
Appendix

A Proof of Theorems in Section 3

Theorem 2 (Equivalent MLE) The MLE of the augmented model is the same as the original MLE.

Proof The conclusion is straightforward from independence between x and v. We rewrite the
MLE (7) in another way as follows

max
f

L (f) = bEx⇠D

log

Z
p (x, v) dv

�
(22)

= bEx⇠D

log

✓
p (x)

Z
p (v) dv

◆�
(23)

= bEx⇠D

2

6664
log p (x) + log

Z
p (v) dv

| {z }
log 1=0

3

7775
= bEx⇠D [log p (x)] , (24)

where the second equation comes from the definition of the p (x, v) in (6) with independent x and v.

Theorem 3 (HMC embeddings as gradient flow) In continuous time, i.e. with infinitesimal stepsize

⌘ ! 0, the density of particles (xt
, v

t), denoted q
t (x, v), follows the Fokker-Planck equation

@qt(x,v)
@t = r · (qt (x, v)GrH (x, v)) , (25)

with G =

0 I

�I 0

�
, which has a stationary distribution p (x, v) / exp (�H (x, v)) with the

marginal distribution p(x) / exp (f(x)).

Proof The first part of the theorem is trivial. When ⌘ ! 0, the HMC follows the dynamical system
dx

dt
,
dv

dt

�
= [@vH (x, v) ,�@xH (x, v)] = GrH (x, v) .

By applying the Fokker-Planck equation, we obtain
@q

t (x, v)

@t
= r ·

�
q
t (x, v)GrH (x, v)

�
. (26)

To show that the stationary distribution of such dynamical system converges to p (x, v) /
exp (�H (x, v)), recall the fact that

r ·
�
Grq

t (x, v)
�
= �@x@vq

t (x, v) + @v@xq
t (x, v) = 0. (27)

The Fokker-Planck equation can be rewritten as
@q

t (x, v)

@t
= r ·

�
q
t (x, v)GrH (x, v) +Grq

t (x, v)
�
. (28)

Substitute p (x, v) / exp (�H (x, v)) into (28) and notice
exp (�H (x, v))rH (x, v) +r exp (�H (x, v)) = 0,

we have @p (x, v) = 0, which means p (x, v) / exp (�H (x, v)) is a stationary distribution, and thus
p (x) / exp (f(x)).

Theorem 4 (Density value evaluation) If
�
x
0
, v

0
�
⇠ q

0
✓ (x, v), after T vanilla HMC steps (10), we

have

q
T
�
x
T
, v

T
�
= q

0
✓

�
x
0
, v

0
�
.

For the
�
x
T
, v

T
�

from the generalized leapfrog steps (13), we have

q
T
�
x
T
, v

T
�
= q

0
✓

�
x
0
, v

0
� TY

t=1

�
�x

�
x
t
�
�v

�
v
t
��

,

13

where �x (xt) and �v (vt) are defined in (29).

For the

⇣
x
T
,
�
v
i
 T

i=1

⌘
from the stochastic Langevin dynamics (14) with

⇣
x
0
,
�
⇠
i
 T�1

i=0

⌘
⇠

q
0
✓ (x, ⇠)

QT�1
i=1 q✓i

�
⇠
i
�
, we have

q
T
⇣
x
T
,
�
v
i
 T

i=1

⌘
= q

0
✓

�
x
0
, ⇠

0
� T�1Y

i=1

q✓i

�
⇠
i
�
.

Proof The claim can be obtained by simply applying the change-of-variable rule, i.e.,

q
T
�
x
T
, v

T
�
= q

0
✓

�
x
0
, v

0
� TY

t=1

��detrLf,M

�
x
t
, v

t
��� .

The Jacobian of the transformation from (x, v) to
⇣
x, v

�
1
2

⌘
is

I 0
⌘
2r

2
xf (x) I

�
, whose determinant

is 1. Similarly, the determinant of the Jacobian of the transform from
⇣
x, v

�
1
2

⌘
to (x0

, v
0) is also 1.

Therefore, |det (rLf,M (xt
, v

t))| = 1, 8i = 1, . . . , T , and we prove the first claim.

The second claim can also be obtained in a similar way. By simple algebraic manipulations, we have
that the Jacobians of the transformation are all diagonal matrices. Thus,

�x

�
x
t
�

=
��det

�
diag

�
exp

�
2Sv

�
rxf

�
x
t
�
, x

t
������ ,

�v

�
v
t
�

=
���det

⇣
diag

⇣
exp

⇣
Sx

⇣
v

1
2

⌘⌘⌘⌘��� . (29)

Similarly, we calculate the Jacobian for the stochastic Langevin update. Specifically, during the
t-th step, the Jacobian of the transformation from

