
Supplementary

A Proofs

Proof of Lemma 1. Given g ∈ R, the HEAVYMIX algorithm extracts all (1/k, `22)-heavy elements
from a Count Sketch S of g. Let ĝ be the values of all elements recovered from its sketch. For a
fixed k, we create two sets H (heavy), and NH (not-heavy). All coordinates of ĝ with values at least
1
k

ˆ̀2
2 are put in H , and all others in NH , where ˆ̀

2 is the estimate of ‖g‖2 from the Count Sketch.
Note that the number of elements in H can be at most k. Then, we sample uniformly at random
l = k − |H| elements from NH , and finally output its union with H . We then do a second round of
communication to get exact values of these k elements.

Note that, because of the second round of communication in HEAVYMIX and the properties of the
Count Sketch, with probability at least 1− δ we get the exact values of all elements in H . Call this
the “heavy hitters recovery” event. Let gH be a vector equal to g at the coordinates in H , and zero
otherwise. Define gNH analogously. Conditioning on the heavy hitters recovery event, and taking
expectation over the random sampling, we have

E
[
‖g − g̃‖2

]
= ‖gH − ḡH‖2 + E

[
‖gNH − randl (gNH)‖2

]
≤
(

1− k − |H|
d− |H|

)
‖gNH‖2 ≤

(
1− k − |H|

d− |H|

)(
1− |H|

2k

)
‖g‖2

Note that, because we condition on the heavy hitter recovery event, ḡH = gH due to the second
round communication (line 9 of Algorithm 3). The first inequality follows using Lemma 1 from Stich
et al. [2018]. The second inequality follows from the fact that the heavy elements have values at least
1
k

ˆ̀2
2 ≥ 1

2k ‖g‖
2, and therefore ‖gNH‖2 = ‖g‖2 − ‖gH‖2 ≤

(
1− |H|2k

)
‖g‖2 .

Simplifying the expression, we get

E
[
‖g − g̃‖2

]
≤
(

2k − |H|
2k

)(
d− k
d− |H|

)
‖g‖2 =

(
2k − |H|

2k

)(
d

d− |H|

)(
1− k

d

)
‖g‖2 .

Note that the first two terms can be bounded as follows:(
2k − |H|

2k

)(
d

d− |H|

)
≤ 1 ⇐⇒ kd− |H| d ≤ kd− 2k |H| ⇐⇒ |H| (d− 2k) ≥ 0

which holds when k ≤ d/2 thereby completing the proof.

A.1 Proof of the main theorem

Proof of Theorem 1. First note that, from linearity of sketches), the top-k (or heavy) elements from
the merged sketch St =

∑W
i=1 Sit are the top-k of the sum of vectors that were sketched. We have

already shown in Lemma 1 that that extracting the top-k elements from S−T using HEAVYMIX gives
us a k-contraction on the sum of gradients. Moreover since the guarantee is relative and norms are
positive homogeneous, the same holds for the average, i.e. when dividing by W . Now since the
average of stochastic gradients is still an unbiased estimate, this reduces to SKETCHED-SGD on one
machine, and the convergence therefore follows from Theorem 2.

A key ingredient is the result in the one machine setting, stated below.

Theorem 2. Let f : Rd → R be a L-smooth µ-strongly convex function. Given T > 0 and
0 < k ≤ d, 0 < δ < 1, and a τk-contraction, Algorithm 2 SKETCHED-SGD with sketch size
O (k log(dT/δ)) and step size ηt = 1

t+ξ , with ξ > 1 + 1+β
τk(1+ρ)

, with β > 4 and ρ = 4β
(β−4)(β+1)2 ,

after T steps outputs ŵT such that with probability at least 1− δ

E [f(ŵT)]− f(w∗) ≤ O
(
σ2

µT
+

G2L

τ2kµ
2T 2

+
G3

τ3kµT
3

)

12

Proof of Theorem 2. The proof, as in Stich et al. [2018], just follows using convexity and Lemmas
3,2 and fact 3. The lemmas which are exactly same as Stich et al. [2018], are stated as facts. However,
the proofs of lemmas, which change are stated in full for completeness, with the changes highlighted.

