
A Proof of Proposition 1

Let ε > 0. We consider a single state MDP (i.e., x-armed bandit) with action space A = Rd and a
multi-modal reward function defined by

r(a) = εδµ̃0
(a) + (1− ε)δµ̃0+D·1(a),

where D = D(R, ε) will be defined later, and δx(a) is the Dirac delta function satisfying∫
a
g(a)d(δx(a)) = g(x) for all continuous compactly supported functions g.

Denote by fµ,Σ(a) the multivariate Gaussian distribution, defined by

fµ,Σ(a) = (2π|Σ|)− k2 e−(a−µ)TΣ−1(a−µ).

In PG, we assume µ is parameterized by some parameters θ. Without loss of generality, let us
consider the derivative with respect to θ = µ. At iteration k the derivative can be written as

∇µ log πµ(a) |µ=µk= Σ−1 (a−µk) .

PG will thus update the policy parameter µ by

µk+1 = µk + αk
{
Ea∼N (µk,Σ)Σ

−1 (a−µk) r(a)
}
.

Notice that given a Bernoulli random variable B =

{
0 ,w.p. ε
D ,w.p. 1− ε , one can write

r(a) = Eδµ̃0+B·1(a). Then by Fubini’s theorem we have

Ea∼N (µk,Σ) (a−µk) r(a)

= EBEa∼N (µk,Σ) (a−µk) δµ̃0+B·1(a)

= EB (µ̃0 +B · 1− µk) fµk,Σ(µ̃0 +B · 1).

We wish to show that the gradient has a higher correlation with the direction of µ̃0 − µk rather than
µ̃0 +D · 1− µk. That is we wish to show that(
Ea∼N (µk,Σ)Σ

−1 (a−µk) r(a)
)T (µ̃0 − µk

‖µ̃0 − µk‖

)
>
(
Ea∼N (µk,Σ)Σ

−1 (a−µk) r(a)
)T (µ̃0 +D · 1− µk

‖µ̃0 +D · 1− µk‖

)
.

Substituting r(a) the above equation is equivalent to

(EB (µ̃0 +B · 1− µ0) fµ0,Σ(µ̃0 +B · 1))
T

(
µ̃0 − µk
‖µ̃0 − µk‖

)
> (EB (µ̃0 +B · 1− µ0) fµ0,Σ(µ̃0 +B · 1))

T

(
µ̃0 +D · 1− µk
‖µ̃0 +D · 1− µk‖

)
. (4)

Proving Equation (4) for all k ≥ 0 will complete the proof.
We continue the proof by induction on k.
Base case (k = 0):
Recall that µ0 ∈ BR(µ̃0). Writing Equation (4) explicitly we get

LHS = ε‖µ̃0 − µ0‖fµ0,Σ(µ̃0) + (1− ε)fµ0,Σ(µ̃0 +D · 1) (µ̃0 − µ0 +D · 1)
T µ̃0 − µ0

‖µ̃0 − µ0‖
,

RHS = εfµ0,Σ(µ̃0) (µ̃0 − µ0)
T µ̃0 − µ0 +D · 1
‖µ̃0 − µ0 +D · 1‖

+ (1− ε)‖µ̃0 − µ0 +D · 1‖fµ0,Σ(µ̃0 +D · 1).

Since fµ0,Σ(µ̃0 + D · 1) ∝ exp {−D · 1} we only need to show that for large enough D (which
depends on the constants ε and R)

‖µ̃0 − µ0‖ > (µ̃0 − µ0)
T · 1 D

‖µ̃0 − µ0 +D · 1‖
,

as all other values tend to zero.
If (µ̃0 − µ0)

T
1 < 0 then we are done. Otherwise, if (µ̃0 − µ0)

