
A Polynomial Time Algorithm for Log-Concave
Maximum Likelihood via Locally Exponential

Families

Brian Axelrod
Department of Computer Science

Stanford University
baxelrod@cs.stanford.edu

Ilias Diakonikolas
Department of Computer Science
University of Wisconsin-Madison

ilias.diakonikolas@gmail.com

Anastasios Sidiropoulos
Department of Computer Science
University of Illinois at Chicago

sidiropo@gmail.com

Alistair Stewart
Web3 Foundation

stewart.al@gmail.com

Gregory Valiant
Department of Computer Science

Stanford University
gvaliant@stanford.edu

Abstract

We consider the problem of computing the maximum likelihood multivariate log-
concave distribution for a set of points. Specifically, we present an algorithm which,
given n points in Rd and an accuracy parameter ✏ > 0, runs in time poly(n, d, 1/✏),
and returns a log-concave distribution which, with high probability, has the property
that the likelihood of the n points under the returned distribution is at most an
additive ✏ less than the maximum likelihood that could be achieved via any log-
concave distribution. This is the first computationally efficient (polynomial time)
algorithm for this fundamental and practically important task. Our algorithm rests
on a novel connection with exponential families: the maximum likelihood log-
concave distribution belongs to a class of structured distributions which, while not
an exponential family, “locally” possesses key properties of exponential families.
This connection then allows the problem of computing the log-concave maximum
likelihood distribution to be formulated as a convex optimization problem, and
solved via an approximate first-order method. Efficiently approximating the (sub)
gradients of the objective function is a main technical challenge in this work.

1 Introduction

A distribution on Rd is log-concave if the logarithm of its probability density function is concave:

Definition 1 (Log-concave Density). A probability density function f : Rd ! R
+

, d 2 Z
+

, is called
log-concave if there exists an upper semi-continuous concave function � : Rd ! [�1,1) such that
f(x) = e�(x) for all x 2 Rd. We will denote by Fd the set of upper semi-continuous, log-concave
densities with respect to the Lebesgue measure on Rd.

This paper merges two independent works [4, 35]. Authors are in alphabetical order.
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Log-concave densities form a broad nonparametric family encompassing a wide range of fundamental
distributions, including the uniform, normal, exponential, logistic, extreme value, Laplace, Weibull,
Gamma, Chi and Chi-Squared, and Beta distributions (see, e.g., [5]). Log-concave probability
measures have been extensively investigated in several scientific disciplines, including economics,
probability theory and statistics, computer science, and geometry (see, e.g., [60, 3, 54, 62, 59]). The
problem of density estimation for log-concave distributions is of central importance in the area of
non-parametric estimation (see, e.g., [62, 59, 58]) and has received significant attention during the
past decade in statistics [22, 38, 36, 21, 49, 6, 45] and computer science [18, 19, 2, 15, 32, 33, 16].

One reason the class of log-concave distributions has attracted this attention, both from the theoretical
and practical communities, is that log-concavity is a very natural “shape constraint,” which places
significantly fewer assumptions on the distribution in question than most parameterized classes
of distributions. In extremely high-dimensional settings when the amount of available data is not
too much larger than the dimensionality, fitting a multivariate Gaussian (or some other parametric
distribution) to the data might be all one can hope to do. For many practical settings, however, the
dimensionality is modest (e.g., 5-20) and the amount of data is significantly larger (e.g., hundreds of
thousands or millions). In such settings, making a strong assumption on the parametric form of the
underlying distribution is unnecessary—there is sufficient data to fit a significantly broader class of
distributions, and log-concave distributions are one of the most natural such classes. From a practical
perspective, even in the univariate setting, computing the log-concave density that maximizes the
likelihood of the available data is a useful primitive, with the R implementation of Rufibach and
Duembgen having over 39,000 downloads [39]. As we discuss below, the amount of data required to
learn a log-concave distribution scales exponentially in the dimension, in contrast to most parametric
classes of distributions. Nevertheless, for the many practical settings with modest dimensionality and
large amounts of data, there is sufficient data to learn. The question now is computational: how does
one compute the best-fit log-concave distribution? We focus on this algorithmic question:

Is there an efficient algorithm to compute the log-concave MLE for datapoints in Rd?