From convexity we have that

f

(
1

QT

T∑
i=1

qtwt

)
− f(w∗) ≤ 1

QT

T∑
t=1

qtf(wt)− f(w∗) =
1

QT

T∑
t=1

qt (f(wt)− f(w∗))

Define εt = f(wt)− f(w∗), the excess error of iterate t. From Lemma 2 we have,

E
[
‖w̃t+1 − w∗‖2

]
≤
(

1− ηtµ

2

)
E
[
‖w̃t − w∗‖2

]
+ σ2η2t −

(
1− 2

ξ

)
εtηt + (µ+ 2L)E

[
‖at‖2

]
ηt

Bounding the last term using Lemma 3, with probability at least 1− δ, we get,

E
[
‖w̃t+1 − w∗‖2

]
≤
(

1− ηtµ

2

)
E
[
‖w̃t − w∗‖2

]
+ σ2η2t −

(
1− 2

ξ

)
εtηt +

(µ+ 2L)4βG2

τ2k (β − 4)
η3t

where τk is the contraction we get from HEAVYMIX. We have alreay show that τk ≤ k
d .

Now using Lemma 3 and the fist equation, we get,

f

(
1

QT

T∑
i=1

qtwt

)
− f(w∗) ≤

µξ4E
[
‖w0 − w∗‖2

]
8(ξ − 2)QT

+
4T (T + 2ξ)ξσ2

µ(ξ − 2)QT
+

256(µ+ 2L)βξG2T

µ2(β − 4)τ2k (ξ − 2)QT

Note that ξ > 2 + 1+β
τk(1+ρ)

. Moreover QT =
∑T
t=1 qt =

∑T
t=1(ξ + t)2 ≥ 1

3T
3 upon expanding and

using the conditions on ξ. Also ξ/(ξ − 2) = O (1 + 1/τk).

Finally using σ2 ≤ G2 and Fact 1 to bound E
[
‖w0 − w∗‖2

]
≤ 4G2/µ2 completes the proof.

Lemma 2. Let f : Rd → R be a L-smooth µ-strongly convex function, and w∗ be its minima. Let
{wt}t be a sequence of iterates generated by Algorithm 2.

Define error εt := E [f(wt)− f(w∗)] and w̃t+1 = w̃t − ηtgt be a stochastic gradient update step at

time t, with E
[
‖gt −∇f(wt)‖2

]
≤ σ2, E

[
‖gt‖2

]
≤ G2 and ηt = 1

µ(t+ξ) , ξ > 2 then we have,

E
[
‖w̃t+1 − w∗‖2

]
≤
(

1− ηtµ

2

)
E
[
‖w̃t − w∗‖2

]
+ σ2ηt −

(
1− 2

ξ

)
εtηt + (µ+ 2L)E

[
‖at‖2

]
ηt

Proof. This is the first step of the perturbed iterate analysis framework Mania et al. [2015]. We
follow the steps as in Stich et al. [2018]. The only change is that the proof of Stich et al. [2018] works
with bounded gradients i.e. E

[
‖g‖2

]
≤ G2. This assumption alone, doesn’t provide the variance

reduction effect in the distributed setting. We therefore adapt the analysis with the the variance bound
E
[
‖g −∇f(w)‖2

]
≤ σ2.

‖w̃t+1 − w∗‖2 = ‖w̃t+1 − w̃t + w̃t − w∗‖2 = ‖w̃t+1 − w̃t‖2 + ‖w̃t − w∗‖2 + 2 〈w̃t − w∗, w̃t+1 − w̃t〉
= η2t ‖gt‖

2
+ ‖w̃t − w∗‖2 + 2 〈w̃t − w∗, w̃t+1 − w̃t〉 = η2t ‖gt −∇f(wt)‖2 + η2t ‖∇f(wt)‖2 + ‖w̃t − w∗‖2

+ 2ηt 〈gt −∇f(wt),∇f(wt)〉+ 2ηt 〈w∗ − w̃t, gt〉

Taking expectation with respect to the randomness of the last stochastic gradient, we have that the term
〈gt −∇f(wt),∇f(wt)〉 = 0 by E [gt] = ∇f(wt). Moreover, the term E [gt −∇f(wt)]