T
1 ≥ 0 then

(µ̃0 − µ0)
T · 1 D

‖µ̃0 − µ0 +D · 1‖
≤ ‖µ̃0 − µ0‖

D

‖µ̃0 − µ0 +D · 1‖
≤ ‖µ̃0 − µ0‖,

12

Algorithm 2 Generative Actor Critic

1: Input: number of time steps T , policy samples K, minibatch size N
2: Initialize critic networksQθ1 , Qθ2 , value network vψ and actor network πφ with random param-

eters θ1, θ2, ψ, φ
3: Initialize target networks θ′1 ← θ1, θ′2 ← θ2, ψ′ ← ψ, φ′ ← φ
4: Initialize replay buffer B
5: for t = 0, 1, ..., T do
6: Select action with exploration noise a ∼ πφ(s) + ε,
7: ε ∼ N (0, σ) and observe reward r and new state s′
8: Store transition tuple (s,a, r, s′) in B
9: Sample mini-batch of N transitions (s,a, r, s′) from B

10: yQ ← r + γvψ′(s
′)

11: Update critics:
12:

θ ← θ − 1

N
∇θi

∑
(yQ −Qθi(s,a))2

13: ãj ← πφ′(τ | s),∀1 ≤ j ≤ K, τ ∼ U([0, 1]n)

14: yv ← mini=1,2

∑K
j=1Qθ′i(s, ãj)

15: Update value:

ψ ← ψ −N−1∇ψ
∑

(yv − vψ(s))2

16: Sample actions â1, . . . , âK from sampling policy σ(πφ′ ,A)

17: Âk ← {âj : 1 ≤ j ≤ K,mini=1,2Qθ′i(sk, âj) > vψ′(sk)}
18: Update actor:

φ← φ− 1

N
∇φ

N∑
n=1

∑
â∈Âk

action dim∑
i=1

ρkτi

(
âi − πφ(τi|âi−1, . . . , â1, sk)

)
Dπ
′
k

Iπ
′
k

19: Update target networks:

θ′i ← τθi + (1− τ)θ′i

ψ′ ← τψ + (1− τ)ψ′

φ′ ← τφ+ (1− τ)φ′

where in the first step we used the Cauchy–Schwarz inequality, and in the second step we used the
fact if a vector x satisfies xT1 ≥ 0 then for any constant C > 0, ‖x + C · 1‖ ≥ C.

Induction step:
Assume Equation (4) holds from some k ≥ 0. Then by the gradient procedure we know that
µk ∈ BR(µ̃0), and thus we can use the same proof as the base case. Hence, ‖v∗− vπ∞‖∞ = 1− 2ε
and the result follows for ε < 1

3 .

B Experimental Details

Our approach is depicted in Algorithm 2. In addition, we provide a numerical comparison of the
various approaches in Table 3. These results show a clear picture.

Target policy estimation: To estimate the target policy, for each state s, we sample 128 actions
uniformly from the action spaceA, 128 samples from the target policy πφ′ and the per-sample loss is
weighted by the positive advantageA(s, ·)+. This can be seen as a form of ‘exploration-exploitation’
- while uniform sampling ensures proper exploration of the action set, sampling from the policy has
a higher probability of producing actions with positive advantage.

13

Table 3: Comparison of the maximal attained value across training.

Environment DDPG TD3 PPO GAC AIQN GAC IQN

Hopper-v2 638± 477 2521± 1429 2767± 421 3234± 122 1473± 421

Humanoid-v2 519± 44 184± 67 579± 30 4056± 878 3547± 572

Walker2d-v2 364± 223 3824± 995 3694± 765 4357± 160 1390± 651

Swimmer-v2 75± 46 60± 20 131± 1 238± 3 45± 0

Ant-v2 −399± 323 5508± 191 2899± 973 5064± 208 4784± 895

HalfCheetah-v2 −395± 81 9681± 908 3787± 2249 9300± 515 6807± 98

Table 4: AIQN Hyperparameters
Humanoid-v2, Hopper-v2,

Ant-v2, Swimmer-v2 Walker2d-v2 HalfCheetah-v2

Distribution max{expQ(s, a)− v(s), 20} softmax(Q(s, a)− v(s)) Q(s, a)− v(s)
π LR 1e−4 1e−3 1e−3

Q/v LR 1e−3 1e−3 1e−3

π grad clip 1 ∞ ∞
Q/v grad clip 5 ∞ ∞
of samples 64 256 256

The loss is thus the weighted quantile loss. We do note that while one would want to define the
target policy as the linear/Boltzmann distribution over the positive advantage, this is not possible in
practice. As actions are sampled, we can only construct such a distribution on a per-batch instance.
This approach does provide higher weight for better performing actions, but does result in a different
underlying distribution. In addition, in order to ensure stability, we normalize the quantile loss
weights in each batch - this is to ensure that very small (high) advantage values do not incur a
near-zero (huge) gradients which may harm model stability.