⇣
x
t�1

,
�
v
i
 t�1

i=1
, ⇠

t�1
⌘

to
⇣
x
t�1

,
�
v
i
 t�1

i=1
, v

t
⌘

is
2

4
I 0 0

0 I 0
⌘
2r

2
xf (x) 0 I

3

5 , whose determinant is 1. Similarly, the Jacobian of the transformation from

⇣
x
t�1

,
�
v
i
 t�1

i=1
, v

t
⌘

to
⇣
x
t
,
�
v
i
 t�1

i=1
, v

t
⌘

is

"
I 0 0

0 I 0

0 0 I

#
, whose determinant is also 1. Therefore

���det
⇣
rLf

⇣
x
t
,
�
v
i
 t

i=1

⌘⌘��� = 1, which implies

q
t
⇣
x
t
,
�
v
i
 t�1

i=1
, v

t
⌘
= q

t�1
⇣
x
t�1

,
�
v
i
 t�1

i=1
, ⇠

t�1
⌘
= q

t�1
⇣
x
t�1

,
�
v
i
 t�1

i=1

⌘
q✓t�1

�
⇠
t�1

�
.

Apply the same argument for 8t = 1, . . . , T , we obtain the third claim.

B Variants of Dynamics Embedding

Besides the vanilla Hamiltonian/Langevin embedding and its generalized version we introduced in
the main text, we can also embed alternative dynamics, i.e., deterministic Langevin dynamics and its
continuous and generalized version.

B.1 Deterministic Langevin Embedding

We embed the deterministic Langevin dynamics to form x
0 = Lf,M (x) as x0 = x+ ⌘rxf (x) with

x
0 ⇠ q

0
✓ (x). By the change-of-variable rule, we have q

T
f,M

�
x
T
�
= q

0
✓ (x0)

QT
t=1

���det @xt

@xt�1

���. The
deterministic Langevin embedding has been exploited in variational auto-encoder (Dai et al., 2018),
in which the variational technique has been applied to bypass the calculation of

QT
t=1

���det @xt

@xt�1

���.

14

Plug such parametrization of the dual distribution into (5), we achieve the alternative objective

max
f2F

min
✓,M,⌘

` (f ; ✓,M, ⌘) := bED [f]� Ex0⇠q0✓(x)

"
f
�
x
T
�
� log q0✓ (x)�

TX

t=1

log

����det
@x

t

@xt�1

����

#
.

(30)
For the log-determinant term, log

���det @xt

@xt�1

��� = log
��det

�
I + ⌘H

f (xt)
���, where H

f
i,j = @2f(x)

@xi@xj
.

Then, the gradient
@ log|det(I+⌘Hf(xt))|

@f = ⌘ tr

✓�
I + ⌘H

f (xt)
��1 @Hf(xt)

@f

◆
. However, the com-

putation of the log-determinant and its derivative w.r.t. f are expensive. We can apply the polynomial
expansion to approximate it.

Denoting � as the bound of the spectrum of Hf (xt) and C := ⌘�
1+⌘� I � 1

1+⌘�H
f (xt), we have

� (C) 2 (�1, 1). Then,
log

��det
�
I + ⌘H

f
�
x
t
���� = d log (1 + ⌘�) + tr (log (I � C)) .

We can apply Taylor expansion or Chebyshev expansion to approximate the tr (log (I � C)). Specif-
ically, we have

• Stochastic Taylor Expansion (Boutsidis et al., 2017) Recall log (1� x) = �
P

1

k=1
xk

k , we
have the Taylor expansion

tr (log (I � C)) = �
kX

i=1

tr
�
C

i
�

i
.

To avoid the matrix-matrix multiplication, we further approximate the tr (C) = Ez

⇥
z
>
Cz

⇤

with z as Rademacher random variables, i.e., Bernoulli distribution with p = 1
2 .

Particularly, if we set i = 1, recall the tr
�
H

f (x)
�
= r2

xf (x), we can directly calculate
without the Hutchinson approximation.

• Stochastic Chebyshev Expansion (Han et al., 2015) We can approximate with Chebyshev
polynomial, i.e.,

tr (log (I � C)) =
kX

i=1

ci tr (Ri (C)) ,

where R (·) denotes the Chebshev polynomial as Ri (x) = 2xRi�1 (x) � Ri�2 (x) with
R1 (x) = x and R0 (x) = 1. The ci =

2
k+1

Pk
j=0 log (1� sj)Ri (sj) if i > 1, otherwise

c0 = 1
n+1

Pk
j=0 log (1� sj) where sj = cos

✓
⇡(k+ 1

2)
k+1

◆
for j = 0, 1, . . . , k.

Similarly, we can use the Hutchinson approximation to avoid matrix-matrix multiplication.

B.2 Continuous-time Langevin Embedding

We discuss several discretized dynamics embedding above. In this section, we take the continuous-
time limit ⌘ ! 0 in the deterministic Langevin dynamics, i.e., dx

dt = rxf (x). Follow the change-of-
variable rule, we obtain

q (x0) = p (x) det
�
I + ⌘H

f (x)
�

) log q (x0)� log p (x) = � tr log
�
I + ⌘H

f (x)
�
= �⌘r2

xf (x) +O
�
⌘
2
�
.