2 ≤ σ2. We
expand the last term as,

〈w∗ − w̃t,∇f(wt)〉 = 〈w∗ − wt,∇f(wt)〉+ 〈wt − w̃t,∇f(wt)〉

13

The first term is bounded by µ-strong convexity as,

f(w∗) ≥ f(wt) + 〈∇f(wt),w
∗ − wt〉+

µ

2
‖wt − w∗‖2

⇐⇒ 〈∇f(wt),w
∗ − wt〉 ≤ f(w∗)− f(wt)−

µ

2
‖wt − w∗‖2

≤ −εt +
µ

2
µ ‖w̃t − wt‖ −

µ

4
‖w∗ − w̃t‖

where in the last step, we define εt := f(wt) − f(w∗) and use ‖u + v‖2 ≤ 2(‖u‖2 + ‖v‖2). The
second term is bounded by using 2 〈u, v〉 ≤ a ‖u‖2 + 1

a ‖v‖
2 as follows,

2 〈wt − w̃t,∇f(wt)〉 ≤ 2L ‖wt − w̃t‖2 +
1

2L
‖∇f(wt)‖2

Moreover, from Facr 2, we have ‖∇f(wt)‖2 ≤ 2Lεt. Taking expectation and putting everything
together, we get,

E
[
‖w̃t+1 − w∗‖2

]
≤
(

1− µηt
2

)
E
[
‖w̃t − w∗‖2

]
+ η2t σ

2

+ (µ+ 2L) ηtE
[
‖wt − w̃t‖2

]
+
(
2Lη2t − ηt

)
εt

We now claim that the last term 2Lη2t − ηt ≤ −
ξ−2
ξ ηt or equivalently 2Lη2t −

(
1− ξ−2

ξ

)
ηt ≤ 0.

Note that this is a quadratic in ηt which is satisfied between its roots 0 and 1
Lξ . So it suffices to show

is that our step sizes are in this range. In particular, the second root (which is positive by choice of
ξ) should be no less than step size. We have ηt = 1

µ(t+ξ) , ηt ≤ 1
µξ ∀ t, the second root 1

Lξ ≥
1
µξ

because smoothness parameter L ≥ µ, the strong convexity parameter, or equivalently the condition
number κ := L/µ ≥ 1. Combining the above with at = wt − w̃t, we get,

E
[
‖w̃t+1 − w∗‖2

]
≤
(

1− µηt
2

)
E [‖w̃t − w∗‖] + η2t σ

2

+ (µ+ 2L) ηtE
[
‖at‖2

]
−
(

1− 2

ξ

)
ηtεt

Fact 1. Rakhlin et al. [2012] Let f : Rd → be a µ-strongly convex function, and w∗ be its minima.
Let g be an unbiased stochastic gradient at point w such that E

[
‖g‖2

]
≤ G2, then

E
[
‖w − w∗‖2

]
≤ 4G2

µ2

Fact 2. For L-smooth convex function f with minima w∗, then the following holds for all points w,

‖∇f(w)−∇f(w∗)‖2 ≤ 2L(f(w)− f(w∗))

Fact 3. Stich et al. [2018] Let {bt}t≥0 , bt ≥ 0 and {εt}t≥0 , εt ≥ 0 be sequences such that,

bt+1 ≤
(

1− µηt
2

)
bt − εtηt +Aη2 +Bη3

for constants A,B > 0, µ ≥ 0, ξ > 1. Then,

1

QT

T−1∑
t=0

qtεt ≤
µξ3b0
8QT

+
4T (T + 2ξ)A

µQT
+

64TB

µ2QT

for ηt = 8
µ(ξ+t) , qt = (ξ + t)2, QT =

∑T−1
t=0 qt ≥ T 3

3

14

Fact 4. Stich et al. [2018] Let {ht}t>0 be a sequence satisfying h0 = 0 and

ht+1 ≤ min

{
(1− τ/2)ht +

2

τk
η2tA, (t+ 1)

