
Hierarchical Decision Making by Generating and
Following Natural Language Instructions

Anonymous Author(s)
Affiliation
Address
email

A Detailed game design1

We develop an RTS game based on the MiniRTS framework, aspiring to make it intuitive for2

humans, while still providing a significant challenge to machines due to extremely high-dimensional3

observation and actions spaces, partial observability, and non-stationary environment dynamics4

imposed by the opponent. Below we describe the key game concepts.5

A.1 Game units specifications6

Building units Our game supports 6 different building types, each implementing a particular7

function in the game. Any building unit can be constructed by the PEASANT unit type at any available8

map location by spending a specified amount of resources. Later, the constructed building can be9

used to construct units. Most of the building types can produce up to one different unit type, except10

of WORKSHOP, which can produce 3 different unit types. This property of the WORKSHOP building11

allows various strategies involving bluffing. A full list of available building units can be found12

in Table 1.13

Figure 1: Our game implements the rock-paper-
scissors attack graph, where each unit has some
units it is effective against and vulnerable to.

Army units The game provides a player with 714

army unit types, each having different strengths15

and weaknesses. PEASANT is the only unit type16

that can construct building units and mine re-17

sources, so it is essential for advancing to the later18

stages of the game. We design the attack relation-19

ships between each unit type with a rock-paper-20

scissors dynamic—meaning that each unit type21

has another unit type that it is effective against or22

vulnerable to. This property means that effective23

agents must be reactive to their opponent’s strat-24

egy. See Fig. 1 for a visualization. Descriptions25

of army units can be found in Table 2.26

Resource unit RESOURCE is a stationary and27

neutral unit type, it cannot be constructed by any-28

one, and is only created during the map genera-29

tion phase. PEASANTs of both teams are allowed30

to mine the same RESOURCE unit, until it is ex-31

hausted. Initial capacity is set to 500, and one32

mine action subtracts 10 points from the RESOURCE. Several RESOURCE units are placed randomly33

on the map, which gives raise to many strategies around RESOURCE domination.34

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

A.2 Game map35

We represent the game map as a discrete grid of 32x32. Each cell of the grid can either be grass36

or water, where the grass cell is passable for any army units, while the water cell prevents all units37

except of DRAGON to go through. Having water cells around one’s main base can be leveraged as a38

natural protection. We generate maps randomly for each new game, we first place one TOWN HALL39

for each player randomly. We then add some water cells onto the map, making sure that there is40

at least one path between two opposing TOWN HALLs, but otherwise aiming to create bottlenecks.41

Finally, we randomly locate several RESOURCE units onto the map such that they are approximately42

equidistant from the players TOWN HALLs.43

B RTS game as an Reinforcement Learning environment44

Our platform can be also used as an RL environment. In our code base we implement a framework45

that allows a straightforward interaction with the game environment in a canonical RL training loop.46

Below we detail the environment properties.47

B.1 Observation space48

We leverage both spatial representation of the map, as well as internal state of the game engine49

(e.g. units health points and attacking cool downs, the amount of resources, etc.) to construct an50

observation. We carefully address the fog of war, by masking out the regions of the map that have not51

been visited. In addition, we remove any unseen enemy units attributes from the observation. The52

partial observability of the environment makes it especially challenging to apply RL due to highly53

non-stationary state distribution.54

B.2 Action space55

At each timestep of the environment we predict an action for each of our units, both buildings and56

army. The action space is consequently large—for example, any unit can go to any location at each57

timestep. Prediction of an unit action proceeds in steps, we first predict an action type (e.g. MOVE or58

ATTACK), then, based on the action type, we predict the action outputs. For example, for the BUILD59

BUILDING action type the outputs will be the type of the future building and its location on the game60

map. We summarize all available action types and their structure in Table 3.61

B.3 Reward structure62

We support a sparse reward structure, e.g. the reward of 1 is issued to an agent at the end if the game63

is won, all the other timesteps receive the reward of 0. Such reward structure makes exploration an64

especially challenging given the large dimensionality of the action space and the planning horizon.65

C Data collection66

We design a data collection task based on ParlAI, a transparent framework to interact with human67

workers. We develop separate game control interfaces for both the instructor and the executor players,68

Building name Description

TOWN HALL
The main building of the game, it allows a player to train PEASANTs and
serves as a storage for mined resources.