As ⌘ ! 0, we have
d log q (x, t)

dt
= �r2

xf (x) . (31)

Remark (connections to Fokker-Planck equation) Consider the dx
dt = rxf (x) as a SDE with

zero diffusion term, by Fokker-Planck equation, we obtain the PDE w.r.t. q (x, t) as
@q (x, t)

@t
= �r · (rxf (x) q (x, t)) .

15

Alternatively, we can also derive the (31) from the Fokker-Planck equation by explicitly writing the
derivative. Specifically,

dq (x, t)

dt
=

@q (x, t)

@x

@x

@t
+

@q (x, t)

@t

=
@q (x, t)

@x
rxf (x)�r · (rxf (x) q (x, t))

=
@q (x, t)

@x
rxf (x)�r2

xf (x) q (x, t)�rxf (x)
@q (x, t)

@t

= �r2
xf (x) q (x, t).

Therefore, we have
1

q (x, t)

dq (x, t)

dt
= �r2

xf (x))

d log q(x,t)

dt = �r2
xf (x)

dx
dt = rxf (x)

�
. (32)

Based on (31), we can obtain the samples and its density value by

x
t

log q (xt)� log p0✓
�
x
0
�
�
=

Z t1

t0

rxf (x (t))
�r2

xf (x(t))

�
dt := Lf,t0,t1 (x) . (33)

We emphasize that this dynamics is different from the continuous-time flow proposed in Grathwohl
et al. (2019), where we have r2

xf (x) in the ODE rather than a trace operator, which requires one
more Hutchinson stochastic approximation. We noticed that Zhang et al. (2018) also exploits the
Monge-Ampère equation to design the flow-based model for unsupervised learning. However, their
learning algorithm is totally different from ours. They use the parameterization as a new flow and fit
the model by matching a separate distribution; while in our case, the exponential family and flow
share the same parameters and match each other automatically.

We can approximate the integral using a numerical quadrature methods. One can approximate the
r(f,t0,t1)` (f ; t0, t1) by the derivative through the numerical quadrature. Alternatively, we denote
g (t) = �@`(f,t0,t1)

@x(t) , by the adjoint method, the `(f,t0,t1)
@f is also characterized by ODE

@` (f, t0, t1)

@f
=

Z t1

t0

�g (t)> rf ·rxf (x) dt, (34)

and can be approximated by numerical quadrature too.

We can combine the discretized and continuous-time Langevin dynamics by simply stacking several
layers of Lf,t0,t1 .

B.3 Generalized Continuous-time Langevin Embedding

We generalize the continuous-time Langevin dynamics by introducing more learnable space as
dx

dt
= h (⇠f (x)) , (35)

where h can be arbitrary smooth function and ⇠f (x) = (rxf (x) , f (x) , x). We now derive the
distributions formed by such flows following the change-of-variable rule, i.e.,

q (x0) = p (x) det (I + ⌘rxh (⇠f (x)))

) log q (x0)� log p (x) = � tr log (I + ⌘rxh (⇠f (x))) = �⌘ tr (rxh (⇠f (x))) +O
�
⌘
2
�
.

As ⌘ ! 0, we have
d log q (x, t)

dt
= � tr (rxh (⇠f (x))) . (36)

Similarly, we can compute the samples and its density value by

x
t

log q (xt)� log p0✓
�
x
0
�
�
=

Z t1

t0

h (⇠f (x))

� tr (rxh (⇠f (x)))

�
dt := Lf,t0,t1 (x) . (37)

16

C Practical Algorithm

In this section, we discuss several key components in the implementation of the Algorithm 1, including
the gradient computation and the parametrization of the initialization q✓ (x, v).

C.1 Gradient Estimator

The gradient w.r.t. f is illustrated in (21). The computation of the gradient needs to compute back-
propagated through time, therefore, the computational cost is proportional to the number of sampling
steps T .

By Denskin’s theorem (Bertsekas, 1995), if the samples (x, v) from the optimal solution p (x, v) /
exp (�H (x, v)), the third term in (21) exactly vanish to zero, i.e.,

rf ` (f ;⇥) = bED [rff (x)]� E(x,v)⇠p(x,v) [rff (x)] , (38)
whose computational cost is independent to T .

Recall Theorem 3 that as ⌘ ! 0 and T ! 1, the HMC embedding converges to the optimal solution.
Therefore, we can approximate the BPTT estimator (21) with the truncated gradient (38). As T

increasing, the corresponding dual sampler approaches the optimal solution, and the truncation bias
becomes smaller.