t∑
i=0

η2iA

}

for constant A > 0, then with ηt = 1
t+ξ with ξ > 1 + 1+β

τk(1+ρ)
, with β > 4 and ρ = 4β

(β−4)(β+1)2 , for
t ≥ 0 we get,

ht ≤
4β

(β − 4)
· η

2
tA

τ2k

Lemma 3. With probability at least 1− δ

E
[
‖at‖2

]
≤ 4β

(β − 4)
· η

2
tG

2

τ2k

Proof of Lemma 3. The proof repeats the steps in Stich et al. [2018] with minor modifications. In
particular, the compression is provided by the recovery guarantees of Count Sketch, and we do a
union bound over all its instances. We write the proof in full for the sake of completeness. Note that

at = at−1 + ηt−1gt−1 − g̃t−1

We first claim that E
[
‖at‖2

]
≤ tη2tG

2. Since a0 = 0, we have at =
∑t
i=1(ai − ai−1) =∑t−1

i=0(ηigi − g̃i). Using (
∑n
i=1 ai)

2 ≤ (n+ 1)
∑n
i=1 a

2
i and taking expectation, we have

E
[
‖at‖2

]
≤ t

t−1∑
i=0

E
[
‖ηigi − g̃i‖2

]
≤ t

t−1∑
i=0

η2iG
2

Also, from the guarantee of Count Sketch, we have that, with probability at least 1 − δ/T , the
following holds give that our compression is a τk contraction.

Therefore

‖at+1‖2 ≤ (1− τk) ‖at + ηtgt‖2

Using inequality (a+ b)2 ≤ (1 + γ)a2 + (1 + γ−1)b2, γ > 0 with γ = τk
2 , we get

‖at+1‖2 ≤ τk
(

(1 + γ) ‖at‖2 +
(
1 + γ−1

)
η2t ‖gt‖

2
)

≤ (2− τk)

2
‖at−1‖2 +

2

τk
η2t ‖gt‖

2

Taking expectation on the randomness of the stochastic gradient oracle, and using E
[
‖gt‖2

]
≤ G2,

we have,

E
[
‖at+1‖2

]
≤ (2− τk)

2
E
[
‖at‖2

]
+

2

τk
η2tG

2

Note that for a fixed t ≤ T this recurrence holds with probability at least 1− δ/T . Using a union
bound, this holds for all t ∈ [T] with probability at least 1− δ. Conditioning on this and using Fact 4
completes the proof.

15

B Auxiliary results

We state the result of Stich et al. [2018] in full here.

Fact 5 ([Stich et al., 2018]). Let f : Rd → R be a L-smooth µ-strongly convex function. Given
T > 0 and 0 < k ≤ d, sparsified SGD with step size ηt = 1

t+ξ , with ξ > 1 + d(1+β)
k(1+ρ) , with β > 4

and ρ = 4β
(β−4)(β+1)2 , after T steps outputs ŵT :

E [f(ŵT)]− f(w∗) ≤ O
(
G2

µT
+
d2G2L

k2µ2T 2
+

d3G3

k3µT 3

)
.

We now state theorem which uses on the norm bound on stochastic gradients. It follows by directly
plugging the fact the HEAVYMIX is a k/d-contraction in the result of Stich et al. [2018].

Theorem 3. Let f : Rd → R be a L-smooth µ-strongly convex function . Given T > 0 and
0 < k ≤ d, 0 < δ < 1, Algorithm 2 on one machine, with access to stochastic gradients such that
E
[
‖g‖2

]
≤ G2, with sketch sizeO (k log(dT/δ)) and step size ηt = 1

t+ξ , with ξ > 1 + d(1+β)
k(1+ρ) , with

β > 4 and ρ = 4β
(β−4)(β+1)2 , after T steps outputs ŵT such that with probability at least 1− δ:

E [f(ŵT)]− f(w∗) ≤ O
(
G2

µT
+
d2G2L

k2µ2T 2
+

d3G3

k3µT 3

)
.