BARRACK Produces SPEARMEN.
BLACKSMITH Produces SWORDMEN.
STABLE Produces CAVALRY.

WORKSHOP
Produces CATAPULT, DRAGON and ARCHER. The only building that can
produce multiple unit types.

GUARD TOWER A building that can attack enemies, but cannot move.

Table 1: The list of the building units available in the game.

2

Unit name Description
PEASANT Gathers minerals and constructs buildings, not good at fighting.
SPEARMAN Effective against cavalry.
SWORDMAN Effective against spearmen.
CAVALRY Effective gainst swordmen.
DRAGON Can fly over obstacles, can only be attacked by archers and towers.
ARCHER Great counter unit against dragons.
CATAPULT Easily demolishes buildings.

Table 2: The list of the army units available in the game.

Action Type Action Output Input Features
IDLE NULL NULL
CONTINUE NULL NULL
GATHER resource_id resources_features
ATTACK enemy_unit_id enemy_units_features
TRAIN UNIT unit_type unit_type_features
BUILD BUILDING unit_type, (x,y) unit_type_features, map_cells_features
MOVE (x,y) map_cells_features

Table 3: We implement a separate action classifier per action type, because each action type needs to
model a probability distribution over different objects (Action Output). For example, for the ATTACK
action we need estimate a probability distribution over all visible enemy units and predict an enemy
unit id, or BUILD BUILDING action needs to model two probability distributions, one over building
type to be constructed, and another over all possible (x, y) discrete location on the map where the
future building will be placed.

and ask two humans to play the game collaboratively against a rule-based AI opponent. Both player69

have the same access to the game observation, but different control abilities.70

The instructor control interface allows the human player to perform the following actions:71

• Issue a natural language instruction to the executor at any time of the game. We allow any72

free-form language instruction.73

• Pause the game flow at any time. Pausing allows the instructor to analyze the game state74

more thoroughly and plan strategically.75

• Warn the executor player in case they do not follow issued instructions precisely. This option76

allows us to improve data quality, by filtering executors who do not follow instructions.77

On the other hand, the executor player gets to:78

• Control the game units by direct manipulation using computer’s input devices (e.g. mouse).79

The executor is tasked to complete the current instruction, rather than to win the game.80

• Ask the instructor for either a new instruction, or a clarification.81

Each human workers is assigned with either the instructor or the executor role randomly, thus the82

same person can experience the game on both ends over multiple attempts.83

C.1 Quality control84

To make sure that we collect data of high quality we take the following steps:85

Game manual We provide a detailed list of instructions to a human worker at the beginning of86

each game and during the game’s duration. This manual aims to narrate a comprehensive overview87

various game elements, such as player roles, army and building units, control mechanics, etc. We88

also record several game replays that serve as an introductory guideline to the players.89

Onboarding We implement an onboarding process to make sure that novice players are comfortable90

with the game mechanics, so that they can play with other players effectively. For this, we ask a91

3

Strategy Name Description
SIMPLE This strategy first sends all 3 initially available PEASANTs to mine to the

closest resource, then it chooses one army unit type from SPEARMAN,
SWORDMAN, CAVALRY, ARCHER, or DRAGON, then it constructs a corre-
sponding building, and finally trains 3 units of the selected type and sends
them to attack. The strategy then continuously maintains the army size of
3, in case an army unit dies.

MEDIUM Same as SIMPLE strategy, only the size of the army is randomly selected
between 3 and 7.

STRONG This strategy is adaptive, and it reacts to the opponent’s army. In particular,
this strategy constantly scouts the map using one PEASANT and to lean
the opponent’s behaviour. Once it sees the opponent’s army it immediately
trains a counter army based on the attack graph (see Fig. 1). Then it clones
the MEDIUM strategy.