Obtaining an understanding of the above algorithmic question is of interest for a number of reasons.
First, the log-concave MLE is the prototypical statistical estimator for the class, is fully automatic (in
contrast to kernel-based estimators, for example), and was very recently shown to achieve the minimax
optimal sample complexity for the task of learning a log-concave distribution (up to logarithmic
factors) [16, 23]. The log-concave MLE also has an intriguing geometry that is of interest from
a purely theoretical standpoint [22, 57]. Developing an efficient algorithm for computing the log-
concave MLE is of significant theoretical interest, and would also allow this general non-parametric
class of distributions to be leveraged in the many practical settings where the dimensionality is
moderate and the amount of data is large. We refer the reader to the recent survey [58] for a more
thorough justification for why the log-concave MLE is a desirable distribution to compute.

1.1 Our Results and Techniques

The main result of this paper is the first efficient algorithm to compute the multivariate log-concave
MLE. For concreteness, we formally define the log-concave MLE:

Definition 2 (Log-concave MLE). Let X
1

, . . . , Xn 2 Rd. The log-concave MLE, bfn =

bfn(X1

, . . . , Xn), is the density bfn 2 Fd which maximizes the log-likelihood `(f)
def

=Pn
i=1

ln(f(Xi)) over f 2 Fd.

As shown in [22], the log-concave MLE bfn exists and is unique. Our main result is the first efficient
algorithm to compute it up to any desired accuracy.
Theorem 1 (Main Result). Fix d 2 Z

+

and 0 < ✏, ⌧ < 1. There is an algorithm that, on input any
set of points X

1

, . . . , Xn in Rd, and 0 < ✏, ⌧ < 1, runs in poly(n, d, 1/✏, log(1/⌧)) time and with
probability at least 1� ⌧ outputs a succinct description of a log-concave density h⇤ 2 Fd such that
`(h⇤

) � `( bfn)� ✏.

Our algorithm does not require that the input points X
1

, . . . , Xn in Rd are i.i.d. samples from a
log-concave density, i.e., it efficiently solves the MLE optimization problem for any input set of
points. We also note that the succinct output description of h⇤ allows for both efficient evaluation
and efficient sampling. That is, we can efficiently approximate the density at a given point (within
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multiplicative accuracy), and efficient sample from a distribution that is close in total variation
distance.

Recent work [16, 23] has shown that the log-concave MLE is minimax optimal, within a logarithmic
factor, with respect to squared Hellinger distance. In particular, the minimax rate of convergence
with n samples is ˜

⇥d

�
n�2/(d+1)

�
. Combining this sample complexity bound with our Theorem 1,

we obtain the first sample near-optimal and computationally efficient proper learning algorithm for
multivariate log-concave densities. See Theorem 4 in Appendix D.

Technical Overview Here we provide an overview of our algorithmic approach. Notably, our
algorithm does not require the assumption that the input points are samples from a log-concave
distribution. It runs in poly(n, d, 1/✏) on any set of input points and outputs an ✏-accurate solution to
the log-concve MLE. Our algorithm proceeds by convex optimization: We formulate the problem of
computing the log-concave MLE of a set of n points in Rd as a convex optimization problem that
we solve via an appropriate first-order method. It should be emphasized that one needs to overcome
several non-trivial technical challenges to implement this plan.

The first difficulty lies in choosing the right (convex) formulation. Previous work [22] considered a
convex formulation of the problem, though that formulation seems to inherently lead to an exponential
time algorithm. Given our convex formulation, a second difficulty arises: we do not have direct access
to the (sub-)gradients of the objective function and the naive algorithm to compute a subgradient at a
point takes exponential time. Hence, a second challenge is how to obtain an efficient algorithm for
this task. One of our main contributions is a randomized polynomial time algorithm to approximately
compute a subgradient of the objective function. Our algorithm for this task leverages structural
results on log-concave densities established in [16] combined with classical algorithmic results on
approximating the volume of convex bodies and uniformly sampling from convex sets [48, 53, 52].

