is a120

proof system that reasons about polynomial inequalities. Since the “core indicator” 1(|〈x, v〉| ≤ δ)121

is not a polynomial, we phrase the condition in terms of an approximating polynomial p. For this122

section, we will use "low-degree sum-of-squares proof" informally and encourage the reader to think123

of certified anti-concentration as a stronger version of anti-concentration that the SoS method can124

reason about.125

Definition 1.4 (Certifiable Anti-Concentration). A random variable Y has a k-certifiably (C, δ)-anti-126

concentrated distribution if there is a univariate polynomial p satisfying p(0) = 1 such that there is a127

degree k sum-of-squares proof of the following two inequalities:128

1. ∀v, 〈Y, v〉2 ≤ δ2E〈Y, v〉2 implies (p(〈Y, v〉)− 1)2 ≤ δ2.129

2. ∀v, ‖v‖22 ≤ 1 implies Ep2(〈Y, v〉) ≤ Cδ.130

We are now ready to state our main result.131

Theorem 1.5 (List-Decodable Regression). For every α, η > 0 and a k-certifiably (C,α2η2/10C)-132

anti-concentrated distribution D on Rd, there exists an algorithm that takes input a sample generated133

according to LinD(α, `∗) and outputs a list L of size O(1/α) such that there is an ` ∈ L satisfying134

Please note that sections 3-6 are in the supplementary material.
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‖` − `∗‖2 < η with probability at least 0.99 over the draw of the sample. The algorithm needs a135

sample of size n = (kd)O(k) and runs in time nO(k) = (kd)O(k2).136

Remark 1.6 (Tolerating Additive Noise). For additive noise (not necessarily independent across137

samples) of variance ζ2 in the inlier labels, our algorithm, in the same running time and sample138

complexity, outputs a list of size O(1/α) that contains an ` satisfying ‖`− `∗‖2 ≤ ζ
α + η. Since we139

normalize `∗ to have unit norm, this guarantee is meaningful only when ζ � α.140

Remark 1.7 (Exponential Dependence on 1/α). List-decodable regression algorithms immediately141

yield algorithms for mixed linear regression (MLR) without any assumptions on the components.142

The state-of-the-art algorithms for MLR with gaussian components [42, 51] has an exponential143

dependence on k = 1/α in the running time in the absence of strong pairwise separation or small144

condition number of the components. Liang and Liu [42] (see Page 10 of their paper) use the145

relationship to learning mixtures of k gaussians (with an exp(k) lower bound [46]) to note that146

there may not exist any algorithms with polynomial dependence on 1/α for MLR and thus, also for147

list-decodable regression.148

Certifiably anti-concentrated distributions In Section 5, we show certifiable anti-concentration149

of some well-studied families of distributions. This includes the standard gaussian distribution and150

more generally any anti-concentrated spherically symmetric distribution with strictly sub-exponential151

tails. We also show that simple operations such as scaling, applying well-conditioned linear transfor-152

mations and sampling preserve certifiable anti-concentration. This yields:153

Corollary 1.8 (List-Decodable Regression for Gaussian Inliers). For every α, η > 0 there’s154

an algorithm for list-decodable regression for the model LinD(α, `∗) with D = N (0,Σ) with155

λmax(Σ)/λmin(Σ) = O(1) that needs n = (d/αη)
O
(

1
α4η4

)
samples and runs in time nO

(
1

α4η4

)
=156

(d/αη)
O
(

1
α8η8

)
.157

We note that certifiably anti-concentrated distributions are more restrictive compared to the families of158

distributions for which the most general robust estimation algorithms work [37, 36, 34]. To a certain159

extent, this is inherent. The families of distributions considered in these prior works do not satisfy160

anti-concentration in general. And as we discuss in more detail in Section 2, anti-concentration is161

information-theoretically necessary (see Theorem 1.3) for list-decodable regression. This surprisingly162

rules out families of distributions that might appear natural and “easy”, for example, the uniform163

distribution on {0, 1}n.164

We rescue this to an extent for the special case when `∗ in the model Lin(α, `∗) is a "Boolean165

vector", i.e., has all coordinates of equal magnitude. Intuitively, this helps because while the the166

uniform distribution on {0, 1}n (and more generally, any discrete product distribution) is badly167

anti-concentrated in sparse directions, they are well anti-concentrated [22] in the directions that are168

far from any sparse vectors.169

As before, for obtaining efficient algorithms, we need to work with a certified version (see Defini-170

tion 4.5) of such a restricted anti-concentration condition. As a specific Corollary (see Theorem 4.6171

for a more general statement), this allows us to show:172

Theorem 1.9 (List-Decodable Regression for Hypercube Inliers). For every α, η > 0 there’s an173

η-approximate algorithm for list-decodable regression for the model LinD(α, `∗) with D is uniform174

on {0, 1}d that needs n = (d/αη)
O( 1

α4η4
) samples and runs in time nO( 1

α4η4
)

= (d/αη)
O( 1

α8η8
).175

In Section 4.1, we obtain similar results for general product distributions. It is an important open176

problem to prove certified anti-concentration for a broader family of distributions.177

2 Overview of our Technique178

In this section, we give a bird’s eye view of our approach and illustrate the important ideas in our179

algorithm for list-decodable regression. Thus, given a sample S = {(xi, yi)}ni=1 from LinD(α, `∗),180

we must construct a constant-size list L of linear functions containing an ` close to `∗.181

Please note that sections 3-6 are in the supplementary material.
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Our algorithm is based on the sum-of-squares method. We build on the “identifiability to algorithms”182

paradigm developed in several prior works [5, 4, 44, 37, 30, 36, 34] with some important conceptual183

differences.184

An inefficient algorithm Let’s start by designing an inefficient algorithm for the problem. This185

may seem simple at the outset. But as we’ll see, solving this relaxed problem will rely on some186

important conceptual ideas that will serve as a starting point for our efficient algorithm.187

Without computational constraints, it is natural to just return the list L of all linear functions ` that188

correctly labels all examples in some S ⊆ S of size αn. We call such an S, a large, soluble set. True189

inliers I satisfy our search criteria so `∗ ∈ L. However, it’s not hard to show (Proposition B.1 ) that190

one can choose outliers so that the list so generated has size exp(d) (far from a fixed constant!).191

A potential fix is to search instead for a coarse soluble partition of S, if it exists, into disjoint192

S1, S2, . . . , Sk and linear functions `1, `2, . . . , `k so that every |Si| ≥ αn and `i correctly computes193

the labels in Si. In this setting, our list is small (k ≤ 1/α). But it is easy to construct samples S for194

which this fails because there are coarse soluble partitions of S where every `i is far from `∗.195

Anti-Concentration It turns out that any (even inefficient) algorithm for list-decodable regression196

provably (see Theorem 6.1) requires that the distribution of inliers2 be sufficiently anti-concentrated:197

Definition 2.1 (Anti-Concentration). A Rd-valued random variable Y with mean 0 is δ-anti-198

concentrated3 if for all non-zero v, Pr[〈Y, v〉 = 0] < δ. A set T ⊆ Rd is δ-anti-concentrated199

if the uniform distribution on T is δ-anti-concentrated.200

As we discuss next, anti-concentration is also sufficient for list-decodable regression. Intuitively,201

this is because anti-concentration of the inliers prevents the existence of a soluble set that intersects202

significantly with I and yet can be labeled correctly by ` 6= `∗. This is simple to prove in the special203

case when S admits a coarse soluble partition.204

Proposition 2.2. Suppose I is α-anti-concentrated. Suppose there exists a partition205

S1, S2, . . . , Sk ⊆ S such that each |Si| ≥ αn and there exist `1, `2, . . . , `k such that yj = 〈`i, xj〉206

for every j ∈ Si. Then, there is an i such that `i = `∗.207

Proof. Since k ≤ 1/α, there is a j such that |I ∩ Sj | ≥ α|I|. Then, 〈xi, `j〉 = 〈xi, `∗〉 for every208

i ∈ I ∩ Sj . Thus, Pri∼I [〈xi, `j − `∗〉 = 0] ≥ α. This contradicts anti-concentration of I unless209

`j − `∗ = 0.210

The above proposition allows us to use any soluble partition as a certificate of correctness for the211

associated list L. Two aspects of this certificate were crucial in the above argument: 1) largeness:212

each Si is of size αn - so the generated list is small, and, 2) uniformity: every sample is used in213

exactly one of the sets so I must intersect one of the Sis in at least α-fraction of the points.214