SECOND BASE This strategy aims to build a second TOWN HALL near the second closest
resource and then it uses the double income to build a large army of a
particular unit type. The other behaviours is the same as in the MEDIUM
strategy.

TOWER RUSH A non-standard strategy, that first scouts the map in order to find the
opponent using a spare PEASANT. Once it finds it, it starts building
GUARD TOWERs close to the opponent’s TOWN HALL so they can attack
the opponent’s units.

PEASANT RUSH This strategy sends first 3 PEASANTs to mine, then it keeps producing
more PEASANTs and sending them to attack the opponent. The hope of
this strategy is to beat the opponent by surprise.

Table 4: The rule-based strategies we use as an opponent to the human players during data collection.

novice player to perform the executor’s duties and pair them with a bot that issues a pre-defined set92

of natural language instructions that implements a simple walkthrough strategy. We allocate enough93

time for the human player to work on the current instruction, and to also get comfortable with the94

game flow. We let the novice player play several games until we verify that they pass the required95

quality bar. We assess the performance of the player by running a set of pattern-matching scripts96

that verify if the performed control actions correspond to the issued instructions (for example, if an97

instruction says "build a barrack", we make sure that the player executes the corresponding low-level98

action). If the human player doesn’t pass our qualification requirements within 5 games, we prevent99

them from participating in our data collection going forward and filter their games from the dataset.100

Player profile We track performance of each player, breaking it down by a particular role (e.g.101

instructor or executor). We gather various statistics about each player and build a comprehensive102

player profile. For example, for the instructor role we gather data such as overall win rate, the number103

of instructions issued per game, diversity of issued instructions; for the executor role we monitor104

how well they perform on the issued instruction (using a pattern matching algorithm), the number of105

warnings they receive from the instructor, and many more. We then use this profile to decide whether106

to upgrade a particular player to playing against stronger opponents (see Appendix C.2) in case they107

are performing well, or prevent them from participating in our data collection at all otherwise.108

Feedback We use several initial round of data collection as a source of feedback from the human109

players. The received feedback helps us to improve the game quality. Importantly, after we finalize110

the game configuration, we disregard all the previously collected data in our final dataset.111

Final filtering Lastly, we take another filtering pass against all the collected game replays and112

eliminate those replays that don’t meet the following requirements:113

• A game should have at least 3 natural language instructions issued by the instructor.114

• A game should have at least 25 low-level control actions issued by the executor.115

By implementing all the aforementioned safe guards we are able to gather a high quality dataset.116

4

(a) Top 500 most frequent instructions (b) Top 500 most frequent words

Figure 2: Frequency histograms for the dataset instructions and words.

C.2 Rule-based bots117

We design a set of diverse game strategies that are implemented by our rule-based bots (Table 4). Our118

handcrafted strategies explore much of the possibilities that the game can offer, which in turn allows119

us to gather a multitude of emergent human behaviours in our dataset. Additionally, we employ a120

resource scaling hyperparameter, which controls the amount of resources a bot gets during mining.121

This hypermarameter offers a finer control over the bot’s strength, which we find beneficial for122

onboarding novice human players. We pair a team of two human players (the instructor and executor)123

with a randomly sampled instance of a rule-based strategy and the resource scaling hyperparameter124

during our data collection, so the human player doesn’t know in advance who is their opponent. This125

property rewards reactive players. We later observe that our models are able to learn the scouting126

mechanics from the data, which is a crucial skill to be successful in our game.127

D Model architecture128

D.1 Convolutional channels of Spatial Encoder129

We use the following set of convolutional channels to extract different bits of information from spatial130

representation of the current observation.131

1. Visibility: 3 binary channels for each state of visibility of a cell (VISIBLE, SEEN, and132

INVISIBLE).133

2. Terrain: 2 binary channels for each terrain type of a cell (grass or water).134

3. Our Units: 13 channels for each unit type of our units. Here, a cell contains the number of135

our units of the same type located in it.136

4. Enemy Units: similarly 13 channels for visible enemy units.137

5. Resources: 1 channel for resource units.138

Linguistic Phenomena Example
Counting Build 3 dragons.
Spatial Reference Send him to the choke point behind the tower.
Locations Build one to the left of that tower.
Composed Actions Attack archers, then peasants.
Cross-instruction anaphora Use it as a lure to kill them.