We now proceed to explain our convex optimization formulation. Our starting point is a key structural
property of the log-concave MLE, shown in [22]: The logarithm of the log-concave MLE ln

bfn, is a
“tent” function, whose parameters are the values y

1

, . . . , yn of the log density at the n input points
x(1), . . . , x(n), and whose log-likelihoods correspond to polyhedra. Our conceptual contribution
lies in observing that while tent distributions are not an exponential family, they “locally” retain
many properties of exponential families (Definition 4). This high-level similarity can be leveraged to
obtain a convex formulation of the log-concave MLE that is similar in spirit to the standard convex
formulation of the exponential family MLE [61]. Specifically, we seek to maximize the log-likelihood
of the probability density function obtained by normalizing the log-concave function whose logarithm
is the convex hull of the log densities at the samples. This objective function is a concave function of
the parameters, so we end up with a (non-differentiable) convex optimization problem. The crucial
observation is that the subgradient of this objective at a given point y is given by an expectation under
the current hypothesis density at y.

Given our convex formulation, we would like to use a first-order method to efficiently find an ✏-
approximate optimum. We note that the objective function is not differentiable everywhere, hence we
need to work with subgradients. We show that the subgradient of the objective function is bounded in
`
2

-norm at each point, i.e., the objective function is Lipschitz. Another important structural result
(Lemma 2) allows us to essentially restrict the domain of our optimization problem to a compact
convex set of appropriately bounded diameter D = poly(n, d). This is crucial for us, as the diameter
bound implies an upper bound on the number of iterations of a first-order method. Given the above,
we can in principle use a projected subgradient method to find an approximate optimum to our
optimization problem, i.e., find a log-concave density whose log-likelihood is ✏-optimal.

It remains to describe how we can efficiently compute a subgradient of our objective function. Note
that the log density of our hypothesis can be considered as an unbounded convex polytope. The
previous approach to calculate the subgradient in [22] relied on decomposing this polytope into faces
and obtaining a closed form for the underlying integral over these faces (that gives their contribution
to the subgradient). However, this convex polytope is given by n vertices in d dimensions, and
therefore the number of its faces can be n⌦(d). So, such an algorithm cannot run in polynomial time.

Instead, we note that we can use a linear program (see proof of Lemma 1) to evaluate a function
proportional to the hypothesis density at a point in time polynomial in n and d. To use this oracle for
the density in order to produce samples from the hypothesis density, we use Markov Chain Monte
Carlo (MCMC) methods. In particular, we use MCMC to draw samples from the uniform distribution
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on super-level sets and estimate their volumes. With appropriate rejection sampling, we can use these
samples to obtain samples from a distribution that is close to the hypothesis density. See Lemma 3.
(We note that it does not suffice to simply run a standard log-concave density sampling technique
such as hit-and-run [51]. These random walks require a hot start which is no easier than the sampling
technique we propose.)

Since the subgradient of the objective can be expressed as an expectation over this density, we can use
these samples to sample from a distribution whose expectation is close to a subgradient. We then use
stochastic subgradient descent to find an approximately optimal solution to the convex optimization
problem. The hypothesis density this method outputs has log-likelihood close to the maximum.

1.2 Related Work

There are two main strands of research in density estimation. The first one concerns the learnability
of high-dimensional parametric distributions, e.g., mixtures of Gaussians. The sample complexity
of learning parametric families is typically polynomial in the dimension and the challenge is to
design computationally efficient algorithms. The second research strand — which is the focus of this
paper — considers the problem of learning a probability distribution under various non-parametric
assumptions on the shape of the underlying density, typically focusing on the univariate or small
constant dimensional regime. There has been a long line of work in this vein within statistics since the
1950s, dating back to the pioneering work of [42] who analyzed the MLE of a univariate monotone
density. Since then, shape constrained density estimation has been an active research area with a rich
literature in mathematical statistics and, more recently, in computer science. The reader is referred
to [10] for a summary of the early work and to [44] for a recent book on the subject.

The standard method used in statistics for density estimation problems of this form is the MLE.
See [14, 55, 63, 46, 43, 11, 12, 40, 17, 7, 47, 38, 9, 41, 8, 50, 62, 21, 49, 6, 45, 16] for a partial list
of works analyzing the MLE for various distribution families. During the past decade, there has
been a body of algorithmic work on shape constrained density estimation in computer science with
a focus on both sample and computational efficiency [24–26, 18–20, 1, 2, 29, 30, 27, 31, 33, 34].
The majority of this literature has studied the univariate (one-dimensional) setting which is by now
fairly well-understood for a wide range of distributions. On the other hand, the multivariate setting is
significantly more challenging and wide gaps in our understanding remain even for d = 2.