Identifiability via anti-concentration For arbitrary S, a coarse soluble partition might not exist.215

So we will generalize coarse soluble partitions to obtain certificates that exist for every sample S216

and guarantee largeness and a relaxation of uniformity (formalized below). For this purpose, it is217

convenient to view such certificates as distributions µ on ≥ αn size soluble subsets of S so any218

collection C ⊆ 2S of αn size sets corresponds to the uniform distribution µ on C.219

To precisely define uniformity, let Wi(µ) = ES∼µ[1(i ∈ S)] be the “frequency of i”, that is,220

probability that the ith sample is chosen to be in a set drawn according to µ. Then, the uniform221

distribution µ on any coarse soluble k-partition satisfies Wi = 1
k for every i. That is, all samples222

i ∈ S are uniformly used in such a µ. To generalize this idea, we define
∑
iWi(µ)2 as the distance223

to uniformity of µ. Up to a shift, this is simply the variance in the frequencies of the points in S224

used in draws from µ. Our generalization of a coarse soluble partition of S is any µ that minimizes225 ∑
iWi(µ)2, the distance to uniformity, and is thus maximally uniform among all distributions226

supported on large soluble sets. Such a µ can be found by convex programming.227

Please note that sections 3-6 are in the supplementary material.
2As in the standard robust estimation setting, the outliers are arbitrary and potentially adversarially chosen.
3Definition 1.4 differs slightly to handle list-decodable regression with additive noise in the inliers.
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The following claim generalizes Proposition 2.2 to derive the same conclusion starting from any228

maximally uniform distribution supported on large soluble sets.229

Proposition 2.3. For a maximally uniform µ on αn size soluble subsets of S,230 ∑
i∈I ES∼µ[1 (i ∈ S)] ≥ α|I|.231

The proof proceeds by contradiction (see Lemma 4.3). We show that if
∑
i∈IWi(µ) ≤ α|I|, then we232

can strictly reduce the distance to uniformity by taking a mixture of µ with the distribution that places233

all its probability mass on I. This allow us to obtain an (inefficient) algorithm for list-decodable234

regression establishing identifiability.235

Proposition 2.4 (Identifiability for List-Decodable Regression). Let S be sample from Lin(α, `∗)236

such that I is δ-anti-concentrated for δ < α. Then, there’s an (inefficient) algorithm that finds a list237

L of size 20
α−δ such that `∗ ∈ L with probability at least 0.99.238

Proof. Let µ be any maximally uniform distribution over αn size soluble subsets of S . For k = 20
α−δ ,239

let S1, S2, . . . , Sk be independent samples from µ. Output the list L of k linear functions that240

correctly compute the labels in each Si.241

To see why `∗ ∈ L, observe that E|Sj∩I| =
∑
i∈I E1(i ∈ Sj) ≥ α|I|. By averaging, Pr[|Sj∩I| ≥242

α+δ
2 |I|] ≥

α−δ
2 . Thus, there’s a j ≤ k so that |Sj ∩ I| ≥ α+δ

2 |I| with probability at least243

1 − (1 − α−δ
2 )

20
α−δ ≥ 0.99. We can now repeat the argument in the proof of Proposition 2.2 to244

conclude that any linear function that correctly labels Sj must equal `∗.245

An efficient algorithm Our identifiability proof suggests the following simple algorithm: 1) find246

any maximally uniform distribution µ on soluble subsets of size αn of S, 2) take O(1/α) samples247

Si from µ and 3) return the list of linear functions that correctly label the equations in Sis. This is248

inefficient because searching over distributions is NP-hard in general.249

To make this into an efficient algorithm, we start by observing that soluble subsets S ⊆ S of size αn250

can be described by the following set of quadratic equations where w stands for the indicator of S251

and `, the linear function that correctly labels the examples in S.252

Aw,` :


∑n
i=1 wi = αn

∀i ∈ [n]. w2
i = wi

∀i ∈ [n]. wi · (yi − 〈xi, `〉) = 0

‖`‖2 ≤ 1

 (2.1)

Our efficient algorithm searches for a maximally uniform pseudo-distribution on w satisfying (2.1).253

Degree k pseudo-distributions (see Section 3 for precise definitions) are generalization of distributions254

that nevertheless “behave” just as distributions whenever we take (pseudo)-expectations (denoted255

by Ẽ) of a class of degree k polynomials. And unlike distributions, degree k pseudo-distributions256

satisfying4 polynomial constraints (such as (2.1)) can be computed in time nO(k).257

For the sake of intuition, it might be helpful to (falsely) think of pseudo-distributions µ̃ as simply258

distributions where we only get access to moments of degree ≤ k. Thus, we are allowed to compute259

expectations of all degree ≤ k polynomials with respect to µ̃. Since Wi(µ̃) = Ẽµ̃ wi are just260

first moments of µ̃, our notion of maximally uniform distributions extends naturally to pseudo-261

distributions. This allows us to prove an analog of Proposition 2.3 for pseudo-distributions and gives262

us an efficient replacement for Step 1.263

Proposition 2.5. For any maximally uniform µ̃ of degree ≥ 2,
∑
i∈I Ẽµ̃[wi] ≥ α|I| =264

α
∑
i∈[n] Ẽµ̃[wi] .265

For Step 2, however, we hit a wall: it’s not possible to obtain independent samples from µ̃ given only266

low-degree moments.267

Please note that sections 3-6 are in the supplementary material.
4See Fact 3.3 for a precise statement.

6



Rounding by Votes To circumvent this hurdle, our algorithm departs from rounding strategies for268

pseudo-distributions used in prior works and instead “rounds” each sample to a candidate linear269

function. While a priori, this method produces n different candidates instead of one, we will be able270

to extract a list of O( 1
α ) size that contains the true vector from them. This step will crucially rely on271

anti-concentration properties of I.272

Consider the vector vi =
Ẽµ̃[wi`]
Ẽµ̃[wi]

whenever Ẽµ̃[wi] 6= 0 (set vi to zero, otherwise). This is simply the273

(scaled) average, according to µ̃, of all the linear functions ` that are used to label the sets S of size274

αn in the support of µ̃ whenever i ∈ S. Further, vi depends only on the first two moments of µ̃.275

We think of vis as “votes”cast by the ith sample for the unknown linear function. Let us focus276

our attention on the votes vi of i ∈ I - the inliers. We will show that according to the distribution277

proportional to Ẽ[w], the average `2 distance of vi from `∗ is at max η:278

1∑
i∈I Ẽ[wi]

∑
i∈I

Ẽ[wi]‖vi − `∗‖2 < η . (?)

Before diving into (?), let’s see how it gives us our efficient list-decodable regression algorithm:279

1. Find a pseudo-distribution µ̃ satisfying (2.1) that minimizes distance to uniformity280 ∑
i Ẽµ̃[wi]

2.281

2. For O( 1
α ) times, independently choose a random index i ∈ [n] with probability proportional282

to Ẽµ̃[wi] and return the list of corresponding vis.283

Step 1 above is a convex program - it minimizes a norm subject on the convex set of pseudo-284

distributions - and can be solved in polynomial time. Let’s analyze step 2 to see why the algorithm285

works. Using (?) and Markov’s inequality, conditioned on i ∈ I, ‖vi − `∗‖2 ≤ 2η with probability286

≥ 1/2. By Proposition 2.5,
∑
i∈I Ẽ[wi]∑
i∈[n] Ẽ[wi]

≥ α so i ∈ I with probability at least α. Thus in each287

iteration of step 2, with probability at least α/2, we choose an i such that vi is 2η-close to `∗.288

Repeating O(1/α) times gives us the 0.99 chance of success.289

(?) via anti-concentration As in the information-theoretic argument, (?) relies on the anti-290

concentration of I. Let’s do a quick proof for the case when µ̃ is an actual distribution µ.291

Proof of (?) for actual distributions µ. Observe that µ is a distribution over (w, `) satisfying (2.1).292

Recall that w indicates a subset S ⊆ S of size αn and wi = 1 iff i ∈ S. And ` ∈ Rd satisfies all the293

equations in S.294

By Cauchy-Schwarz,
∑
i ‖Eµ[wi`]−Eµ[wi]`

∗‖ ≤ Eµ[
∑
i∈I wi‖`−`∗‖]. Next, as in Proposition 2.2,295

since I is η-anti-concentrated, and for all S such that |I ∩ S| ≥ η|I|, `− `∗ = 0. Thus, any such S296

in the support of µ contributes 0 to the expectation above. We will now show that the contribution297

from the remaining terms is upper bounded by η. Observe that since ‖`− `∗‖ ≤ 2,298