Theorem 4 ((non-convex, smooth)). Let {wt}t≥0 denote the iterates of Algorithm 2 one one machine,
on an L-smooth function f : Rd → R. Assume the stochastic gradients g satisfy E[g] = ∇f(w) and
E[‖g‖22] ≤ G2, and use a sketch of sizeO(k log(dT/δ)), for 0 ≤ δ ≤ 1. Then, setting η = 1/

√
T + 1

with probability at least 1− δ:

min
t∈[T]

‖∇f(wt)‖2 ≤
2f0√

(T + 1)
+

LG2

2
√
T + 1

+
4L2G2(1− k/d)

(k/d)2(T + 1)
,

where f0 = f(w0)− f?.

Theorem 5 ((convex, non-smooth)). Let {wt}t≥0 denote the iterates of Algorithm 2 one one machine,
on a convex function f : Rd → R. Define w̄t = 1

T

∑T
t=0 wt. Assume the stochastic gradients g

satisfy E[g] = ∇f(w) and E[‖g‖22] ≤ G2, and use a sketch of size O(k log(dT/δ)), for 0 ≤ δ ≤ 1.
Then, setting η = 1/

√
T + 1, with probability at least 1− δ:

E[f(w̄t)− f?] ≤
‖w0 − w?‖2√

(T + 1)
+

(
1 +

2
√

1− k/d
k/d

)
G2

√
T + 1

.

Our high probability bounds of Theorem 2 can be converted to bounds in expectation, stated below.

Theorem 6. Let f : Rd → R be a L-smooth µ-strongly convex function. Given T > 0 and
0 < k ≤ d, 0 < δ < 1, and a τk-contraction, Algorithm 2 one one machine, with sketch size
O (k log(dT/δ)) and step size ηt = 1

t+ξ , with ξ > 1 + 1+β
τk(1+ρ)

, with β > 4 and ρ = 4β
(β−4)(β+1)2

and δ = O
(

k
poly(d)

)
after T steps outputs ŵT such that

EAE [f(ŵT)]− f(w∗) ≤ O
(
σ2

µT
+

G2L

τ2kµ
2T 2

+
G3

τ3kµT
3

)

Proof. Lemma 1 gives that with probability at least 1 − δ, HEAVYMIX is a k/d contraction. We
leverage the fact that the elements of countsketch matrix are bounded to convert it to bound in
expectation. As in the proof of lemma 1, given g ∈ R, the HEAVYMIX algorithm extracts all
(1/k, `22)-heavy elements from a Count Sketch S of g. Let ĝ be the values of all elements recovered
from its sketch. For a fixed k, we create two sets H (heavy), and NH (not-heavy). All coordinates
of ĝ with values at least 1

k
ˆ̀2
2 are put in H , and all others in NH , where ˆ̀

2 is the estimate of ‖g‖2

16

coordinate updates
b columns

r row
s

 +1 7

 2

 1

 5

 -1

 -1

 +1

 +1 3

table of counters

(a) Low level intuition behind the update step of
the Count Sketch.

M

w1 w2 wW

(b) Property of mergeability lets the parameter
server approximate the heavy coordinates of the
aggregate vector

from the Count Sketch. For a τk contraction with probability at least 1 − δ, we get the following
expectation bound.

EAE
[
‖g − ḡ‖2

]
≤ (1− δ) (1− τk) ‖g‖2 + δO (poly(d)) ‖g‖2

≤ (1− τk
2

) ‖g‖2

where the last time follows because we choose δ = τk
2O(poly(d)) . Since HEAVYMIX is a k/d contrac-

tion, we get the expectation bound of k/2d with δ = k
2dO(poly(d))

C Sketching

Sketching gained its fame in the streaming model [Muthukrishnan et al., 2005]. A seminal paper
by Alon et al. [1999] formalizes the model and delivers a series of important results, among which
is the `2-norm sketch (later referred to as the AMS sketch). Given a stream of updates (ai, wi) to
the d dimensional vector g (i.e. the i-th update is gai+= wi), the AMS sketch initializes a vector
of random signs: s = (sj)

d
j=1, sj = ±1. On each update (ai, wi), it maintains the running sum

S += saiwi, and at the end it reports S2. Note that, if sj are at least 2-wise independent, then
E(S2) = E(

∑
i gisi)

2 =
∑
i g2
i = ‖g‖22. Similarly, the authors show that 4-wise independence is

enough to bound the variance by 4‖g‖22. Averaging over independent repetitions running in parallel
provides control over the variance, while the median filter (i.e. the majority vote) controls the
probability of failure. Formally, the result can be summarized as follows: AMS sketch, with a large
constant probability, finds ˆ̀

2 = ‖g‖2 ± ε‖g‖2 using only O
(

1
ε2

)
space. Note that one does not

need to explicitly store the entire vector s, as its values can be generated on thy fly using 4-wise
independent hashing.