For the specific problem of learning a log-concave distribution, a line of work in statistics [22, 38,
36, 21, 6] has characterized the global consistency properties of the log-concave multivariate MLE.
Regarding finite sample bounds, [49, 23] gave a sample complexity lower bound of ⌦d

�
(1/✏)(d+1)/2

�

for d 2 Z
+

that holds for any estimator, and [49] gave a near-optimal sample complexity upper bound
for the log-concave MLE for d  3. [33] established the first finite sample complexity upper bound
for learning multivariate log-concave densities under global loss functions. Their estimator (which
is different than the MLE and seems hard to compute in multiple dimensions) learns log-concave
densities on Rd within squared Hellinger loss ✏ with ˜Od

�
(1/✏)(d+5)/2

�
samples. [16] showed a

sample complexity upper bound of ˜Od

�
(1/✏)(d+3)/2

�
for the multivariate log-concave MLE with

respect to squared Hellinger loss, thus obtaining the first finite sample complexity upper bound
for this estimator in dimension d � 4. Building on their techniques, this bound was subsequently
improved in [23] to a near-minimax optimal bound of ˜Od

�
(1/✏)(d+1)/2

�
. Alas, the computational

complexity of the log-concave MLE has remained open in the multivariate case. Finally, we note that
a recent work [28] obtained a non-proper estimator for multivariate log-concave densities with sample
complexity ˜Od((1/✏)d+2

) (i.e., at least quadratic in that of the MLE) and runtime ˜Od((1/✏)2d+2

).

On the empirical side, recent work [56] proposed a non-convex optimization approach to the problem
of computing the log-concave MLE, which seems to exhibit superior performance in practice in
comparison to previous implementations (scaling to 6 or higher dimensions). Unfortunately, their
method is of a heuristic nature, in the sense that there is no guarantee that their solution will converge
to the log-concave MLE.

2 Preliminaries

Notation. We denote by X
1

, . . . , Xn 2 Rd the sequence of samples. We denote by Sn =

Conv({Xi}ni=1

) the convex hull of X
1

, . . . , Xn, and by X the d ⇥ n matrix with columns vec-
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tors X
1

, . . . , Xn. We write for the all-ones vector of the appropriate length. For a set Y ⇢ Z, Y

denotes the indicator function for Y .

Tent Densities. We start by defining tent functions and tent densities:
Definition 3 (Tent Function). For y = (y

1

, . . . , yn) 2 Rn and a set of points X
1

, . . . , Xn in Rd, we
define the tent function hX,y : Rd ! R as follows:

hX,y(x) =

⇢
max{z 2 R such that (x, z) 2 Conv({(Xi, yi)}ni=1

)} if x 2 Sn

�1 if x /2 Sn

The points (Xi, yi) are referred to as tent poles. (See Figure 1 in appendix A for the graph of an
example tent function.)

Let pX,y(x) = c exp(hX,y(x)) with c chosen such that pX,y(x) integrates to one. We refer to pX,y

as a tent density and the corresponding distribution as a tent distribution. Note that the support of a
tent distribution must be within the convex hull of X

1

, . . . , Xn. For the remainder of the paper, we
choose a scaling such that T y = 0. This scaling is arbitrary, and has no significant effect on either
the algorithm or its analysis.

Tent densities are notable because they contain solutions to the log-concave MLE [22]. The solution
to the log-concave MLE over X

1

, . . . , Xn is always a tent density, because tent densities with tent
poles X

1

, . . . , Xn are the minimal log-concave functions with log densities y
1

, . . . , yn at points
X

1

, . . . , Xn.

The algorithm which we present can be thought of as an optimization over tent functions. In Section
3.1, we will show that tent distributions retain important properties of exponential families which
will be useful to establish the correctness of our algorithm.

