
Placeto: Learning Generalizable Device Placement
Algorithms for Distributed Machine Learning

Ravichandra Addanki∗, Shaileshh Bojja Venkatakrishnan,
Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh

MIT Computer Science and Artificial Intelligence Laboratory

{addanki, bjjvnkt, shreyang, hongzi, alizadeh}@mit.edu

Abstract

We present Placeto, a reinforcement learning (RL) approach to efficiently find de-
vice placements for distributed neural network training. Unlike prior approaches
that only find a device placement for a specific computation graph, Placeto can
learn generalizable device placement policies that can be applied to any graph.
We propose two key ideas in our approach: (1) we represent the policy as per-
forming iterative placement improvements, rather than outputting a placement in
one shot; (2) we use graph embeddings to capture relevant information about the
structure of the computation graph, without relying on node labels for indexing.
These ideas allow Placeto to train efficiently and generalize to unseen graphs. Our
experiments show that Placeto requires up to 6.1× fewer training steps to find
placements that are on par with or better than the best placements found by prior
approaches. Moreover, Placeto is able to learn a generalizable placement policy
for any given family of graphs, which can then be used without any retraining
to predict optimized placements for unseen graphs from the same family. This
eliminates the large overhead incurred by prior RL approaches whose lack of gen-
eralizability necessitates re-training from scratch every time a new graph is to be
placed.

1 Introduction & Related Work
The computational requirements for training neural networks have steadily increased in recent years.
As a result, a growing number of applications [14, 21] use distributed training environments in which
a neural network is split across multiple GPU and CPU devices. A key challenge for distributed
training is how to split a large model across multiple heterogeneous devices to achieve the fastest
possible training speed. Today device placement is typically left to human experts, but determining
an optimal device placement can be very challenging, particularly as neural networks grow in com-
plexity (e.g., networks with many interconnected branches) or approach device memory limits. In
shared clusters, the task is made even more challenging due to interference and variability caused
by other applications.

Motivated by these challenges, a recent line of work [13, 12, 6] has proposed an automated approach
to device placement based on reinforcement learning (RL). In this approach, a neural network pol-
icy is trained to optimize the device placement through repeated trials. For example, Mirhoseini et
al. [13] use a recurrent neural network (RNN) to process a computation graph and predict a place-
ment for each operation. They show that the RNN, trained to minimize computation time, produces
device placements that outperform both human experts and graph partitioning heuristics such as
Scotch [18]. Subsequent work [12] improved the scalability of this approach with a hierarchical
model and explored more sophisticated policy optimization techniques [6].

∗Corresponding author

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Although RL-based device placement is promising, existing approaches have a key drawback: they
require significant amount of re-training to find a good placement for each computation graph. For
example, Mirhoseini et al. [13] report 12 to 27 hours of training time to find the best device place-
ment for several vision and natural language models; more recently, the same authors report 12.5
GPU-hours of training to find a placement for a neural machine translation (NMT) model [12].
While this overhead may be acceptable in some scenarios (e.g., training a stable model on large
amounts of data), it is undesirable in many cases. For example, high device placement overhead is
problematic during model development, which can require many ad-hoc model explorations. Also,
in a shared, non-stationary environment, it is important to make a placement decision quickly, before
the underlying environment changes.

Existing methods have high overhead because they do not learn generalizable device placement poli-
cies. Instead they optimize the device placement for a single computation graph. Indeed, the training
process in these methods can be thought of as a search for a good placement for one computation
graph, rather than a search for a good placement policy for a class of computation graphs. Therefore,
for a new computation graph, these methods must train the policy network from scratch. Nothing
learned from previous graphs carries over to new graphs, neither to improve placement decisions
nor to speed up the search for a good placement.

In this paper, we present Placeto, a reinforcement learning (RL) approach to learn an efficient algo-
rithm for device placement for a given family of computation graphs. Unlike prior work, Placeto
is able to transfer a learned placement policy to unseen computation graphs from the same family
without requiring any retraining.

Placeto incorporates two key ideas to improve training efficiency and generalizability. First, it mod-
els the device placement task as finding a sequence of iterative placement improvements. Specifi-
cally, Placeto’s policy network takes as input a current placement for a computation graph, and one
of its node, and it outputs a device for that node. By applying this policy sequentially to all nodes,
Placeto is able to iteratively optimize the placement. This placement improvement policy, operating
on an explicitly-provided input placement, is simpler to learn than a policy representation that must
output a final placement for the entire graph in one step.

Placeto’s second idea is a neural network architecture that uses graph embeddings [3, 4, 8] to en-
code the computation graph structure in the placement policy. Unlike prior RNN-based approaches,
Placeto’s neural network policy does not depend on the sequential order of nodes or an arbitrary
labeling of the graph (e.g., to encode adjacency information). Instead it naturally captures graph
structure (e.g., parent-child relationships) via iterative message passing computations performed on
the graph.