C.2 Initialization Distribution Parametrization

In our algorithm, the dual distribution are parametrized via dynamics sampling method with an initial
distribution q

0
✓ (x, v), whose density value is available. There are several possible parametrization:

• Flow-based model: The most straightforward parametrization for q
0
✓ (x, v) is utilizing

flow-based model (Rezende and Mohamed, 2015; Dinh et al., 2017; Kingma and Dhariwal,
2018). For simplicity, we can decompose q

0
✓ (x, v) = q

0
✓1
(x) q0✓2 (v) and parametrized both

q
0
✓1
(x) and q

0
✓2
(v) separately.

• Variants of deterministic Langevin embedding: The expression ability of flow-based
models is still restricted. We can exploit the deterministic Langevin embedding with separate
potential function as the initialization. Specifically, we can also decompose q

0
✓ (x, v) =

q
0
✓1
(x) q0✓2 (v), for the sampler x, we exploit

x
t+1 = x

t + ✏�
t
�
x
t
�
.

Although we do not have the explicit log q0✓1 (x), we can approximate it via either Taylor
expansion or Chebyshev expansion as Section B.1. It should be emphasized that in such
parametrization, in each layer we use different �t for t = {1, . . . , T}, which are all different
from rxf (x).

• Deep latent variable model: We can also consider the model
v ⇠ q

0
✓2 (v) , (39)

x = �✓1 (v) + ✏, ✏ ⇠ N (0,⌃) , (40)
where q

0
✓2
(v) is some known distribution with ✓2 as parameter and �✓1 denotes the neural

network with ✓1 as parameter. Therefore, we have the distribution as
q
0
✓ (x, v) = N

�
x;�0

✓1 (v) ,⌃
�
q
0
✓2 (v) .

For vanilla HMC with leap-frog, the auxiliary variable v should be the same size as x.
However, for generalized HMC, the dimension of v can be smaller than that of x.

• Nonparametric model: We can also prefix the q
0 (x, v) = q

0 (x) q0 (v) without learning.
Specifically, we set q0 (x) as the empirical pD (x) and q

0 (v) = N (0, I). Since the initial
distribution is fixed, the learning objective (8) reduces to

max
f2q

min
⇥

` (f,⇥) / bED [f]� E(x0,v0)⇠q0(x,v)

f
�
x
T
�
� 1

2

��vT
��2
2

�
. (41)

17

D Details for Connections to Other Estimators

We provide the details for recasting the existing estimators as special cases of our ADEas listed
in Table 1.

D.1 Connection to Contrastive Divergence
The CD algorithm (Hinton, 2002) is a special case of the proposed algorithm. By Theorem 1,
the optimal solution to the inner optimization is p (x, v) / exp (�H (x, v)). Applying Danskin’s
theorem (Bertsekas, 1995), the gradient of L (f) w.r.t. f is

rfL (f) = bED [rff(x)]� Epf (x) [rff(x)] . (42)
To estimate the integral Epf [rff (x)], the CD algorithm approximates the negative term in (42)
stochastically with a finite MCMC step away from empirical data.

In the proposed dual sampler, by setting p
0
✓ (x) to be the empirical distribution and eliminating

the sampling learning, the dynamic embedding will collapse to CD with T -HMC steps if we re-
move gradient through the sampler, i.e., ignoring the third term in (21). Similarly, the persistent
CD (PCD) (Tieleman, 2008) and recent ensemble CD (Du and Mordatch, 2019) can also be recast as
special cases by setting the negative sampler to be MCMC with initial samples from previous model
and ensemble of MCMC samplers, respectively.

From this perspective, the CD and PCD algorithms induce errors not only from the sampler, but also
from the gradient back-propagation truncation. The proposed algorithm escapes these sources of
bias by learning to sample, and by adopting true gradients, respectively. Therefore, the proposed
estimator is expected to achieve better performance than CD as demonstrated in the empirical
experiments Section 5.2.

D.2 Connection to Score Matching
The score matching (Hyvärinen, 2005) estimates the exponential family by minimizing the Fisher
divergence, i.e.,

LSM (f) := �ED

"
dX

i=1

✓
1

2
(@if (x))2

◆
+ @

2
i f (x)

#
. (43)

As explained in Hyvärinen (2007), the objective (43) can be derived as the 2nd-order Taylor approxi-
mation of the MLE with 1-step Langevin Monte Carlo as the dual sampler. Specifically, the Langevin
Monte Carlo generates samples via

x
0 = x+

⌘

2
rxf (x) +

p
⌘⇠, ⇠ ⇠ N (0, I) ,

then, a simple Taylor expansion gives

log pf (x
0) = log pf (x) +

dX

i=1

@if (x)
⇣
⌘

2
@if (x) +

p
⌘⇠i

⌘
+ ⌘

dX

i,j=1

⇠i⇠j@
2
ijf (x) + o (⌘) .