Eµ[
∑
i∈I wi‖`− `∗‖] = Eµ[1 (|S ∩ I| < η|I|)wi‖`− `∗‖] = Eµ[

∑
i∈S∩I ‖`− `∗‖] ≤ 2η|I|.299

SoSizing Anti-Concentration The key to proving (?) for pseudo-distributions is a sum-of-squares300

(SoS) proof of anti-concentration inequality: Prx∼I [〈x, v〉 = 0] ≤ η in variable v. SoS is a restricted301

system for proving polynomial inequalities subject to polynomial inequality constraints. Thus, to302

even ask for a SoS proof we must phrase anti-concentration as a polynomial inequality.303

To do this, let p(z) be a low-degree polynomial approximator for the function 1 (z = 0).304

Then, we can hope to “replace” the use of the inequality Prx∼I [〈x, v〉 = 0] ≤ η ≡ Ex∼I [1(〈x, v〉 =305

0)] ≤ η in the argument above by Ex∼I [p(〈x, v〉)] ≤ η. Since polynomials grow unboundedly for306

large enough inputs, it is necessary for the uniform distribution on I to have sufficiently light-tails307

to ensure that Ex∼Ip(〈x, v〉) is small. In Lemma A.1, we show that anti-concentration and strictly308

sub-exponential tails are sufficient to construct such a polynomial.309

Please note that sections 3-6 are in the supplementary material.
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We can finally ask for a SoS proof for Ex∼Ip(〈x, v〉) ≤ η in variable v. We prove such certified310

anti-concentration inequalities for broad families of inlier distributions in Section 5.311

3 Preliminaries312

In this section, we define pseudo-distributions and sum-of-squares proofs. See the lecture notes [6]313

for more details and the appendix in [44] for proofs of the propositions appearing here.314

Let x = (x1, x2, . . . , xn) be a tuple of n indeterminates and let R[x] be the set of polynomials315

with real coefficients and indeterminates x1, . . . , xn. We say that a polynomial p ∈ R[x] is a316

sum-of-squares (sos) if there are polynomials q1, . . . , qr such that p = q21 + · · ·+ q2r .317

3.1 Pseudo-distributions318

Pseudo-distributions are generalizations of probability distributions. We can represent a discrete (i.e.,319

finitely supported) probability distribution over Rn by its probability mass function D : Rn → R320

such that D ≥ 0 and
∑
x∈supp(D)D(x) = 1. Similarly, we can describe a pseudo-distribution by its321

mass function. Here, we relax the constraint D ≥ 0 and only require that D passes certain low-degree322

non-negativity tests.323

Concretely, a level-` pseudo-distribution is a finitely-supported function D : Rn → R such that324 ∑
xD(x) = 1 and

∑
xD(x)f(x)2 ≥ 0 for every polynomial f of degree at most `/2. (Here, the325

summations are over the support of D.) A straightforward polynomial-interpolation argument shows326

that every level-∞-pseudo distribution satisfies D ≥ 0 and is thus an actual probability distribution.327

We define the pseudo-expectation of a function f on Rd with respect to a pseudo-distribution D,328

denoted ẼD(x) f(x), as329

ẼD(x) f(x) =
∑
x

D(x)f(x) . (3.1)

The degree-` moment tensor of a pseudo-distribution D is the tensor ED(x)(1, x1, x2, . . . , xn)⊗`. In330

particular, the moment tensor has an entry corresponding to the pseudo-expectation of all monomials331

of degree at most ` in x. The set of all degree-` moment tensors of probability distribution is a332

convex set. Similarly, the set of all degree-` moment tensors of degree d pseudo-distributions is also333

convex. Key to the algorithmic utility of pseudo-distributions is the fact that while there can be no334

efficient separation oracle for the convex set of all degree-` moment tensors of an actual probability335

distribution, there’s a separation oracle running in time nO(`) for the convex set of the degree-`336

moment tensors of all level-` pseudodistributions.337

Fact 3.1 ([52, 48, 47, 40]). For any n, ` ∈ N, the following set has a nO(`)-time weak separation338

oracle (in the sense of [28]):339 {
ẼD(x)(1, x1, x2, . . . , xn)⊗d | degree-d pseudo-distribution D over Rn

}
. (3.2)

This fact, together with the equivalence of weak separation and optimization [28] allows us to340

efficiently optimize over pseudo-distributions (approximately)—this algorithm is referred to as the341

sum-of-squares algorithm.342

The level-` sum-of-squares algorithm optimizes over the space of all level-` pseudo-distributions that343

satisfy a given set of polynomial constraints—we formally define this next.344

Definition 3.2 (Constrained pseudo-distributions). Let D be a level-` pseudo-distribution over Rn.345

Let A = {f1 ≥ 0, f2 ≥ 0, . . . , fm ≥ 0} be a system of m polynomial inequality constraints. We say346

that D satisfies the system of constraints A at degree r, denoted D r A, if for every S ⊆ [m] and347

every sum-of-squares polynomial h with deg h+
∑
i∈S max{deg fi, r},348

ẼD h ·
∏
i∈S

fi ≥ 0 .
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We write D A (without specifying the degree) if D
0
A holds. Furthermore, we say that D r A349

holds approximately if the above inequalities are satisfied up to an error of 2−n
` · ‖h‖ ·

∏
i∈S‖fi‖,350

where ‖·‖ denotes the Euclidean norm5 of the cofficients of a polynomial in the monomial basis.351

We remark that if D is an actual (discrete) probability distribution, then we have D A if and only352

if D is supported on solutions to the constraints A.353

We say that a system A of polynomial constraints is explicitly bounded if it contains a constraint of354

the form {‖x‖2 ≤M}. The following fact is a consequence of Fact 3.1 and [28],355

Fact 3.3 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)O(`)-time356

algorithm that, given any explicitly bounded and satisfiable system6 A of m polynomial constraints357

in n variables, outputs a level-` pseudo-distribution that satisfies A approximately.358

3.2 Sum-of-squares proofs359

Let f1, f2, . . . , fr and g be multivariate polynomials in x. A sum-of-squares proof that the constraints360

{f1 ≥ 0, . . . , fm ≥ 0} imply the constraint {g ≥ 0} consists of polynomials (pS)S⊆[m] such that361

g =
∑
S⊆[m]

pS ·Πi∈Sfi . (3.3)

We say that this proof has degree ` if for every set S ⊆ [m], the polynomial pSΠi∈Sfi has degree at362

most `. If there is a degree ` SoS proof that {fi ≥ 0 | i ≤ r} implies {g ≥ 0}, we write:363

{fi ≥ 0 | i ≤ r} ` {g ≥ 0} . (3.4)

Sum-of-squares proofs satisfy the following inference rules. For all polynomials f, g : Rn → R and364

for all functions F : Rn → Rm, G : Rn → Rk, H : Rp → Rn such that each of the coordinates of365

the outputs are polynomials of the inputs, we have:366

A ` {f ≥ 0, g ≥ 0}
A ` {f + g ≥ 0}

,
A ` {f ≥ 0},A

`′
{g ≥ 0}

A
`+`′

{f · g ≥ 0}
(addition and multiplication)

A ` B,B `′
C

A
`·`′ C

(transitivity)

{F ≥ 0} ` {G ≥ 0}
{F (H) ≥ 0}

`·deg(H)
{G(H) ≥ 0}

. (substitution)

Low-degree sum-of-squares proofs are sound and complete if we take low-level pseudo-distributions367

as models.368

Concretely, sum-of-squares proofs allow us to deduce properties of pseudo-distributions that satisfy369

some constraints.370

Fact 3.4 (Soundness). IfD r A for a level-` pseudo-distributionD and there exists a sum-of-squares371

proof A
r′
B, then D

r·r′+r′
B.372

If the pseudo-distributionD satisfiesA only approximately, soundness continues to hold if we require373

an upper bound on the bit-complexity of the sum-of-squares A
r′
B (number of bits required to374

write down the proof).375

In our applications, the bit complexity of all sum of squares proofs will be nO(`) (assuming that376

all numbers in the input have bit complexity nO(1)). This bound suffices in order to argue about377

pseudo-distributions that satisfy polynomial constraints approximately.378

5The choice of norm is not important here because the factor 2−n` swamps the effects of choosing another
norm.