Table 5: Complex linguistic phenomena emerge as humans instruct others how to play the game.

5

D.2 Action Classifiers139

At each step of the game we predict actions for each of the player’s units, we do this by performing a140

separate forward pass for ofv the following network for each unit. Firstly, we run an MLP (Fig. 3)141

based action classifier to sample the unit’s ACTION TYPE. We feed the unit’s global summary features142

(see Fig. 3 of the main paper) into the classifier and sample an action type (see Table 3 for the full list143

of possible actions). Then, given the sampled action type we predict the ACTION OUTPUT based on144

the unit’s features, unit dependent instructions features, and the action input features. We provide an145

overview of ACTION OUTPUTs and INPUT FEATURES for each actions in Table 3. In addition, you146

can refer to the diagram Fig. 4.147

E Dataset details148

global summary

softmax over

action types

{IDLE, CONTINUE, GATHER, ATTACK, TRAIN_UNIT, BUILD_BUILDING, MOVE}

Figure 3: The ACTION TYPE classifier is param-
eterized as an MLP network to model a softmax
distribution over action types based on the unit’s
global summary features vector.

Through our data collection we gather a dataset of149

over 76 thousand of instructions and correspond-150

ing executions. We observe a wide variety of dif-151

ferent strategies and their realizations in natural152

language. For example, we observe emergence of153

complicated linguistic constructions (Table 5).154

We also study the distribution of collected instruc-155

tions. While we notice that some instructions are156

more frequent than others, we still observe a good157

coverage of strategies realizations, which serve as158

a ground for generalization. In Table 7 we provide159

a list of most frequently used instructions, and160

in Fig. 2 shows the overall frequency distribution161

for instructions and words in our dataset.162

Finally, we provide a random sample of 50 instructions from our dataset in Table 6, where showing163

the diversity and complexity of the collected instructions.164

6

Instruction
Build 1 more cavalry.
Attack peaons.
Build barrack in between south pass at new town.
Have all peasants gather minerals next to town hall.
Have all peasants mine ore.
Fight u peaas.
Stop the peasants from mining.
Build a new town hall between the two west minerals patches.
Build 2 more swords.
Use cavalry to attack enemey.
Explore and find miners.
If you see any idle peasants please have them build.
Okay that doesn’t work then build them on your side of the wall then.
Create 4 more archers.
Make a new town hall in the middle of all 3.
Attack tower with catas.
Kill cavalry and peasants then their townhall.
Attack enemy peasants with cavalry as well.
Send all peasants to collect minerals.
Attack enemy peasant.
Keep creating peasants and sending them to mine.
Send one catapult to attack the northern guard tower send a dragon for protection.
Send all but 1 peasant to mine.
Mine with the three peasants.
Use that one to scout and don’t stop.
Bring scout back to base to mine.
You’ll need to attack them with more peasants to kill them.
Build a barracks.
Send all peasants to find a mine and mine it.
Start mining there with your 3.
Make four peasants.
Move archers west then north.
Attack with cavalry.
Make two more workers.
Make 2 more calvary and send them over with the other ones.
Return to base with scout.
Build 2 peasants at the new mine.
If attacked retreat south.
Make the rest gather minerals too.
All peasants flee the enemy.
Attack the peasants in the area.
Attack the last archer with all peasants on the map.

Table 6: Examples of randomly sampled instructions.