Plug such into the negative expectation in L (f), leading to

L (f) ⇡ bED

⇥
log pf (x)� Ex0|x [log pf (x

0)]
⇤
⇡ �⌘ED

"
dX

i=1

✓
1

2
(@if (x))2

◆
+ @

2
i f (x)

#
,

which is exactly the scaled LSM (f) defined in (43).

Therefore, the score matching can be viewed as applying Taylor expansion approximation with fixed
1-step Langevin sampler in our framework, which is compared in Section 5.1.

D.3 Connection to Minimum Stein Discrepancy Estimator

The minimum Stein discrepancy estimator (Barp et al., 2019) is obtained by minimizing the Stein
discrepancy, including the diffusion kernel Stein discrepancy (DKSD) and diffusion score matching.
Without loss of the generality, for simplicity, we recast the DKSD with an identity diffusion matrix as
a special approximation to the MLE.

18

The identity DKSD maximizes the following objective,

LDKSD (f) := � sup
h2Hk,khkHk

61

bED [Sfh (x)] = �bEx,x0⇠D [Sf (x, ·)⌦k Sf (x
0
, ·)] (44)

where Sfh (x) := hSf (x, ·) , hi =
D
rxf (x)> k (x, ·) +rk (x, ·) , h

E
.

In fact, the objective (44) can be derived as the Taylor approximation of the MLE with Stein variational
gradient descent (SVGD) as the dual sampler. Specifically, the SVGD generates samples via

x
0 = TD,f (x) := x+ ⌘h

⇤

D,f (x) , x ⇠ pD (x) ,

where h
⇤

D,f (·) / Ey⇠D [Sf (y, ·)]. Then, by Taylor-expansion, we have

f (x0) = f (x) + ⌘rxf
> (x)h⇤

D,f (x) + o (⌘) .

We apply the change-of-variable rule, leading to q (x0) = pD (x) det
�� @x
@x0

��, therefore,

log q(x0) = log pD (x) + log det

����
@x

@x0

����

= log pD (x)� log det

����
@x

0

@x

����
= log pD (x)� log det |I + ⌘rxh

⇤

D
(x)|

= log pD (x)� ⌘ tr (rxh
⇤

D
(x)) ,

where the last equation comes from Taylor expansion.

Plug these into the primal-dual view of MLE (5) with the fixed SVGD dual sampler, we have

L (f) ⇡ bEx⇠D [f (x)� f (x0) + log q (x0)]

= bEx⇠D

⇥
�⌘rxf

> (x)h⇤

D,f (x)� ⌘ tr (rxh
⇤

D
(x))

⇤
+ bEx⇠D [log pD (x)] + o (⌘)

= �⌘ bEx,x0⇠D [Sf (x, ·)⌦k Sf (x
0
, ·)]

| {z }
LDSKD(f)

+const+ o (⌘) ,

which is the scaled LDSKD (f) defined in (44).

Therefore, the (diffusion) Stein kernel estimator can be viewed as Taylor expansion with fixed 1-step
Stein variational gradient descent dual sampler in our framework.

D.4 Connection to Pseudo-Likelihood and Conditional Composite Likelihood

The pseudo-likelihood estimation (Besag, 1975) is a special case of the proposed algorithm by
restricting the parametrization of the dual distribution. Specifically, denote the pf (xi|x�i) =
exp(f(xi,x�i))

Z(x�i)
with Z (x�i) :=

R
exp (f (xi, x�i)) dxi, instead of directly maximizing likelihood,

the pseudo-likelihood estimator is maximizing

LPL (f) := bED

"
dX

i=1

log pf (xi|x�i)

#
. (45)

Then, the f is updated by the following the gradient of Lpl (f), i.e.,

rfLPL (f) / bED [rff (x)]� Ei⇠U(d)
bEx�iEpf (xi|x�i) [rff (xi, x�i)] .

The pseudo-likelihood estimator can be recast as a special case of the proposed framework if we fix
the dual sampler as i), sample i 2 {1, . . . , d} uniformly; ii), sample x ⇠ D and mask xi; iii), sample
xi ⇠ pf (xi|x�1) and compose (xi, x�i).

The conditional composite likelihood (Lindsay, 1988) is a generalization of pseudo-likelihood by
maximizing

LCL (f) := bED

"
mX

Ai=1

log pf (xAi |x�Ai)

#
, (46)

where {Ai}mi=1 = d and Ai \Aj = ;. Similarly, the composite likelihood is updating with prefixed
conditional block sampler for negative sampling.

19

Same as CD, the prefixed sampler and the biased gradient in pseudo-likelihood and composite
likelihood estimator will induce extra errors and lead to inferior solution. Moreover, the pseudo-
likelihood may not applicable to the general exponential family with continuous variables, whose
conditional distribution is also intractable.