6Here, we assume that the bitcomplexity of the constraints in A is (n+m)O(1).
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The following fact shows that every property of low-level pseudo-distributions can be derived by379

low-degree sum-of-squares proofs.380

Fact 3.5 (Completeness). Suppose d ≥ r′ ≥ r and A is a collection of polynomial constraints with381

degree at most r, and A ` {
∑n
i=1 x

2
i ≤ B} for some finite B.382

Let {g ≥ 0} be a polynomial constraint. If every degree-d pseudo-distribution that satisfies D r A383

also satisfies D
r′
{g ≥ 0}, then for every ε > 0, there is a sum-of-squares proof A d {g ≥ −ε}.384

We will use the following Cauchy-Schwarz inequality for pseudo-distributions:385

Fact 3.6 (Cauchy-Schwarz for Pseudo-distributions). Let f, g be polynomials of degree at most d in386

indeterminate x ∈ Rd. Then, for any degree d pseudo-distribution µ̃, Ẽµ̃[fg] ≤
√

Ẽµ̃[f2]
√
Ẽµ̃[g2].387

The following fact is a simple corollary of the fundamental theorem of algebra:388

Fact 3.7. For any univariate degree d polynomial p(x) ≥ 0 for all x ∈ R, d

x {p(x) ≥ 0}.389

This can be extended to univariate polynomial inequalities over intervals of R.390

Fact 3.8 (Fekete and Markov-Lukács, see [41]). For any univariate degree d polynomial p(x) ≥ 0391

for x ∈ [a, b], {x ≥ a, x ≤ b} d

x {p(x) ≥ 0}.392

4 Algorithm for List-Decodable Robust Regression393

In this section, we describe and analyze our algorithm for list-decodable regression and prove our394

first main result restated here.395

Theorem 1.5 (List-Decodable Regression). For every α, η > 0 and a k-certifiably (C,α2η2/10C)-396

anti-concentrated distribution D on Rd, there exists an algorithm that takes input a sample generated397

according to LinD(α, `∗) and outputs a list L of size O(1/α) such that there is an ` ∈ L satisfying398

‖` − `∗‖2 < η with probability at least 0.99 over the draw of the sample. The algorithm needs a399

sample of size n = (kd)O(k) and runs in time nO(k) = (kd)O(k2).400

We will analyze Algorithm 1 to prove Theorem 1.5.401

Aw,` :



∑n
i=1 wi = αn

∀i ∈ [n]. w2
i = wi

∀i ∈ [n]. wi · (yi − 〈xi, `〉) = 0∑
i≤d

`2i ≤ 1


(4.1)

402

Algorithm 1 (List-Decodable Regression).

Given: Sample S of size n drawn according to Lin(α, n, `∗) with inliers I, η > 0.

Output: A list L ⊆ Rd of size O(1/α) such that there exists a ` ∈ L satisfying ‖`− `∗‖2 < η.

Operation:

1. Find a degree O(1/α4η4) pseudo-distribution µ̃ satisfying Aw,` that minimizes
‖ Ẽ[w]‖2.

2. For each i ∈ [n] such that Ẽµ̃[wi] > 0, let vi =
Ẽµ̃[wi`]
Ẽµ̃[wi]

. Otherwise, set vi = 0.

3. Take J be a random multiset formed by union of O(1/α) independent draws of
i ∈ [n] with probability Ẽ[wi]

αn .
4. Output L = {vi | i ∈ J} where J ⊆ [n].

Our analysis follows the discussion in the overview. We start by formally proving (?).403
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Lemma 4.1. For any t ≥ k and any S so that I ⊆ S is k-certifiably (C,α2η2/4C)-anti-404

concentrated,405

Aw,` t

w,`

{
1

|I|

n∑
i∈I

wi‖`− `∗‖22 ≤
α2η2

4

}
406

Proof. We start by observing:407

Aw,` 2
` ‖`− `∗‖22 ≤ 2 .

Since I is (C,αη/2C)-anti-concentrated, there exists a univariate polynomial p such that ∀i:408

{wi〈x, `− `∗〉 = 0} `

k {p(wi〈xi, `− `∗〉) = 1} (4.2)
and409

{
‖`‖2 ≤ 1

}
`

k

{
1

|I|
∑
i∈I

p(〈xi, `− `∗〉)2 ≤
α2η2

4

}
(4.3)

Using (4.2), we have:410

Aw,` t+2

w,` {
1− p2(wi〈xi, `− `∗〉) = 0

}
t+2

w,` {
1− wip2(〈xi, `− `∗〉) = 0

}

Using (4.3) and Aw,` w
2 {

w2
i = wi

}
, we thus have:411

Aw,` t+2

w,`
{ 1

|I|
∑
i∈I

wi‖`− `∗‖22 =
1

|I|
∑
i∈I

wi‖`− `∗‖22wip2(〈xi, `− `∗〉) =
1

|I|
∑
i∈I

wi‖`− `∗‖22p2(〈xi, `− `∗〉)

≤ 1

|I|
∑
i∈I
‖`− `∗‖22p2(〈xi, `− `∗〉) ≤

α2η2

4
.
}

412

As a consequence of this lemma, we can show that a constant fraction of the vi for i ∈ I constructed413

in the algorithm are close to `∗.414

Lemma 4.2. For any µ̃ of degree k satisfying Aw,`, 1
|I|
∑
i∈I Ẽ[wi] · ‖vi − `∗‖2 ≤ α

2 η.415

Proof. By Lemma 4.1, we have: Aw,` k

w,`
{

1
|I|
∑n
i∈I wi‖`− `∗‖22 ≤

α2η2

4

}
.416

We also have: Aw,` 2

w,` {
w2
i − wi = 0

}
for any i. This yields:417

Aw,` k

w,`

{
1

|I|

n∑
i∈I
‖wi`− wi`∗‖22 ≤

α2η2

4

}

Since µ̃ satisfies Aw,`, taking pseudo-expectations yields: 1I
∑
i∈I Ẽ ‖wi`− wi`∗‖22 ≤

α2η2

4 .418

By Cauchy-Schwarz for pseudo-distributions (Fact 3.6), we have:419 (
1

I
∑
i∈I
‖ Ẽ[wi`]− Ẽ[wi]`

∗‖2

)2

≤ 1

I
∑
i∈I
‖ Ẽ[wi`]− Ẽ[wi]`

∗‖22 ≤
α2η2

4
.

Using vi = Ẽ[wi`]
Ẽ[wi]

if Ẽ[wi] > 0 and 0 otherwise, we have: 1
I
∑
i∈I,Ẽ[wi]>0 Ẽ[wi] · ‖vi − `∗‖2 ≤ α

2 η.420

421
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Next, we formally prove that maximally uniform pseudo-distributions satisfy Proposition 2.5.422

Lemma 4.3. For any µ̃ of degree≥ 4 satisfyingAw,` that minimizes ‖ Ẽ[w]‖2,
∑
i∈I Ẽµ̃[wi] ≥ α2n.423

424

Proof. Let u = 1
αn Ẽ[w]. Then, u is a non-negative vector satisfying

∑
i∼[n] ui = 1.425

Let wt(I) =
∑
i∈I ui and wt(O) =

∑
i 6∈I ui. Then, wt(I) + wt(O) = 1.426

We will show that if wt(I) < α, then there’s a pseudo-distribution µ̃′ that satisfies Aw,` and has a427

lower value of ‖ Ẽ[w]‖2. This is enough to complete the proof.428

To show this, we will “mix” µ̃ with another pseudo-distribution satisfying Aw,`. Let µ̃∗ be the actual429

distribution supported on single (w, `) - the indicator 1I and `∗. Thus, Ẽµ̃∗ wi = 1 iff i ∈ I and430

0 otherwise. µ̃∗ clearly satisfies Aw,`. Thus, any convex combination (mixture) of µ̃ and µ̃∗ also431

satisfies Aw,`.432

Let µ̃λ = (1− λ)µ̃+ λµ̃∗. We will show that there is a λ > 0 such that ‖ Ẽµ̃λ [w]‖2 < ‖ Ẽ[w]‖2.433

We first lower bound ‖u‖22 in terms of wt(I) and wt(O). Observe that for any fixed values of wt(I)434

and wt(O), the minimum is attained by the vector u that ensures ui = 1
αnwt(I) for each i ∈ I and435

ui = 1
(1−α)nwt(O).436

This gives ‖u‖2 ≥
(
wt(I)

αn

)2

αn+

(
1− wt(I)

(1− α)n

)2

(1− α)n =
1

αn
·
(
wt(I) + (1− wt(I))2

(
α

1− α

))
.