7

Instruction Frequency Instruction Frequency
Attack. 527 Send idle peasants to mine. 68
Send all peasants to mine. 471 Attack that peasant. 68
Build a workshop. 414 Send all peasants to mine min-

erals.
65

Retreat. 323 Build a barracks. 64
Build a stable. 278 Build barrack. 62
Send peasants to mine. 267 Return to mine. 62
All peasants mine. 266 Build peasant. 61
Send idle peasant to mine. 211 Build catapult. 61
Build workshop. 191 Create a dragon. 61
Build a dragon. 168 Mine with peasants. 60
Kill peasants. 168 Build 3 peasants. 59
Attack enemy. 166 Defend. 58
Attack peasants. 159 Build cavalry. 58
Build a guard tower. 146 Make an archer. 58
Attack the enemy. 142 Attack dragon. 58
Stop. 141 Send all peasants to collect min-

erals.
57

Attack peasant. 139 Defend base. 57
Kill that peasant. 132 Build 2 more peasants. 56
Mine. 119 Build 2 peasants. 55
Build another dragon. 113 Make 2 archers. 55
Make another peasant. 113 Make dragon. 54
Build stable. 112 Build 2 dragons. 54
Make a dragon. 110 Attack dragons. 54
Build a blacksmith. 108 Make a stable. 53
Build a catapult. 108 Make a catapult. 53
Back to mining. 106 Build 6 peasants. 52
Build another peasant. 104 Attack archers. 50
Make a peasant. 98 Kill all peasants. 50
Build a barrack. 97 Build 2 catapults. 50
Build 4 peasants. 93 Idle peasant mine. 49
Have all peasants mine. 92 Make peasant. 48
Build 2 archers. 90 Attack enemy peasant. 48
Build dragon. 87 Attack archer. 48
Attack with peasants. 87 Build another archer. 47
Return to mining. 87 Make 4 peasants. 47
Build a peasant. 86 Make 3 peasants. 47
Idle peasant to mine. 85 Build 2 more archers. 46
Make a workshop. 83 Send idle peasant back to mine. 46
Create a workshop. 81 Make more peasants. 46
Mine with all peasants. 80 Make 2 more peasants. 46
Build 3 more peasants. 79 Build blacksmith. 46
Create another peasant. 79 Collect minerals. 45
Send all idle peasants to mine. 77 Kill. 45
Build 3 archers. 77 Build an archer. 45
Kill peasant. 77 Keep mining. 45
Make another dragon. 76 Keep attacking. 43
Kill him. 72 Attack dragons with archers. 43
Build guard tower. 70 Create a stable. 42
Attack town hall. 70 Make 3 more peasants. 42
Start mining. 69 Attack the peasant. 41

Table 7: The top 100 instructions sorted by their usage frequency.

8

IDLE

~

action type

global summary

softmax over

action types

CONTINUE

~

action type

global summary

softmax over

action types

...

GATHER

~

~ softmax over

action output

action output

dot-product

attention

unit/instruction

features

action type

input features

(resource units)

resource_unit_id

global summary

softmax over

action types

...

ATTACK

~

~ softmax over

action output

action output

dot-product

attention

unit/instruction

features

action type

input features

(enemy units)

enemy_unit_id

global summary

softmax over

action types

TRAIN_UNIT

~

dot-product

attention

unit/instruction

features

action type

input features

(unit types)

~softmax over

action output

action output unit type

...

global summary

softmax over

action types

...

BUILD_BUILDING

~

~ softmax over

action output

action output

dot-product

attention

unit/instruction

features

action type

input features

(map cells)

input features

(unit types)

x,y

~softmax over

action output

action output unit type

...

global summary

softmax over

action types

...

MOVE

~

~ softmax over

action output

action output

dot-product

attention

unit/instruction

features

action type

input features

(map cells)

x,y

global summary

softmax over

action types

Figure 4: Separate classifiers for each of the available action types.

9

	Detailed game design
	Game units specifications
	Game map

	RTS game as an Reinforcement Learning environment
	Observation space
	Action space
	Reward structure

	Data collection
	Quality control
	Rule-based bots

	Model architecture
	Convolutional channels of Spatial Encoder
	Action Classifiers

	Dataset details