D.5 Connection to Non-local Contrastive Objectives
The non-local contrastive estimator (Vickrey et al., 2010) is obtained by maximizing

LNCO (f) := bED

"
mX

i=1

w (x, Si) (f (x)� logZi (f))

#
, (47)

where [Si]
m
i=1 denotes some prefixed partition of ⌦, Zi (f) =

R
x2Si

exp (f (x)) dx, and w (x, Si) =

P (x 2 Si|x) with
Pm

i=1 w (x, Si) = 1. The objective (47) leads to the update direction as

rfLNCO (f) = bED [rff (x)]� Eqf (x) [rff] , (48)

where qf (x) =
Pm

i=1

R
p(f,i) (x)w (x0

, Si) pD (x0) dx0 with pD as the empirical distribution and
p(f,i) (x) = exp(f(x))

Zi(f)
, x 2 Si. Therefore, the non-local contrastive objective is a special case

of the proposed framework with the dual sampler as i), sample x
0 uniformly from D; ii), sample

Si conditional on x
0 according to w (x, Si); iii), sample xi ⇠ p(f,i) (x) within Si. Such negative

sampling method is also not applicable to the general exponential family with continuous variables.

D.6 Connection to Minimum Probability Flow

In the continuous state model, the minimum probability flow (Sohl-Dickstein et al., 2011) estimates
the exponential family by maximizing

LMPF (f) := �bEx⇠DEx0⇠Tf (x0|x)

exp

✓
1

2
(f (x0)� f (x))

◆�
,

where Tf is a hand-designed symmetric transition kernel based on the potential function f (x), e.g.,
Hamiltonian or Langevin simulation. Then, the MPF update direction can be rewritten as

bEx⇠DEx0⇠�(x0|x) [rff (x)�rff (x0)�rxf (x0)rfx
0] . (49)

where � (x0|x) := Tf (x0|x) exp
�
1
2 (f (x0)� f (x))

�
. The probability flow operator � (x0|x) actually

defines a Markov chain sampler that achieves the following balance equation,
� (x0|x) pf (x) = � (x|x0) pf (x

0) .

Similar to CD and score matching, the MPF exploits the 1-step MCMC. Moreover, the gradient in
MPF also considers the effects in sampler as the third term in (49). Therefore, the MPF can be recast
as a special case of our algorithm with the prefixed dual sampler as x ⇠ D and x

0 ⇠ � (x0|x).

D.7 Connection to Noise-Contrastive Estimator

Instead of directly estimating the f in the exponential family, Gutmann and Hyvärinen (2010) propose
the noise-contrastive estimation (NCE) for the density ratio between the exponential family and
some user defined reference distribution pn (x), from which the parameter f can be reconstructed.
Specifically, the NCE considers an alternative representation of exponential family distribution as
pf (x) = exp (f (x)), which explicitly enforces

R
exp (f (x)) dx = 1. The NCE is obtained by

maximizing

LNCE (f) := bED [log h (x)] + Epn(x) [log (1� h (x))] , (50)

where h (x) = exp(f(x))
exp(f(x))+pn(x)

. Then, we have the gradient of LNCE (f) as

rfLNCE (f) = bED [rff (x)]� E 1
2pD+ 1

2pn
[h (x)rff (x)] . (51)

The negative sampler in the (51) can be understood as an approximate importance sampling algorithm
where the proposal is 1

2pD + 1
2pn and the reweighting part is h (x). As the exp (f) approaching pD,

the h (x) will approach the true ratio exp(f(x))
pD+pn(x)

, and thus, the negative samples will converge to true
model samples.

20

The NCE can be understood as learning an important sampler. However, the performance of NCE
highly relies on the quality h (x), i.e., the choice of pn (x). It is required to cover the support of
pD (x), which is non-trivial in practical high-dimensional applications.

E More Related Work

The parametrization of the dual sampler should be both flexible enough and density tractable to
achieve better performance. Pioneering works are limited in either one aspect or other. Kim and
Bengio (2016) parameterize the sampler via a deep directed graphical model, whose approximation
ability is limited to known distributions. Meanwhile, they fit q by minimizing the KL-divergence
with an approximation of the entropy term, leading to unclear relationship to MLE. Due to the
difficulty of the entropy term for general transport mapping parametrization, a variety of approximate
surrogates have been proposed to relax the density value tractability requirement. Liu and Wang
(2017) learn the sampler q to mimic the Stein variational gradient descent sampling procedure without
a consistent objective; Dai et al. (2017) propose algorithms relying on either a heuristic approximation
or a lower bound of the entropy, with extra auxiliary component introduced to be learned; Dai et al.
(2019) apply a second Fenchel dual representation to reformulate the entropy term, at the cost of
introducing another auxiliary function to be estimated. Meanwhile, the second Fenchel duality
parametrization relies on a proposal distribution with the same support for numerical stability, which
is impractical for high-dimensional data. In contrast to these existing methods, the proposed dynamics
embedding achieves both flexibility and tractability of entropy estimation with less independent
auxiliary parameters introduced.