Next, we compute the the `2 norm of u′ = 1
αn Ẽµ̃λ w as:437

‖u′‖22 = (1− λ)2‖u‖2 +
λ2

αn
+ 2λ(1− λ)

wt(I)

αn
.

438

Thus, ‖u′‖2 − ‖u‖2 = (−2λ+ λ2)‖u‖2 +
λ2

αn
+ 2λ(1− λ)

wt(I)

αn

≤ −2λ+ λ2

αn
·
(
wt(I)2 + (1− wt(I))2

α

1− α

)
+
λ2

αn
+ 2λ(1− λ)

wt(I)

αn
439

Rearranging, ‖u‖2 − ‖u′‖2 ≥ λ

αn

(
(2− λ) ·

(
wt(I)2 + (1− wt(I))2

(
α

1− α

))
− λ− 2(1− λ)wt(I)

)
≥ λ(2− λ)

αn

(
wt(I)2 + (1− wt(I))2

α

1− α
− wt(I)

)
Now, whenever wt(I) < α, wt(I)2 + (1− wt(I))2 α

1−α − wt(I) > 0. Thus, we can choose a small440

enough λ > 0 so that ‖u‖2 − ‖u′‖2 > 0.441

442

Lemma 4.3 and Lemma 4.2 immediately imply the correctness of our algorithm.443

Proof of Main Theorem 1.5. First, since D is k-certifiably (C,αη/4C)-anti-concentrated,444

Lemma 5.5 implies taking ≥ n = (kd)O(k) samples ensures that I is k-certifiably (C,αη/2C)-anti-445

concentrated with probability at least 1− 1/d. Let’s condition on this event in the following.446

Let µ̃ be a pseudo-distribution of degree t satisfying Aw,` and minimizing ‖ Ẽ[w]‖2. Such a pseudo-447

distribution exists as can be seen by just taking the distribution with a single-point support w where448

wi = 1 iff i ∈ I.449

From Lemma 4.2, we have: 1
|I|
∑
i∈I Ẽ[wi] · ‖vi − `∗‖2 ≤ α

2 η. Let Z = 1
αn

∑
i∈I Ẽ[wi]. By a450

rescaling, we obtain:451

1

|I|
∑
i∈I

Ẽ[wi]

Z
· ‖vi − `∗‖2 ≤

1

Z

α

2
η . (4.4)
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Using Lemma 4.3, Z ≥ α. Thus,452

1

|I|
∑
i∈I

Ẽ[wi]

Z
· ‖vi − `∗‖2 ≤ η/2 . (4.5)

Let i ∈ [n] be chosen with probability Ẽ[wi]
αn . Then, i ∈ I with probability Z ≥ α. By Markov’s453

inequality applied to (4.5), with 1
2 conditioned on i ∈ I, ‖vi − `∗‖2 < η. Thus, in total, with454

probability at least α/2, ‖vi − `∗‖2 ≤ η. Thus, the with probability at least 0.99 over the draw of the455

random set J , the list constructed by the algorithm contains an ` such that ‖`− `∗‖2 ≤ η.456

Let us now account for the running time and sample complexity of the algorithm. The sample457

size for the algorithm is dictated by Lemma 5.5 and is (kd)O(k), which for our choice of p goes458

as (kd)O(k). A pseudo-distribution satisfying Aw,` and minimizing ‖ Ẽ[w]‖2 can be found in time459

nO(k) = (kd)O(k2). The rounding procedure runs in time at most O(nd).460

Remark 4.4 (Tolerating Additive Noise). To tolerate independent additive noise, our algorithm and461

analysis change minimally. For an additive noise of variance ζ2 � α2η2 in the inliers, we modify462

Aw,` by replacing the constraint ∀i, wi · (yi − 〈xi, `〉) = 0 by ∀i, ±wi · (yi − 〈xi, `〉) ≤ 4ζ. And463 ∑n
i=1 wi = αn to

∑n
i=1 wi = (α/2)n.464

This means that instead of searching for a subsample of size αn that has a exact solution `, we search465

for a subsample of size α/2n where there’s a solution ` with an additive error of at most 2ζ. With466

additive noise of variance ζ2, it is easy to check that there’s a subset of 1/2 fraction of inliers that467

satisfies this property. Thus, Aw,` is feasible.468

Our analysis remains exactly the same except for one change in the proof of Lemma 4.1. We start469

from a distribution that is (C,αηζ/100C)-certifiably anti-concentrated. And instead of inferring that470

p(wi(yi − 〈xi, `〉)) = 1, we use that whenever ±(yi − 〈xi, `〉) ≤ 4ζ, p2((yi − 〈xi, `〉)) ≥ 1− 4ζ.471

4.1 List-Decodable Regression for Boolean Vectors472

In this section, we show algorithms for list-decodable regression when the distribution on the473

inliers satisfies a weaker anti-concentration condition. This allows us to handle more general inlier474

distributions including the product distributions on {±1}d, [0, 1]d and more generally any product475

domain. We however require that the unknown linear function be “Boolean”, that is, all its coordinates476

be of equal magnitude.477

We start by defining the weaker anti-concentration inequality. Observe that if v ∈ Rd satisfies478

v3i = 1
dvi for every i, then the coordinates of v are in {0,± 1√

d
}.479

Definition 4.5 (Certifiable Anti-Concentration for Boolean Vectors). A Rd valued random variable Y480

is k-certifiably (C, δ)-anti-concentrated in Boolean directions if there is a univariate polynomial p sat-481

isfying p(0) = 1 such that there is a degree k sum-of-squares proof of the following two inequalities:482

for all x2 ≤ δ2, (p(x)− 1)2 ≤ δ2 and for all v such that v3i = 4
dvi for all i, ‖v‖2EY p(〈Y, v〉)2 ≤ Cδ.483

We can now state the main result of this section.484

Theorem 4.6 (List-Decodable Regression in Boolean Directions). For every α, η, there’s a algorithm485

that takes input a sample generated according to LinD(α, n, `∗) in Rd for D that is k-certifiably486

(C,αη/10C)-anti-concentrated in Boolean directions and `∗ ∈
{
± 1√

d

}d
and outputs a list L of size487

O(1/α) such that there’s an ` ∈ L satisfying ‖` − `∗‖ < η with probability at least 0.99 over the488

draw of the sample. The algorithm requires a sample of size n ≥ (d/αη)
O( 1

α2η2
) and runs in time489

nO(k) = (d/αη)O(k2).490

The only difference in our algorithm and rounding is that instead of the constraint set Aw,`, we will491

work with Bw,` that has an additional constraint `2i = 1
d for every i. Our algorithm is exactly the492

same as Algorithm 1 replacing Aw,` by Bw,`.493
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Bw,` :



∑n
i=1 wi = αn

∀i ∈ [n], w2
i = wi

∀i ∈ [n], wi · (yi − 〈xi, `〉) = 0

∀in ∈ [d], `2i =
1

d


(4.6)

We will use the following fact in our proof of Theorem 4.6.494

Lemma 4.7. If a, b satisfy a2 = b2 = 2
d , then, (a− b)3 = 1

d (a− b)495

Proof. (a− b)3 = a3 − b3 − 3a2b+ 3ab2 = 1
d (a− b− 3b+ 3a) = 4

d (a− b).496

Proof of Theorem 4.6. The proof remains the same as in the previous section with one additional497

step. First, we can obtain the analog of Lemma 4.1 with a few quick modifications to the proof.498

Then, Lemma 4.2 follows from modified Lemma 4.1 as in the previous section. And the proof of499

Lemma 4.3 remains exactly the same. We can then put the above lemmas together just as in the proof500

of Theorem 1.5.501

We now describe the modifications to obtain the analog of Lemma 4.1. The key additional step in the502

proof of the analog of Lemma 4.1 which follows immediately from Lemma 4.7.503

{
∀i `2i =

1

d

}
4
`
{

(`i − `∗i )3 =
4

d
(`i − `∗i )

}
This allows us to replace the usage of certifiable anti-concentration by certifiable anti-concentration504

for Boolean vectors and derive:505 {
∀i `2i =

2

d

}
4
`

{
1

|I|
∑
i∈I

p(〈xi, `− `∗〉)2 ≤
α2η2

4

}

The rest of the proof of Lemma 4.1 remains the same.506

507

5 Certifiably Anti-Concentrated Distributions508

In this section, we prove certifiable anti-concentration inequalities for some basic families of distribu-509

tions. We first formally state the definition of certified-anti-concentration.510