Regular Subdivisions. Given a tent function hX,y with hX,y(Xi) = yi, its associated regular
subdivision �X,y of X is a collection of subsets of X

1

, . . . , Xn 2 Rd whose convex hulls are the
regions of linearity of hX,y . See Figure 1 in appendix A for an illustration of a tent function and its
regular subdivision. We refer to these polytopes of linearity as cells. We say that �X,y is a regular
triangulation of X if every cell is a d�dimensional simplex.

It is helpful to think of regular subdivisions in the following way: Consider the hyperplane H in
Rd+1 obtained by fixing the last coordinate. Consider the function hX,y as a polytope and project
each face onto H . Each cell is a projection of a face, and together the cells partition the convex hull
of X

1

, . . . , Xn. Observe that regular subdivisions may vary with y. Figure 2 in appendix A provides
one example of how changing the y vector changes the regular subdivision.

For a given regular triangulation �, the associated consistent neighborhood N
�

is the set of all
y 2 Rn, such that �X,y = �. That is, consistent neighborhoods are the sets of parameters where the
regular triangulation remains fixed. Note that these neighborhoods are open and their closures cover
the whole space. See Figure 2 in appendix A for an example of how crossing between consistent
neighborhoods results in different subdivisions. We note that for fixed X , when y is chosen in general
position, �X,y is always a regular triangulation.

3 Locally Exponential Convex Programs

In this section, we lay the foundations for the algorithm presented in the next section. We present
the “locally" exponential form of tent distributions and show it has the necessary properties to enable
efficient computation of the log-concave MLE. Though they form a broader class of distributions,
“locally" exponential distributions share some important properties of exponential families. Namely,
the log-likelihood optimization is convex, and the expectation of the sufficient statistic is a subgradient.
This will allows us to formulate a convex program which we will be able to solve in polynomial time.
Definition 4. Let T be some function (possibly parametrized by y) and let qy =

exp (hT (x), yi �A(y)) be a family of probability densities parametrized by y with A(y) acting
to normalize the density so it integrates to 1. We say that the family {qy} is locally-exponential if the
following hold: (1) A(y) is convex in y, and (2) Ex⇠qy [T (x)] 2 @yA(y).

Note that the above definition differs from an exponential family in that for exponential families T
may not depend on y.
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In this section, we derive a sufficient statistic, the polyhedral statistic, that shows that tent distributions
are in fact locally exponential. More formally, we show:

Lemma 1. For tent poles X
1

, . . . , Xn, there exists a function TX,y : Rd ! Rn (the polyhedral statis-
tic) such that pX,y(x) = exp (hTX,y(x), yi �A(y)) corresponds to the family of tent-distributions
such that {pX,y} is locally exponential. Furthermore, TX,y is computable in time poly(n, d).

Since we know that the log-concave MLE is a tent distribution, and all tent-distributions are log-
concave, we know that the optimum of the maximum likelihood convex program in Equation (3.1)
corresponds to the log-concave MLE.

MLE of tents = max

y

X

i

hX,y(Xi)� log

Z
exphX,y(x)dx = max

y

X

i

yi �A(y) (3.1)

Combining the above with the fact that the sufficient statistic allows us to compute the stochastic
subgradient suggests that Algorithm 1 can compute the log-concave MLE in polynomial time.

Algorithm 1 ComputeLogConcaveMLE(X
1

, . . . , Xn, ✏)

y  0; c 8n2d log(2nd); m 2c2

✏2

for i 1,m do
⌘  c/

p
i

s ⇠ pX,y . Using Lemma 3
y  y + ⌘

�
1

n � TX,y(s)
�

. T computed via Lemma 1. 1

n follows from Equation (3.1)
return y

3.1 The Polyhedral Sufficient Statistic

Consider a regular triangulation � corresponding to tent distribution parametrized by X and y. The
polyhedral statistic is the function

TX,y(x) : Sn ! [0, 1]n,

that expresses x as a convex combination of corners of the cell containing x in �y. That is x =

XTX,y(x) where ||Ty(x)||1 = 1 and Ty(x)i = 0 if Xi is not a corner of the cell containing x. The
polyhedral statistic gives an alternative way of writing tent functions and tent densities:

hX,y(x) = hTy(x), yi pX,y(x) = exp(hTy(x), yi) .