Definition 3. Let g ∈ Rd. The i-th coordinate gi of g is an (α1, `2)-heavy hitter if |gi| ≥ α1‖g‖2.
gi is an (α2, `

2
2)-heavy hitter if g2

i ≥ α2‖g‖22.

The AMS sketch was later extended by Charikar et al. [2002] to detect heavy coordinates of the vector
(see Definition 3). The resulting Count Sketch algorithm hashes the coordinates into b buckets, and
sketches the `2 norm of each bucket. Assuming the histogram of the vector values is skewed, only
a small number of buckets will have relatively large `2 norm. Intuitively, those buckets contain the
heavy coordinates and therefore all coordinates hashed to other buckets can be discarded. Repeat the
same routine independently and in parallel O (logb d) times, and all items except the heavy ones will
be excluded. Details on how to combine proposed hashing and `2 sketching efficiently are presented
in Figure 5a and Algorithm 4.

Count Sketch finds all (α, `2)-heavy coordinates and approximates their values with error ±ε‖g‖2. It
does so with a memory footprint of O

(
1

ε2α2 log d
)
. We are more interested in finding (α, `22)-heavy

hitters, which, by an adjustment to Theorem 7, the Count Sketch can approximately find with a space
complexity of O

(
1
α log d

)
, or O (k log d) if we choose α = O

(
1
k

)
.

17

Both the Count Sketch and the Count-Min Sketch, which is a similar algorithm presented by Cormode
and Muthukrishnan [2005] that achieves a ±ε`1 guarantee, gained popularity in distributed systems
primarily due to the mergeability property formally defined by Agarwal et al. [2013]: given a sketch
S(f) computed on the input vector f and a sketch S(g) computed on input g, there exists a function
F , s.t. F (S(f), S(g)) has the same approximation guarantees and the same memory footprint as
S(f + g). Note that sketching the entire vector can be rewritten as a linear operation S(f) = Af , and
therefore S(f + g) = S(f) + S(g). We take advantage of this crucial property in SKETCHED-SGD,
since, on the parameter server, the sum of the workers’ sketches is identical to the sketch that would
have been produced with only a single worker operating on the entire batch.

Besides having sublinear memory footprint and mergeability, the Count Sketch is simple to implement
and straight-forward to parallellize, facilitating GPU acceleration [Ivkin et al., 2018].

Charikar et al. [2002] define the following approximation scheme for finding the list T of the top-k
coordinates: ∀i ∈ [d] : i ∈ T ⇒ gi ≥ (1− ε)θ and gi ≥ (1 + ε)θ ⇒ i ∈ T , where θ is chosen to be
the k-th largest value of f .
Theorem 7 (Charikar et al., 2002). Count Sketch algorithm finds approximate top-k coordinates with
probability at least 1− δ, in space O

(
log d

δ

(
k +

‖gtail‖22
(εθ)2

))
, where ‖gtail‖22 =

∑
i/∈top k g2

i and θ is
the k-th largest coordinate.

Note that, if θ = α‖g‖2, Count Sketch finds all (α, `2)-heavy coordinates and approximates their
values with error ±ε‖g‖2. It does so with a memory footprint of O

(
1

ε2α2 log d
)
.