Definition 5.1 (Certifiable Anti-Concentration). A Rd-valued zero-mean random variable Y has a511

(C, δ)-anti-concentrated distribution if Pr[|〈Y, v〉| ≤ δ
√

E〈Y, v〉2] ≤ Cδ.512

Y has a k-certifiably (C, δ)-anti-concentrated distribution if there is a univariate polynomial p513

satisfying p(0) = 1 such that514

1.
{
〈Y, v〉2 ≤ δ2E〈Y, v〉2

}
k

v {
(p(〈Y, v〉)− 1)2 ≤ δ2

}
.515

2.
{
‖v‖22 ≤ 1

}
k

v {‖v‖22Ep2(〈Y, v〉) ≤ Cδ
}

.516

We will say that such a polynomial p “witnesses the certifiable anti-concentration of Y ”. We will517

use the phrases “Y has a certifiably anti-concentrated distribution” and “Y is a certifiably anti-518

concentrated random variable” interchangeably.519

Before proceeding to prove certifiable anti-concentration of some important families of distributions,520

we observe the invariance of the definition under scaling and shifting.521

Lemma 5.2 (Scale invariance). Let Y be a k-certifiably (C, δ)-anti-concentrated random variable.522

Then, so is cY for any c 6= 0.523
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Proof. Let p be the polynomial that witnesses the certifiable anti-concentration of Y . Then, observe524

that q(z) = p(z/c) satisfies the requirements of the definition for cY .525

Lemma 5.3 (Certified anti-concentration of gaussians). For every 0.1 > δ > 0, there is a k =526

O
(

log2(1/δ)
δ2

)
such that N (0, I) is k-certifiably (2, 2δ)-anti-concentrated.527

Proof. Lemma A.1 yields that there exists an univariate even polynomial p of degree k as above such528

that for all v, whenever |〈x, v〉| ≤ δ, p(〈x, v〉) ≤ 2δ, and whenever ‖v‖2 ≤ 1, Ex∼N (0,I)p(〈x, v〉)2 ≤529

2δ. Since p is even, p(z) = 1
2 (p(z)+p(−z)) and thus, any monomial in p(z) with non-zero coefficient530

must be of even degree. Thus, p(z) = q(z2) for some polynomial q of degree k/2.531

The first property above for p implies that whenever z ∈ [0, δ], p(z) ≤ 2δ. By Fact 3.8, we obtain532

that:533 {
〈x, v〉2 ≤ δ2

}
k

v {
p(〈x, v〉)2 ≤ δ

}
Next, observe that for any j, Ex∼N (0,I)〈x, v〉2j = (2j)!! · ‖v‖2j2 . Thus, ‖v‖22Ex∼N (0,I)p

2(〈x, v〉)534

is a univariate polynomial F in ‖v‖22. The second property above thus implies that F (‖v‖22) ≤ Cδ535

whenever ‖v‖22 ≤ 1. By another application of Fact 3.8, we obtain:536 {
‖v‖22 ≤ 1

}
k

v {Ex∼N (0,I)p(〈x, v〉)2 ≤ 2δ
}

537

We say that Y is a spherically symmetric random variable over Rd if for every orthogonal matrix R,538

RY has the same distribution as Y . Examples include the standard gaussian random variable and539

uniform (Haar) distribution on Sd−1. Our argument above for the case of standard gaussian extends540

to any distribution that is spherically symmetric and has sufficiently light tails.541

Lemma 5.4 (Certified anti-concentration of spherically symmetric, light-tail distributions). Suppose542

Y is a Rd-valued, spherically symmetric random variable such that for any k ∈ (0, 2), for all t and543

for all v, Pr[〈v, Y 〉 ≥ t
√
E〈Y, v〉2] ≤ Ce−t

2/k/C and for all η > 0, Prx∼D[|x| < ησ] ≤ Cη, for544

some absolute constant C > 0. Then, for d = O
(

log(4+k)/(2−k)(1/δ)
δ2/(2−k)

)
, Y is d-certifiably (10C, δ)-545

anti-concentrated.546

Lemma 5.5 (Certified anti-concentration under sampling). Let D be k-certifiably (C, δ)-anti-547

concentrated, subexponential and unit covariance distribution. Let S be a collection of n independent548

samples from D. Then, for n ≥ Ω
(
(kd log(d))O(k)

)
, with probability at least 1− 1/d, the uniform549

distribution on S is (2C, δ)-anti-concentrated.550

Proof. Let p be the degree k polynomial that witnesses the certifiable anti-concentration of D. Let Y551

be the random variable with distribution D′, the uniform distribution on n i.i.d. samples from D. We552

will show that p also witnesses that k-certifiable (4C, δ/2)-anti-concentration of Y . To this end it is553

sufficient to take enough samples such that the following holds.554

Pr
(∣∣ED[p2(〈Y, v〉)]− ED′ [p2(〈Y, v〉)]

∣∣ > ED[p2(〈Y, v〉)]/2
)
< 1/d

Observe that p2(〈Y, v〉) may be written as 〈c(Y )c(Y )T ,m(v)m(v)T 〉 where c(Y ) are the coefficients555

of p(〈Y, v〉) and m(v) is the vector containing monomials. The dot product above is the usual trace556

inner product between matrices. Now, it is sufficient to show that557

Pr
(
‖ED′c(Y )c(Y )T − EDc(Y )c(Y )T ‖2F > ‖EDc(Y )c(Y )T ‖2F /4

)
< 1/d

Since p was a univariate polynomial of degree k in d dimensional variables, there are at most d2k558

entries in total, and each entry is at most a degree 2k polynomial of subexponential random variables559

in d variables. Using standard concentration results for polynomials of subexponential random560

variables (for instance Theorem 1.2 from [27] and the references therein). We see that each entry561

satisfies562

Pr (|EDc(Y )ic(Y )j − ED′c(Y )ic(Y )j | > ε) ≤ exp

(
−Ω

(
nε

E(c(Y )ic(Y )j)2

)1/2k
)
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An application of a union bound, squaring the term inside and replacing ε2 by E(c(Y )ic(Y )j)
2/4563

gives us564

Pr

 d2k∑
i,j=1

(EDc(Y )ic(Y )j − ED′c(Y )ic(Y )j)
2
> ‖Ec(Y )c(Y )T ‖2F /4

 ≤ d2k exp

(
−Ω

( n

dO(k)

)1/2k)

Hence, setting n = O((kd log(d))O(k)) ensures that with probability at least 1−1/d, the distribution565

D′ is (2C, δ)-anti-concentrated.566

567

We say that a d× d matrix A is C ′-well-conditioned if all singular values of A are within a factor of568

C ′ of each other.569

Lemma 5.6 (Certified anti-concentration under linear transformations). Let Y be k-certifiably (C, δ)-570

anti-concentrated random variable over Rd. Let A be any C ′-well-conditioned linear transformation.571

Then, AY is k-certifiably (C,C ′2δ)-anti-concentrated.572

Proof. Let ‖A‖ be the largest singular value of A. Let p be a polynomial that witnesses the certifiable573

anti-concentration of Y . Let q(z) = p(z/‖A‖). We will prove that q witnesses the k-certifiable574

(C,C ′2δ)-anti-concentration of AY .575

Towards this, observe that:576 {
〈Y, v〉2 ≤ δ2E〈Y, v〉2

}
2
v {〈AY, v〉2 ≤ δ2E〈AY, v〉2} .

577 {
〈Y, (AT v)/‖A‖〉2 ≤ δ2E〈Y, (AT v)/‖A‖〉2

}
k

v {
(p(〈Y, (AT v)/‖A‖〉)− 1)2 ≤ δ2

}
,

this is the same as578 {
〈AY, v〉2 ≤ δ2E〈AY, v〉2

}
k

v {
(q(〈AY, v〉)− 1)2 ≤ δ2

}
.

Where q = p(x/‖A‖). Now, for w = (AT v)/‖A‖ and any unit vector v,579

{
‖w‖22 ≤ 1

}
k

v {‖AT v‖22/‖A‖22Ep2(〈AY, v〉/‖A‖) ≤ Cδ
}
,

Thus,580 {
‖AT v‖22 ≤ ‖A‖2

}
k

v {‖AT v‖22Eq2(〈AY, v〉) ≤ C‖A‖22δ
}
.

However,581 {
‖v‖22 ≤ 1

}
2
v {‖AT v‖22 ≤ ‖A‖2} ,

and thus,582 {
‖v‖22 ≤ 1

}
k

v {‖v‖22Eq2(〈AY, v〉) ≤ CC ′2δ
}
.