Our experiments show that Placeto learns placement policies that outperform the RNN-based ap-
proach over three neural network models: Inception-V3 [23], NASNet [28] and NMT [27]. For
example, on the NMT model Placeto finds a placement that runs 16.5% faster than the RNN-based
approach. Moreover, it also learns these placement policies substantially faster, with up to 6.1×
fewer placement evaluations, than the RNN approach. Given any family of graphs Placeto learns
a generalizable placement policy, that can then be used to predict optimized placements for unseen
graphs from the same family without any re-training. This avoids the large overheads incurred by
RNN-based approaches which must repeat the training from scratch every time a new graph is to be
placed.

Concurrently with this work, Paliwal et al. [17] proposed using graph embeddings to learn a gen-
eralizable policy for device placement and schedule optimization. However, their approach does
not involve optimizing placements directly; instead a genetic search algorithm needs to be run for
several thousands of iterations every time placement for a new graph is to be optimized [17].

2 Learning Method
The computation graph of a neural network can be modeled as a graph G(V,E), where V denotes
the atomic computational operations (also referred to as “ops”) in the neural network, and E is
the set of data communication edges. Each op v ∈ V performs a specific computational function
(e.g., convolution) on input tensors that it receives from its parent ops. For a set of devices D =
{d1, . . . , dm}, a placement for G is a mapping π : V → D that assigns a device to each op. The goal
of device placement is to find a placement π that minimizes ρ(G,π), the duration of G’s execution

2

...

Step t=0 Step t=1 Step t=2 Step t=3 End of episode

Action a3:
Device 2

Action a1:
Device 2

Action a2:
Device 1

Placement improvement MDP steps Final placement

Action a4:
Device 2

Figure 1: MDP structure of Placeto’s device placement task. At each step, Placeto updates a placement for a
node (shaded) in the computation graph. These incremental improvements amount to the final placement at the
end of an MDP episode.

when its ops are placed according to π. To reduce the number of placement actions, we partition
ops into predetermined groups and place ops from the same group on the same device, similar to
Mirhoseini et.al. [12]. For ease of notation, henceforth we will use G(V,E) to denote the graph of
op groups. Here V is the set of op groups and E is set of data communication edges between op
groups. An edge is drawn between two op groups if there exists a pair of ops, from the respective
op groups, that have an edge between them in the neural network.

Placeto finds an efficient placement for a given input computation graph, by executing an iterative
placement improvement policy on the graph. The policy is learned using RL over computation
graphs that are structurally similar (i.e., coming from the same underlying probability distribution)
as the input graph. In the following we present the key ideas of this learning procedure: the Markov
decision process (MDP) formalism in §2.1, graph embedding and the neural network architecture
for encoding the placement policy in §2.2, and the training/testing methodology in §2.3. We refer
the reader to [22] for a primer on RL.

2.1 MDP Formulation

Let G be a family of computation graphs, for which we seek to learn an effective placement policy.
We consider an MDP where a state observation s comprises of a graph G(V,E) ∈ G with the
following features on each node v ∈ V : (1) estimated run time of v, (2) total size of tensors output
by v, (3) the current device placement of v, (4) a flag indicating whether v has been “visited” before,
and (5) a flag indicating whether v is the “current” node for which the placement has to be updated.
At the initial state s0 for a graph G(V,E), the nodes are assigned to devices arbitrarily, the visit
flags are all 0, and an arbitrary node is selected as the current node.

At a step t in the MDP, the agent selects an action to update the placement for the current node
v in state st. The MDP then transitions to a new state st+1 in which v is marked as visited, and
an unvisited node is selected as the new current node. The episode ends in n|V | steps, after the
placement of each node has been updated n times, where n is a tunable hyper-parameter. Figure 1
illustrates this procedure for an example graph to be placed over two devices.

We consider two approaches for assigning rewards in the MDP: (1) assigning a zero reward at each
intermediate step in the MDP, and a reward equal to the negative run time of the final placement at
the terminal step; (2) assigning an intermediate reward of rt = ρ(st)−ρ(st+1) at the t-th round for
each t = 0, 1, . . . , n|V |− 1, where ρ(s) is the execution time of placement s. Intermediate rewards
can help improve credit assignment in long training episodes and reduce variance of the policy
gradient estimates [2, 15, 22]. However, training with intermediate rewards is more expensive, as it
must determine the computation time for a placement at each step as opposed to once per episode.
We contrast the benefits of either reward design through evaluations in Appendix A.4. To find a
valid placement that fits without exceeding the memory limit on devices, we include a penalty in
the reward proportional to the peak memory utilization if it crosses a certain threshold M (details in
Appendix A.7).

2.2 Policy Network Architecture

Placeto learns effective placement policies by directly parametrizing the MDP policy using a neural
network, which is then trained using a standard policy-gradient algorithm [26]. At each step t of the

3