Algorithm 4 Count Sketch [Charikar et al., 2002]
1: function init(r, c):
2: init sign hashes {sj}rj=1 and bucket hashes {hj}rj=1

3: init r × c table of counters S
4: function update(i, fi):
5: for j in 1 . . . r:
6: S[j, hj(i)] += sj(i)fi
7: function estimate(i):
8: init length r array estimates
9: for j in 1, . . . , r:

10: estimates[r] = sj(i)S[j, hj(i)]
11: return median(estimates)

D Model Training Details

We train three models on two datasets. For the first two models, we use code from the OpenNMT
project Klein et al. [2017], modified only to add functionality for SKETCHED-SGD. The command
to reproduce the baseline transformer results is

python train.py -data $DATA_DIR -save_model baseline -world_size 1
-gpu_ranks 0 -layers 6 -rnn_size 512 -word_vec_size 512
-batch_type tokens -batch_size 1024 -train_steps 60000
-max_generator_batches 0 -normalization tokens -dropout 0.1
-accum_count 4 -max_grad_norm 0 -optim sgd -encoder_type transformer
-decoder_type transformer -position_encoding -param_init 0
-warmup_steps 16000 -learning_rate 1000 -param_init_glorot
-momentum 0.9 -decay_method noam -label_smoothing 0.1
-report_every 100 -valid_steps 100

The command to reproduce the baseline LSTM results is

python train.py -data $DATA_DIR -save_model sketched -world_size 1
-gpu_ranks 0 -layers 6 -rnn_size 512 -word_vec_size 512
-batch_type tokens -batch_size 1024 -train_steps 60000
-max_generator_batches 0 -normalization tokens -dropout 0.1
-accum_count 4 -max_grad_norm 0 -optim sgd -encoder_type rnn

18

100 101 102 103 104

Iteration #

10 1

100

Er
ro

r

1/ T
1-v-All SVM (vanilla) - Train Error
1-v-All SVM (vanilla) - Test Error
1-v-All SVM (sketched) - Train Error
1-v-All SVM (sketched) - Test Error

(a) log-log plot of training and test error against number
of iterations of the average iterate for SVM trained on
one class as positive and the rest as negative (1-v-all).
For simplicity, we only show the plot for one class.

100 101 102 103 104

Iteration #

10 2

10 1

100

101

102

Er
ro

r

1/T
Logistic Regression(vanilla) - Train Error
Logistic Regression(vanilla) - Test error
Logistic Regression(sketched) - Train Error
Logistic Regression(sketched) - Test error

(b) log-log plot of training and test error of the num-
ber of iterations for regularized logistic regression.
The regularization parameter was fixed as 0.01.

-decoder_type rnn -rnn_type LSTM -position_encoding -param_init 0
-warmup_steps 16000 -learning_rate 8000 -param_init_glorot
-momentum 0.9 -decay_method noam -label_smoothing 0.1
-report_every 100 -valid_steps 100

We run both models on the WMT 2014 English to German translation task, preprocessed with a
standard tokenizer and then shuffled.

The last model is a residual network trained on CIFAR-10. We use the model from the winning entry
of the DAWNBench competition in the category of fastest training time on CIFAR-10 Coleman et al.
[2017]. We train this model with a batch size of 512, a learning rate varying linearly at each iteration
from 0 (beginning of training) to 0.4 (epoch 5) back to 0 (end of training). We augment the training
data by padding images with a 4-pixel black border, then cropping randomly back to 32x32, making
8x8 random black cutouts, and randomly flipping images horizontally. We use a cross-entropy loss
with L2 regularization of magnitude 0.0005.

Each run is carried out on a single GPU – either a Titan X, Titan Xp, Titan V, Tesla P100, or Tesla
V100.

E Additional experiments

E.1 MNIST

We train vanilla and sketched counterparts of two simple learning models: Support vector ma-
chines(SVM) and `2 regularized logistic regression on MNIST dataset. These are examples of
optimizing non-smooth convex function and strongly convex smooth function respectively. We
also compare against the theoretical rates obtained in Theorems 5 and 1. The sketch size used in
these experiments is size 280 (40 columns and 7 rows), and the parameters k and P are set as,
k = 10, P = 10, giving a compression of around 4; the number of workers is 4. Figure 5a and 5b
shows the plots of training and test errors of these two models. In both the plots, we see that the train
and test errors decreases with T in the same rates for vanilla and sketched models. However, these
are conservative compared to the theoretical rate suggested.

19