583

Lemma 5.7 (Certifiable Anti-Concentration in Boolean Directions). Fix C > 0. Let Y be a Rd584

valued product random variable satisfying:585

1. Identical Coordinates: Yi are identically distributed for every 1 ≤ i ≤ d.586

2. Anti-Concentration For every v ∈
{

0,± 1√
d

}d
, Pr[|〈Y, v〉| ≤ δ

√
E〈Y, v〉2] ≤ Cδ.587

3. Light tails For every v ∈ Sd−1, Pr[|〈Y, v〉| > t
√
E〈Y, v〉2] ≤ exp(−t2/C).588

Then, Y is k-certifiably (C, δ)-anti-concentrated for k = O
(

log2(1/δ)
δ2

)
.589
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Proof. We use the p from Lemma A.1. To see that p witnesses the anti-concentration of Y , once590

again observe that Lemma A.1 applies to give us a real life proof of the required statements. We591

now exhibit a sum of squares proof. Observe that every monomial of even degree 2k for any592

k ∈ N, EY∼D〈Y, v〉2k is a symmetric polynomial in v with non-zero coefficients only on even-degree593

monomials in v. This follows by noting that the coordinates of D are independent and identically594

distributed and x2 is an even function. It is a fact that all symmetric polynomials in v can be expressed595

as polynomials in the “power-sum” polynomials ‖v‖2i2i for i ≤ 2t. However, since v2i ∈
{

0, 1d
}

for596

i ≥ 1, ‖v‖2i2i = 1
di−1 ‖v‖22. Hence a polynomial in ‖v‖2i2i is also a univariate polynomial in ‖v‖22.597

Since these are polynomial inequalities, they are also sum-of-squares proofs of these inequalities.598

The observation above implies ‖v‖22EY p(〈Y, v〉)2 = ‖v‖22 · F (‖v‖22) for some degree k univariate599

polynomial F . Since Since F is a univariate polynomial and ‖v‖22 ≤ 1 is an “interval constraint” by600

applying Fact 3.8, we get: 2t

‖v‖22 {‖v‖22F (‖v‖22) ≤ Cδ
}

. Recalling the fact that ‖v‖22EY p(〈Y, v〉)2 =601

‖v‖22 · F (‖v‖22), this completes the proof.602

6 Information-Theoretic Lower Bounds for List-Decodable Regression603

In this section, we show that list-decodable regression on LinD(α, `∗) information-theoretically604

requires that D satisfy α-anti-concentration: Prx∼D[〈x, v〉 = 0] < α for any non-zero v.605

Theorem 6.1 (Main Lower Bound). For every q, there is a distribution D on Rd satisfying606

Prx∼D[〈x, v〉 = 0] ≤ 1
q such that there’s no 1

2q -approximate list-decodable regression algorithm for607

LinD( 1
q , `
∗) that can output a list of size < d.608

Remark 6.2 (Impossibility of Mixed Linear Regression on the Hypercube). Our construction for the609

case of q = 2 actually shows the impossibility of the well-studied and potentially easier problem of610

noiseless mixed linear regression on the uniform distribution on {0, 1}n. This is becauseRi is, by611

construction, obtained by using one of ei or 1− ei to label each example point with equal probability.612

Theorem 6.1 is tight in a precise way. In Proposition 2.4, we proved that whenever D satisfies613

Prx∼D[〈x, v〉 = 0] < 1
q , there is an (inefficient) algorithm for exact list-decodable regression614

algorithm for LinD( 1
q , `
∗). Note that our lower bound holds even in the setting where there is no615

additive noise in the inliers.616

Somewhat surprisingly, our lower bound holds for extremely natural and well-studied distributions -617

uniform distribution on {0, 1}n and more generally, uniform distribution on {0, 1, . . . , q−1}d = [q]d618

for any q. We can easily determine a tight bound on the anti-concentration of both these distributions.619

Lemma 6.3. For any non-zero v ∈ Rd, Prx∼{0,1}n〈x, v〉 = 0 ≤ 1
2 and Prx∼[q]d [〈x, v〉 = 0] ≤ 1

q .620

Note that this is tight for any v = ei, the vector with 1 in the ith coordinates and 0s in all others.621

Proof. Fix any v. Without loss of generality, assume that all coordinates of v are non-zero. If not, we622

can simply work with the uniform distribution on the sub-hypercube corresponding to the non-zero623

coordinates of v.624

Let S ⊆ {0, 1}n ([q]d, respectively) be the set of all x ∈ {0, 1}n ([q]d, respectively) such that625

〈x, v〉 = 0. Then, observe that for any x ∈ S, and any i, x(i) obtained by flipping the ith bit626

(changing the ith coordinate to any other value) of x cannot be in S. Thus, S is an independent set in627

the graph on {0, 1}n (in [q]d, respectively) with edges between pairs of points with hamming distance628

1.629

It is a standard fact [56] that the maximum independent set in the d-hypercube is of size exactly630

2d−1 and in the q-ary Hamming graph [q]d is of size qd−1. Thus, Prx∼{0,1}d [〈x, v〉 = 0] ≤ 1
2 and631

Prx∼[q]d [〈x, v〉 = 0] ≤ 1
q .632

633

To prove our lower bound, we give a family of d distributions on labeled linear equations, Ri for634

1 ≤ i ≤ d that satisfy the following:635
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1. The examples in each are chosen from uniform distribution on [q]d,636

2. 1
q fraction of the samples are labeled by ei inRi, and,637

3. for any i, j,Ri andRj are statistically indistinguishable.638

Thus, given samples from Ri, any 1
2q -approximate list-decoding algorithm must produce a list of639

size at least d.640

Our construction and analysis of Ri is simple and exactly the same in both the cases. However641

it is somewhat easier to understand for the case of the hypercube (q = 2). The following simple642

observation is the key to our construction.643

Lemma 6.4. For 1 ≤ i ≤ d, letRi be the distribution on linear equations induced by the following644

sampling method: Sample x ∼ {0, 1}d, choose a ∼ {0, 1} uniformly at random and output:645

(x, 〈x, (1− a)ei〉). Then,Ri = Rj for any i, j ≤ d.646

Proof. The proof follows by observing thatRi when viewed as a distribution on Rd+1 is same as the647

uniform distribution on {0, 1}d+1 and thus independent of i.648

The argument immediately generalizes to [q]d and yields:649

Lemma 6.5. For 1 ≤ i ≤ d, let Ri be the distribution on linear equations induced by the fol-650

lowing sampling method: Sample x ∼ [q]d, choose a ∼ {0, 1} uniformly at random and output:651

(x, (〈x, ei〉+ a) mod q). Then,Ri = Rj for any i, j ≤ d.652

In this case, we interpret the 1/q fraction of the samples where a = 0 as the inliers. Observe that these653

are labeled by a single linear function ei in anyRi. Thus, they form a valid model in LinD(α, `∗) for654

α = 1/q.655

Since the linear functions defined by ei on [q]d, when normalized to have unit norm, have a pairwise656

Euclidean distance of at least 1/q, we immediately obtain a proof of Theorem 6.1.657

A Polynomial Approximation for Core-Indicator658

The main result of this section is a low-degree polynomial approximator for the function 1(|x| < δ)659

with respect to all distributions that have asymptotically lighter-than-exponential tails.660

Lemma A.1. Let D be a distribution on R with mean 0, variance σ2 ≤ 1 and satisfying:661

1. Anti-Concentration: For all η > 0, Prx∼D[|x| < ησ] ≤ Cη, and,662

2. Tail bound: Pr[|x| ≥ tσ] ≤ e− t
2/k

C for k < 2 and all t,663

for some C > 1. Then, for any δ > 0, there is a d = O
(

log(4+k)/(2−k)(1/δ)
δ2/(2−k)

)
= Õ

(
1

δ2/(2−k)

)
664

and an even polynomial q(x) of degree d such that q(0) = 1, q(x) = 1 ± δ for all |x| ≤ δ and665

σ2 · Ex∼D
[
q2(x)

]
≤ 10Cδ.666

Before proceeding to the proof, we note that the bounds on the degree above are tight up to poly667

logarithmic factors for the gaussian distribution.668

Lemma A.2. For every polynomial p of degree d such that p(0) = 1, Ex∼N (0,1)[p
2(x)] = Ω

(
1√
d

)
.669

Further, there is a polynomial p∗ of degree d such that p∗(0) = 1 and Ex∼N (0,1)p
2
∗(x) = Θ