If we restrict y such that
P
i

yi = 0 and define A(y) = log

R
x

pX,y(x)dx, then we can see that for

every consistent neighborhood N
�

we have an exponential family of the form
exp (hTy(x), ✓i �A(y)) for ✓ 2 N

�

. (3.2)
While Equation (3.2) shows how subsets of tent distributions are exponential families, it also helps
highlight why tent distributions are not an exponential family. The sufficient statistic depends on y
through the regular subdivision. This means that tent distributions do not admit the same factorized
form as exponential families since the sufficient statistic depends on y.

Note that we can use any ordering of X
1

, . . . , Xn to define the polyhedral sufficient statistic every-
where including on regular subdivisions that are not regular triangulations. Also note that, assuming
that no Xi = Xj , i 6= j, eliminating the last coordinate using the constraint T

n✓ = 0 makes each ex-
ponential family minimal. In other words, over regions where the regular subdivision does not change
(for example the consistent neighborhoods), tent distributions are minimal exponential families. This
means the set of tent distribution can be seen as the finite union of a set of minimal exponential
families. We refer to Equation (3.3) as the exponential form for tent densities:

pX,y(x) = exp (hTX,y(x), yi �A(y)) Sn(x). (3.3)

Both the polyhedral statistic and tent density queries can be computed in polynomial time with
the packing linear program presented in Equation (3.4). For a point x, the value of y yields the
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log-density and the vector ↵ corresponds to polyhedral statistic.

max y s.t. (x, y) =
X

i

↵i(Xi, yi),
X

i

↵i = 1,↵i � 0 (3.4)

Note that the above combined with tent distributions being exponential families on consistent
neighborhoods gives us that the properties from Lemma 1 hold true on consistent neighborhoods. We
extend the proof to the full result below.

Proof. Convexity follows by iteratively applying known operations that preserve convexity of a
function. Since a sum of convex functions is convex (see, e.g., page 79 of [13]), it suffices to show
that the function G(y) = ln(

R
exp(hX,y(x))dx) is convex. Since hX,y(x) is a convex function of

y, by definition, exp(hX,y(x)) is log-convex as a function of y. Since an integral of log-convex
functions is log-convex (see, e.g., page 106 of [13]), it follows that

R
exp(hy(x))dx is log-convex.

Therefore, G is convex. We have therefore established that Equation (3.1) is convex, as desired.

Ex⇠pX,y
[TX,y(x)] 2 @yA(y): Note that when y is in the interior of a consistent neighborhood, the

polyhedral statistic LP has a unique solution and Ex⇠pX,y
[T (x)] 2 @yA(y) (by Fact 3). When y is

on the boundary the solution set to the LP corresponds to the convex hull of solutions corresponding
to each adjacent consistent neighborhood. This corresponds to the convex hull of limiting gradients
from each neighboring consistent neighborhood and is the set of subgradients.

4 Algorithm and Analysis

Recall that we compute the log-concave MLE via a first-order method on the optimization formulation
presented in Equation (3.1). The complete method is presented in Algorithm 1. The algorithm is
based on the stochastic gradient computation presented in the previous section, a standard application
of the stochastic gradient method, and a sampler that we describe later in this section. Theorem 1
follows from bounding the rate of convergence of the stochastic subgradient method and the efficiency
of the sampling procedure. We outline these two components below.

4.1 The Stochastic Subgradient Method

Recall that algorithm 1 is simply applying the stochastic subgradient method to the following convex
program with T y = 0: h(y) =

⌦
1

n n, y
↵
�A(y). We require a slight strengthening of the following

standard result, see, e.g., Theorem 3.4.11 in [37]:
Fact 1. Let C be a compact convex set of diameter diam(C) <1. Suppose that the projections ⇡C
are efficiently computable, and there exists M <1 such that for all y 2 C we have that kgk

2

M
for all stochastic subgradients. Then, after K = ⌦

�
M · diam(C) log(1/⌧)/✏2

�
iterations of the

projected stochastic subgradient method (for appropriate step sizes), with probability at least 1� ⌧ ,
we have that F

�
ȳ(K)

�
�miny2C F (y)  ✏ , where ȳ(K)

= (1/K)

PK
i=1

y(i).