Architectural Details:
Actor: As presented in Figure 3, our architecture incorporates a recurrent cell. The recurrent cell
ensures that each dimension i of the action is a function of the state s, the sampled quantile τi and
the previous predicted action dimensions a1, . . . ,ai−1. Notice that using this architecture, the pre-
diction of ai is not affected by τ1, . . . , τi−1. This approach is a strict requirement when considering
the autoregressive approach.

We believe other, potentially more efficient architectures can be explored. For instance, a fully
connected network, similar to the non-autoregressive approach, with attention over the previous
action dimensions may work well [Vaswani et al., 2017]. Such evaluation is out of the scope of this
work and is an interesting investigation for future work.

Value & Critic: While the actor architecture is a non-standard approach, for both the value and
critic networks, we use the classic MLP network. Specifically, we use a two layer fully connected
network with 400 and 300 neurons in each layer, respectively. Similarly to Fujimoto et al. [2018],
the critic receives a concatenated vector of both the state and action as input.

C Discussion and Common Mistakes

As shown in the body of the paper, there exist alternative approaches. We take this section in order
to provide some additional discussion into how and why we decided on certain approaches and what
else can be done.

14

C.1 Alternative Gradient Approaches

Going back to the policy gradient approach, specifically the deterministic version, we can write the
value of the current policy of our generative model (policy) as:

vπ(s) =

∫
τ∈[0,1]n

Q(s, F−1(s |τ))dτ ,

or an estimation using samples

vπ(s) =
1

N

N∑
i=1

Q(s, F−1(s |τi)) |τi∼U([0,1]n) .

It may then be desirable to directly optimize this objective function by taking the gradient w.r.t.
the parameters of F−1. However, this approach does not ensure optimality. Clearly, the gradient
direction is provided by the critic Q for each value of τ . This can be seen as optimizing an ensemble
of DDPG models whereas each τ value selects a different model from this set. As DDPG is a uni-
modal parametric distribution and is thus not ensured to converge to an optimal policy, this approach
suffers from the same caveats.

However, Evolution Strategies [Salimans et al., 2017] is a feasible approach. As opposed to the
gradient method, this approach can be seen as directly calculating ∇πvπ , i.e., it estimates the best
direction in which to move the policy. As long as the policy is still capable of representing arbitrarily
complex distributions this approach should, in theory, converge to a global maxima. However, as
there is interest in sample efficient learning, our focus in this work was on introducing an off-policy
learning method under the common actor-critic framework.

C.2 Target Networks and Stability

Our empirical approach, as shown in Algorithm 2, uses a target network for each approximator
(critic, value and the target policy). While the critic and value target networks are mainly for stability
of the empirical approach, they can be disposed of, the policy target network is required for the
algorithm to converge (as shown in Section 3).

The quantile loss, and any distribution loss in general, is concerned with moving probability mass
from the current distribution towards the target distribution. This leads to two potential issues
when lacking the delayed policy: (1) non-quasi-stationarity of the target distribution, and (2) non-
increasing policy.

The first point is important from an optimization point of view. As the quantile loss is aimed to esti-
mate some target distribution, the assumption is that this distribution is static. Lacking the delayed
policy network, this distribution potentially changes at each time step and thus can not be properly
estimated using sample based approaches. The delayed policy solves this problem, as it tracks the
policy on a slower timescale it can be seen as quasi-static and thus the target distribution becomes
well defined.