(
1√
d

)
.670

Our construction of the polynomial is based on standard techniques in approximation theory for671

constructing polynomial approximators for continuous functions over an interval. Most relevant for672

us are various works of Eremenko and Yuditskii [24, 25, 23] and Diakonikolas, Gopalan, Jaiswal,673

Servedio and Viola [13] on such constructions for the sign function on the interval [−1, a] ∪ [a, 1] for674

a > 0. We point the reader to the excellent survey of this beautiful line of work by Lubinsky [43].675
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Fact A.3 (Theorem 3.5 in [13]). Let 0 < η < 0.1, then there exist constants C, c such that for676

a := η2/C log(1/η) and K = 4c log(1/η)/a+ 2 < O(log2(1/η)/η2)

there is a polynomial p(t) of degree K satisfying677

1. p(t) > sign(t) > −p(−t) for all t ∈ R.678

2. p(t) ∈ [sign(t), sign(t) + η] for t ∈ [−1/2,−2a] ∪ [0, 1/2].679

3. p(t) ∈ [−1, 1 + η] for t ∈ (−2a, 0)680

4. |p(t)| ≤ 2 · (4t)K for all t > 1
2 .681

We will also rely on the following elementary integral estimate.682

Lemma A.4 (Tail Integral).∫
[L,∞]

exp

(
−x

2/k

C

)
x2ddx < exp

(
−L

2/k

C

)
((L)4d + (16kd)kd) .

Proof. We first prove the claim for k = 1. Let y = x−L. The,
∫∞
L
e−x

2

x2ddx =
∫∞
0
e−(y+L)

2

(y+683

L)2ddy. We now use that y2 + L2 ≤ (y + L)2 for all y ≥ 0 and (y + L)2d ≤ 22d(y2d + L2d) to684

upper bound the integral above by: e−L
2

L2d + 22de−L
2 ∫∞

0
e−y

2

y2d. Using
∫∞
0
e−y

2

y2d < (4d)d685

gives a bound of e−L
2

(L2d + (8d)d).686

For larger k, we substitute y = x1/k and write the integral in question as
∫∞
L1/k e

−y2y2kd−(k−1)dy.687

Applying the calculation from the above special case, this integral is upper bounded by: e−L
2/k

(L4d+688

(16kd)kd).689

Proof of Lemma A.1. Let p(x) be the degree d < O
(
L log2(1/δ)

δ

)
polynomial from Fact A.3. We690

then construct a polynomial q(x) that will be close to 0 in the range [δ, L] and [−L,−δ] and close to691

1 in the range [−δ, δ]. Our polynomial q is obtained by shifting and appropriately scaling two copies692

of p.693

q(x) =
p
(
a+ x

4L

)
+ p

(
−(a+ x

4L )
)
− 1

p (a) + p (−a)− 1

Then, q(0) = 1. It further satisfies:694

1. q(x) ∈ [0, C
√
δ/L] for x ∈ [δ, L] ∪ [−L, δ].695

2. q(x) ∈ [1− C
√
δ/L, 1 +

√
δ/L] for x ∈ [−δ, δ].696

3. q(x) ∈ [0, 1 +
√
δ/L] for x ∈ [−3δ,−δ] ∪ [δ, 3δ].697

4. |q(x)| < 4 · (4x)t for |x| > L698

We now prove the bound the Ep2. We do this by providing upper bounds on the contributions to699

σ2 · Ex∼D
[
q2(σx)

]
from the disjoint sets with different guarantees below. Since we are going to700

evaluate q(σx) the intervals will be scaled by σ.701

The contributions from the regions 1
σ [δ, L] and 1

σ [−δ, δ] can be naively upper bounded by the702

maximum value that the polynomial can take here times the probability of landing in these regions.703

The first of these contributes σ · δL · (L− δ) ≤ δ, and using anticoncentration, the second region704

contributes
(

1 +
√

δ
L

)2

· 2Cδ ≤ 4Cδ. The region 1
σ [δ, 3δ] can be bounded similarly to get an upper705

bound of 2

(
1 +

√
δ
L

)2

σ2δ ≤ 4δ. To finish, we use Lemma A.4 to upper bound the contribution to706
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Ep2 from the tail:707

σ2C ′
∫

1
σ [L,∞]

q2(σx) exp

(
−x

2/k

C

)
dx . σ2+d4d exp

(
− 1

C
·
(
L

σ

)2/k
)

((L/σ)4d + (16kd)kd)

. exp

(
2d+ 4d log

(
L

σ

)
− 1

C
·
(
L

σ

)2/k

+ kd log(16kd)

)
We choose L satisfying 10d log(d) + 4d log(Lσ )− 1

C · (
L
σ )2/k < 2 log(1/δ).708

Since d = O
(
L log2(1/δ)

δ

)
, k < 2, and σ < 1 we can now choose L =

(
C100 log3(1/δ)

δ

)k/(2−k)
to709

satisfy the inequality above and to get d . log2+3k/(2−k)(1/δ)
δ1+k/(2−k)

. When k = 1 we get d = Õ(1/δ2).710

Since σ < 1 in all the above calculations, we get our result by re-scaling δ.711

712

We now complete the proof of Lemma A.2.713

Proof of Lemma A.2. Any polynomial p of degree d can be written as p(x) =
∑d
i=1 αihi(x) where714

hi denote the hermite polynomials of degree i, satisfying Ex∼N (0,1)hi = 0 and Ex∼N(0,1)[h
2
i (x)] =715

1. Since p(0) = 1, using Cauchy-Schwartz inequality, we obtain:716

Ex∼N(0,1)[p
2(x)] ·

d∑
i=1

h2i (0) =

(
d∑
i=1

α2
i

)
·

(
d∑
i=1

h2i (0)

)
≥

(
d∑
i=1

αihi(0)

)2

≥ 1

Further, observe that for the polynomial p∗(x) = 1∑
i h

2
i (0)

∑
i hi(0)hi(x), the above inequality is717

tight. Using that h2i(0) = (2i−1)!!√
(2i)!

and hi(0) = 0 if i is odd, (see, for e.g., [55]), we have:718

Ex∼N(0,1)[p
2(x)] ≥ Ex∼N (0,1)p

2
∗(x) =

(
d∑
i=1

h2i (0)

)−1
=

d/2∑
i=1

(
(2i− 1)!!√

(2i)!

)2
−1

=

d/2∑
i=1

(2i)!

22ii!2

−1 =

d/2∑
i=1

(
2i

i

)
· 1

22i

−1 = Θ

d/2∑
i=1

1√
i

−1 = Θ
(√

d
)−1

.

719

B Brute-force search can generate a exp(d) size list720

In the following, we write ei to denote the vector with 1 in the ith coordinate and 0s in all others.721

Proposition B.1. There exists a distribution D on Rd and a model LinD(α, `∗) such that for every722

α < 1/2, with probability at least 1−1/d over the draw of a n-size sample S from LinD(α, `∗), there723

exists a collection Sol ⊆ {S ⊆ S | |S| = αn} of size exp(d) and unit length vectors `S for every724

S ∈ Sol such that `S satisfies all equations in S and for every S 6= S′ ∈ Sol, ‖`S − `S′‖2 ≥ 0.1.725

Proof. Let D be the uniform distribution on e1, e2, . . . , ed ∈ Rd. Let `∗ := ~1/
√
d be the all-ones726

vector in Rd scaled by 1/
√
d and let d samples be drawn from the uncorrupted distribution. These give727

us our inliers, I = {(xi, yi)}αni=1. For the outliers, choose the following multisetO := 1/α−1 copies728

of {(ei, j) | i ∈ [d], j ∈ {±1/
√
d}}. This is a sample set of size 2d/α. Any a ∈ {±1/

√
d}d is a valid729

candidate for a solution for this data. This is because for any such a, Ia := {(ei, ai) | i ∈ [d]} ⊂ S730

satisfies the following731

1. Ia ⊂ S, |Ia| = d = α
2 |S| and732

2. for any (x, y) ∈ Ia, y = 〈x, a〉.733
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The Gilbert–Varshamov bound from coding theory now tells us that there are at least Ω(exp(Ω(d)))734

{0, 1} vectors in d dimensions that pairwise have a hamming distance of 0.1 · d. This transfers to the735

set {±1/
√
d} to give us that there are Ω(exp(Ω(d))) vectors in {±1/

√
d} that are pairwise 0.1 apart736

in 2-norm.737

738
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