We note that Fact 1 assumes that, in each iteration, we can efficiently calculate an unbiased stochastic
subgradient, i.e., a vector g(k) such that E[g(k)] 2 @yF (y(k)). Unfortunately, this is not the case in
our setting, because we can only approximately sample from log-concave densities. However, it
is straightforward to verify that the conclusion of Fact 1 continues to hold if in each iteration we
can compute a random vector eg(k) such that kE[eg(k)] � g(k)k

2

< �
def

= ✏/(2diam(C)), for some
g(k) 2 @yF (y(k)). This slight generalization is the basic algorithm we use in our setting.

We now return to the problem at hand. We note that since T represents the coefficients of a convex
combination ||T (x)|| < 1 for all x, bounding M by 1.

Lemma 2 will show that diam(C) = O(2n2d log(2nd)). This implies that if we let
c = 8n2d log(2nd) and run SGD for 2c2

✏2 iterations, the resulting point will have objective
value within ✏ of the log-concave MLE.

Lemma 2. Let X
1

, . . . , Xn be a set of points in Rd and ˆf be the corresponding log-concave MLE.
Then, we have that R1

def

=

maxi2[n]
ˆf(Xi)

mini2[n]
ˆf(Xi)

 (2nd)2nd. Converting to an `
2

norm yields a bound on

the diameter of C: diam(C)  2n2d log(2nd).
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Let us briefly sketch the proof of Lemma 2. The main idea is to show that if R1 were too high, then
bfn would have a lower likelihood than the uniform distribution on the convex hull of the samples
Sn. More specifically, if the maximum value M of the density bfn is large, then the volume of the set
{x 2 Rd

:

bfn(x) �M/R} is small. For a fixed R, this set contains Sn and thus R1 must be large
compared to Mvol(Sn). Since bfn has likelihood at least as high as the uniform distribution over Sn,
R must be small compared to Mvol(Sn). Combining these two observations yields a bound on R.

We now proceed with the complete proof.

Proof of Lemma 2. Let V = vol(Sn) be the volume of the convex hull of the sample points and
M = maxx

bfn(x) be the maximum pdf value of the MLE. By basic properties of the log-concave
MLE (see, e.g., Theorem 2 of [22]), we have that bfn(x) > 0 for all x 2 Sn and bfn(x) = 0 for all
x 62 Sn. Moreover, by the definition of a tent function, it follows that bfn attains its global maximum
value and its global non-zero positive value in one of the points Xi.

We can assume without loss of generality that bfn is not the uniform distribution on Sn, since otherwise
R1 = 1 and the lemma follows. Under this assumption, we have that R1 > 1 or lnR1 > 0, which
implies that M > 1/V . The following fact bounds the volume of upper level sets of any log-concave
density:

Fact 2 (see, e.g., Lemma 8 in [16]). Let f 2 Fd with maximum value Mf . Then for all w > 0, we
have vol(Lf (Mfe�w

))  wd/Mf .

By Fact 2 applied to the MLE bfn, for w = lnR1, we get that vol(L bfn(M/R1))  (lnR1)

d/M .
Since the pdf value of bfn at any point in the convex hull Sn is at least that of the smallest sample point
Xi, i.e., M/R1, it follows that Sn is contained in L bfn(M/R1). Therefore, V  (lnR1)

d/M.

On the other hand, the log-likelihood of bfn is at least the log-likelihood of the uniform distribution
USn

on Sn. Since at least one sample point Xi has pdf value bfn(Xi) = M/R1 and the other n� 1

sample points have pdf value bfn(Xi)  M , we have that ln(M/R1) + (n � 1) lnM � `( bfn) �
`(USn

) = n ln(1/V ), or n lnM � lnR1 � �n lnV , and therefore ln(MV ) � (lnR1)/n. This
gives that R1/n

1 MV. Combining this expression with V  (lnR1)

d/M from above yields that
R1  (lnR1)

nd.

Since lnx < x, x 2 R, setting x = R
1

2nd1 gives that lnR1 < 2nd · R
1

2nd1 or (lnR1)

nd <

(2nd)nd · R1/2
1 . By the above, we deduce that R1  (2nd)nd · R1/2

1 or R1  (2nd)2nd . This
completes the proof of Lemma 2.