One of our major contributions is learning a sampling strategy for the exponential family estimation
through the primal-dual view of MLE. The proposed algorithm shares some similarities with recent
advances in meta learning for sampling (Levy et al., 2018; Feng et al., 2017; Song et al., 2017; Gong
et al., 2019), in which the sampler is parametrized via neural network and will be learned through
certain objectives. However, we emphasize that the most significant difference lies in the ultimate
goals: we focus on exponential family model estimation and the learned sampler is only introduced
to assist with this objective. By contrast, the learning to sample techniques are targeting on learning a
fixed model that is already given. This fundamentally distinguishes the proposed ADE from methods
that only learns samplers, leading to totally different learning criterion and algorithm updates, i.e., the
primal model will be learned back through the learned sampler, from which perspective the proposed
algorithm can be understood as meta2-learning.

F Experiment Details

F.1 Synthetic Experiments Details

We parametrize the potential function f with fully connected multi-layer perceptron with 3 hidden
layers. Each hidden layer has 128 hidden units. We use ReLU to do the nonlinear activation in
each hidden layer. We clip the norm of rxf when updating v, and clip v when updating x. The
coefficient � in (20) is tuned in {0.1, 0.5, 1}. For the NF baseline, we tune the number of layers in
{10, 15, 20}. For our ADE, we fix the number of normalizing flow layers to be 10, and then perform
at most 10 steps of dynamics updates. So finally, the number of steps for sampling is comparable,
while the ADE maintains less memory cost.

To make the training stable, we also tried several tricks, including:

1. clip samples in HMC. This helps stabilize the training; We assume the final output has
limited support over 2D space.

2. gradient penalty for f(·). We use a small penalty coefficient 0.01 for this, which is not very
important though.

3. variance of proposal gaussian distribution. While we use 1 in general, a standard deviation
of 0.5 would be more helpful in some cases.

4. penalty of momentum term in HMC. This is equivalent to the variance of prior of the latent
variable we introduced.

21

The dataset generators are collect from several open-source projects 2 3. During training, we use this
generator to generate the data from the true distribution on the fly. To get a quantitative comparison,
we also generate 1,000 data samples for held-out evaluation. We illustrate the unnormalized model
exp (c · f) in Figure 1 and 5, where c is a constant that is tuned within [0.01, 10].

To compute the MMD, for NF and ADE, we use 1,000 samples from their sampler with Gaussian
kernel. The kernel bandwidth is chosen using median trick (Dai et al., 2016). For SM, since there is
no such sampler available, we directly use vanilla HMC to get sample from the learned model f , and
use them to estimate MMD.

Parameter estimation experiments In the experiment of recovering parameters of a given graphi-
cal model from data, we use high dimensional gaussian distribution with diagonal covariance. Here
the energy function to be estimated f(x) = �0.5(x�µ)>⌃�1(x�µ), where ⌃ is a diagonal matrix.

For our method, we use a 2-layer MLP as initial proposal with 3 of HMC steps afterwards. The step
size in HMC is learned end-to-end. For CD, we use up to 15 steps of HMC, where the step size is
adaptively adjusted according to the rejection rate. For all the methods, we average the parameters
estimated in the last 5 epochs during training, and report the best results in this parameter estimation
procedure.

F.2 Real-world Experiments Details

Table 4: Our architectures for both potential function f (x) and initial dual sampler p0✓ (x, v) used in
MNIST and CIFAR-10 experiments.

Potential function f (·)
3x3 conv, 64

3x3 conv, 128
2x2 avg pool
3x3 conv, 128
3x3 conv, 256
2x2 avg pool
3x3 conv, 256
7x7 avg pool
fc, 256 ! 1

(a) Potential function f (·)

Initial dual sampler
fc, 512 ! 4⇥ 4⇥ 512

Reshape to 4⇥ 4 Feature Map
2x2 Deconv, 256, stride 2
2x2 Deconv, 128, stride 2
2x2 Deconv, 64, stride 2
3x3 Deconv, 3, stride 1

(b) initial dual sampler

We used the standard spectral normalization on the discriminator to stabilize the training process, and
Adam with learning rate 10�4 and �1 = 0.0 to optimize our model. For stability, we use a separate
Adam optimizer for the hmc parameters and set the epsilon to 1e� 5. We trained the models with
200000 iterations with batch size being 64. For better performance, we used generalized HMC (13),
where we set Sv(·) = 0, Sx(·) = 0, gv(v) = clip(v,�0.01, 0.01) and gx(v1/2) = v

1/2. We fix ⌘

to be 0.5. The step sizes for our HMC sampler are independently learned for all HMC dimensions
but shared among all time steps, and the values are all initialized to 10. We set the number of HMC
steps to 30. The coefficient of the entropy regularization term is set to 10�5 and that of the L2

regularization on the momentum vector in the last HMC step is set to 10�5.