The second point is important from an RL point of view. In general, RL proofs evolve around two
concepts - either you are attempting to learn the optimal Q values and convergence is shown through
proving the operator is contracting towards a unique globally stable equilibrium, or the goal is to
learn a policy and thus the proof is based on showing the policy is monotonically improving. As the
delayed policy network slowly tracks the policy network, the multi-timescale framework tells us that
“by the time” the delayed policy network changes, the policy network can be assumed to converge.
As the policy network is aimed to estimate a distribution over the positive advantage of the delayed
policy, this approach ensures that the delayed policy is monotonically improving (under the correct
theoretical step-size and realizability assumptions).

C.3 Sample Complexity and Policy Samples

When considering sample complexity in its simplest form, our approach is as efficient as the base-
lines we compared to. It does not require the use of larger batches nor does it require more environ-
ment samples. However, as we are optimizing a generative model, it does require sampling from the
model itself.

15

As opposed to Dabney et al. [2018a], we found that in our approach the number of samples does af-
fect the convergence ability of the network. While using 16 samples for each transition in the batch
did result in relatively good policies, increasing this number affected stability and performance pos-
itively. For this reason, we decided to run with a sample size of 128. This results in longer training
times. For instance, training the TD3 algorithm on the Hopper-v2 domain using two NVIDIA GTX
1080-TI cards took around 3 hours, whereas our approach took 40 hours to train. We argue that as
often the resulting policy is what matters, it is worth to sacrifice time efficiency in order to gain a
better final result.

C.4 Generative Adversarial Policy Training

Our approach used the AIQN framework in order to train a generative policy. An alternative method
for learning distributions from samples is using the GAN framework. A discriminator can be trained
to differentiate between samples from the current policy and those from the target distribution; thus,
training the policy to ‘fool’ the discriminator will result in generating a distribution similar to the
target.

However, while the GAN framework has seen multiple successes, it still lacks the theoretical guar-
antees of convergence to the Nash equilibrium. As opposed to the AIQN which is trained on a
supervision signal, the GAN approach is modeled as a two player zero-sum game.

D Distributional Policy Optimization Assumptions

We provide the assumptions required for the 3-timescale stochastic approximation approach, namely
DPO, to converge.

The first assumption is regarding the step-sizes. It ensures that the policy moves on the fastest time-
scale, the value and critic on an intermediate and the delayed policy on the slowest. This enables the
quasi-static analysis in which the fast elements see the slower as static and the slow view the faster
as if they have already converged.
Assumption 1. [Step size assumption]

∞∑
n=0

αk =

∞∑
n=0

βk =∞ =

∞∑
n=0

δk =∞,

∞∑
n=0

(
α2
k + β2

k + δ2
k

)
<∞,

αk
βk
→ 0 and

βk
δk
→ 0 .

The second assumption requires that the action set be compact. Since there exists a deterministic
policy which is optimal, this assumption ensures that this policy is indeed finite and thus the process
converges.
Assumption 2. [Compact action set] The action set A(s) is compact for every s ∈ S.

The final two assumptions (3 and 4) ensure that π, moving on the fast time-scale, converges. The
Lipschitz assumption ensures that the action-value function and in turn the target distribution DIπ′

are smooth.
Assumption 3. [Lipschitz and bounded Q] The action-value function Qπ(s, ·) is Lipschitz and
bounded for every π ∈ Π and s ∈ S.
Assumption 4. For any D ∈ Π and θ ∈ Θ, there exists a loss L such that ∇θL(πθ,D) → 0 as
πθ → D.

Finally, it can be shown that DPO converges under these assumptions using the standard multi-
timescale approach.

16

	Introduction
	Preliminaries
	From Policy Gradient to Distributional Policy Optimization
	Distributional Policy Optimization (DPO)

	Method
	Quantile Regression & Autoregressive Implicit Quantile Networks
	Generative Actor Critic (GAC)

	Experiments
	Related Work
	Discussion and Future Work
	Acknowledgement
	Proof of Proposition 1
	Experimental Details
	Discussion and Common Mistakes
	Alternative Gradient Approaches
	Target Networks and Stability
	Sample Complexity and Policy Samples
	Generative Adversarial Policy Training

	Distributional Policy Optimization Assumptions