4.2 Efficient Sampling and Log-Partition Function Evaluation

In this section, we establish the following result, which gives an efficient algorithm for sampling
from the log-concave distribution computed by our algorithm.
Lemma 3 (Efficient Sampling). There exist algorithms A

1

and A
2

satisfying the following: Let
�, ⌧ > 0, let X = X

1

, . . . , Xn 2 Rd, let y 2 Rn be a parameter of a tent-density in exponential
form. Then the following conditions hold:

(1) On input X , y, �, and ⌧ , algorithm A
1

outputs a random vector Z 2 Rd, distributed
according to some probability distribution with density e�, such that ke�� pX,yk1 = O(�),
in time poly(n, d, kyk1, 1/�, log(1/⌧)), with probability at least 1� ⌧ .

(2) On input X , y, �, and ⌧ , algorithm A
2

outputs some �0 > 0, such that �0/(1 + O(�)) R
exp(hX,y(x))dx  �0 · (1 +O(�)), in time poly(n, d, kyk1, 1/�, log(1/⌧)), with prob-

ability at least 1� ⌧ .

The algorithm used to show lemma 3 is presented in algorithm 2.

Algorithm 2 operates in two stages (The formal analysis is presented in appendix B.) First, it slices
the tent distribution into level sets and computes their volume. Properties of log-concave distributions
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Algorithm 2 Algorithm to sample from pX,y

procedure SAMPLE(X
1

, . . . , Xn, y)
Input: Sequence of points X = {Xi}ni=1

in Rd, vector y 2 Rn, parameter 0 < � < 1.
Output: A random vector Z 2 Rd sampled from a probability distribution with density function
e�, such that ke�� pX,yk1  �.
Step 1. Let m = d1 + 2kyk1e. Let M = maxx2Rd exp(hX,y(x)). For any i 2 [m], let
Li = {x 2 Rd

: exp(hX,y(x)) � M · 2�i}. For each i 2 [m] compute an estimate f
vol(Li) of

vol(Li) such that

vol(Li)/(1 + �)  f
vol(Li)  vol(Li)(1 + �).

Step 2. For i 2 [m], let ui be the uniform probability distribution on Li, and let eui be an efficiently
samplable probability distribution such that

keui � uik1  �.

Step 3. Let ec =
Pm

i=1

2

�if
vol(Li) + 2

�mf
vol(Lm).

Step 4. Let bD be the probability distribution on [m] with

PrI⇠ eD[I = i] =

(
f
vol(Li) · 2�i/ec if i 2 {1, . . . ,m� 1}
2 · fvol(Lm) · 2�m/ec if i = m

Step 5. Sample I ⇠ eD and sample Z ⇠ euI .
Step 6. For any x 2 Rd let GX,y(x) = M · 2�blog2(M/ exp(hX,y(x)))c.
Step 7. With probability 1� exp(hX,y(Z))/GX,y(Z) go to Step 5.
return Z.

allow us to guarantee that we obtain a good approximation of the the density with these slices. We
then derive a linear program which can be used as a separation oracle for tent densities. This allows
us to compute their volume using a classic result for volume estimation [48]. In the second stage we
sample from the “sliced” distribution above. We first draw a single random number to choose a level
set, weighted by the volume computed in the first stage. We then draw a sample uniformly at random
from the corresponding level set and return that as our sample. Please see appendix B for a complete
exposition, proof and pseudocode.

5 Conclusions

In this paper, we gave a poly(n, d, 1/✏) time algorithm to compute an ✏-approximation of the
log-concave MLE based on n points in Rd. Ours is the first algorithm for this problem with a sub-
exponential dependence in the dimension d. We hope that our approach may lead to more practical
methods for computing the log-concave MLE in higher dimensions than was previously possible.

One concrete open question is whether there exists an algorithm for computing the log-concave
MLE that runs in time poly(n, d, log(1/✏)), instead of the poly(n, d, 1/✏) that we achieve. Such
an algorithm would likely be technically interesting as it may require going beyond the first-order
methods we employ. More broadly, it seems worth investigating whether the MLE can be efficiently
computed for other natural classes of non-parametric distributions. Alternately, one could hope that
there is a simple set of natural properties such that, if a class of distributions satisfies those properties,
then the MLE can be efficiently computed.
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