We demonstrate the architectures of potential function f and initial Deep LVM in Table 4. A leaky
ReLU follows each convolutional/deconvolutional layer in both the discriminator and generator. For
the discriminator, we use spectral normalization for all layers in the discriminator. In addition, there
is no activation function after the final fully-connected layer. For each deconvolution layer in the
generator, we insert a batch normalization layer before passing the output to the leaky ReLU.

We generate the image from the model and illustrated in Figure 3, Figure 6 and Figure 7. We
also compared in terms of inception score with other energy-model training algorithm and several
state-of-the-art GAN algorithm in Table 3, where the ADE achieves the best performances. Also,

2https://github.com/rtqichen/ffjord.
3https://github.com/kevin-w-li/deep-kexpfam.

22

https://github.com/rtqichen/ffjord
https://github.com/kevin-w-li/deep-kexpfam

with simple importance sampling and proposal distribution being uniform distribution on [�1, 1]nd

(nd is the dimension of images), the log likelihood (in nats) on CIFAR-10 is estimated to be around
2100.

We also trained a non-parametric ADE on MNIST dataset for image completion to verify our algorithm.
Specifically, we use with the same discriminator architecture used in parametric ADE for MNIST.
The model is trained with fully observed images. We used generalized HMC (13), where we set
Sv(v) being a learnable logit (so that exp(Sv(·)) 2 [0, 1]), gv(v) = clip(v,�0.1, 0.1), Sx(·) = 0
and gx(·) = 1. Both Sv and ⌘ will be learned, with ⌘ initialized to

p
10 and Sv initialized to a small

number close to 0. We unfold 60 steps of HMC in the dual samplers. As in Du and Mordatch (2019),
we used a replay buffer of size 10000. We added extra amount of noise into the dataset to make the
training process more stable. We trained the model with Adam optimizer (�1 = 0.0,�2 = 0.999) for
60000 iterations.

We tested the ADE by image completion where we covered the lower half of images with uniform
noise and used them as input to the learned HMC operators. We repeatedly apply the learned HMC
with the learned model to lower half of these images for 20 steps, with the upper half images fixed,
and obtain HMC(20)(x0;Sv, ⌘). We visualize the output from each of the 20 HMC runs in Figure 4.

G More Experiment Results

More results on synthetic datasets We visualized the learned models and samplers on all the
synthetic datasets in Figure 5.

(a) 2spirals (b) Banana (c) circles (d) cos (e) Cosine (f) Funnel (g) swissroll

(h) line (i) moons (j) Multiring (k) pinwheel (l) Ring (m) Spiral (n) Uniform

Figure 5: Learned samplers in odd row and potential function f in even row from different synthetic
datasets. In the sampler illustration in odd rows, the ⇥ denotes training data and • denotes the ADE
samplers.

More results on parameters recovery We have conducted empirical comparion between ADE,
CD and SM on multivariate Gaussians with different dimensions, where we know the potential
functions, to investigate the effect of the number of dimensionality and complexity of the potential
function on these algorithms.

Table 5: Parameter recovering on Multivariate Gaussians.
Dataset SM CD-5 ADE

2D-Gaussian 2.18⇥ 10
�3 5.67⇥ 10�3 2.28⇥ 10�3

5D-Gaussian 3.17⇥ 10�3 4.19⇥ 10�1
3.09⇥ 10

�3

10D-Gaussian 3.90⇥ 10�3 6.36⇥ 10�1
3.23⇥ 10

�3

23

The 5 runs average results, in terms of RMSE between learned parameters and the true parameters,
are reported in Table 5.

More results on real-world image generation We illustrated additional generated images by the
proposed ADE on MNIST and CIFAR-10 in Figure 6 and Figure 7, respectively.

Figure 6: Generated images for MNIST by ADE.

24

Figure 7: Generated images for CIFAR-10 by ADE.

25

	Introduction
	Preliminaries
	Adversarial Dynamics Embedding
	Primal-Dual View of Augmented MLE
	Representing Dual Sampler via Primal Model
	Coupled Model and Sampler Learning

	Related Work
	Experiments
	Synthetic experiments
	Real-world Image Datasets

	Conclusion
	Proof of Theorems in Section 3
	Variants of Dynamics Embedding
	Deterministic Langevin Embedding
	Continuous-time Langevin Embedding
	Generalized Continuous-time Langevin Embedding

	Practical Algorithm
	Gradient Estimator
	Initialization Distribution Parametrization

	Details for Connections to Other Estimators
	Connection to Contrastive Divergence
	Connection to Score Matching
	Connection to Minimum Stein Discrepancy Estimator
	Connection to Pseudo-Likelihood and Conditional Composite Likelihood
	Connection to Non-local Contrastive Objectives
	Connection to Minimum Probability Flow
	Connection to Noise-Contrastive Estimator

	More Related Work
	Experiment Details
	Synthetic Experiments Details
	Real-world Experiments Details

	More Experiment Results

