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A Implementation, optimization & time complexity

DCA was implemented in PyTorch and optimized using the L-BFGS-B algorithm in SciPy [1–3]. All
analysis was run on a desktop computer. To make optimization more stable, we included a penalty
term in the loss function which encourages the projection matrix V to have orthonormal columns
during optimization. The final loss is given by

LDCA = −Ipred
T (Y ) + λ

∥∥V TV − I∥∥2

F
(1)

where λ > 0. The orthonormality penalty is always exactly zero at the end of optimization since
mutual information is invariant under invertible transformations of either of its arguments, so we
can always transform V to have orthonormal columns without changing the predictive information.
Because the loss function is non-convex, we typically perform 5 random initializations.

For large spatial or temporal dimensions with large correlations, the spatiotemporal covariance matrix
was occasionally not positive-definite. In these cases, we added a constant to the diagonal of C0, the
same-time covariance matrix, so that the smallest eigenvalue was 1e-6 (equivalent to adding a small
amount of uncorrelated noise to all dimensions for all times).

To fit DCA for a dataset with total length Ttot, dimensionality n and projection dimensionality d
using past and future windows of length T , the first step is to compute the spatiotemporal covariance
matrix, which is O

(
n2T 2Ttot

)
. The time complexity of DCA’s optimization procedure does not scale

in the total amount of data since the objective references the data only through this spatiotemporal
covariance matrix which is computed prior to optimization. Each evaluation of the objective, or
its gradient, requires computing 2T quadratic products of the form V TC∆tV , each of which is
O
(
n2d+ nd2

)
, as well as the log-determinants, which are O

(
T 3d3

)
. Altogether, each evaluation is

O
(
Tn2d+ Tnd2 + T 3d3

)
. For all datasets we considered, optimization time dominated the time

required to compute the spatiotemporal covariance matrix.

B Datasets and preprocessing

B.1 Lorenz attractor synthetic data

The governing equations of the Lorenz attractor are [4]

ẋ = σ (y − x)

ẏ = x (ρ− z)− y
ż = xy − βz.

(2)

In all appearances of the Lorenz attractor in the main text, we used the parameters σ = 10, β = 8
3

and ρ = 28, which place the system in the chaotic regime. We used an integration time step of
∆t = 5× 10−3, then downsampled the data by a factor of 5.

For the 30-dimensional noisy embedded Lorenz attractor used in Figures 1-3, we first generated three-
dimensional Lorenz data as described above, then embedded the dynamics into 30-dimensional space
via a random orthogonal embedding. We then added Gaussian white noise, which we parameterized
by the eigenspectrum and eigenvectors of its covariance matrix. In particular, the eigenspectrum was
given by

λj = σ2 exp

(
− 2j

dnoise

)
(3)

where σ2 controls the overall amount of noise and dnoise controls the effective dimensionality of the
noise. In all cases, we used dnoise = 7. In Fig. 1, the parameter σ2, which is also the variance of the
first principal component of of the noise, was varied to obtain different SNR values. In Figures 2 and
3, σ2 was fixed to achieve an SNR of unity. The eigenvectors of the noise covariance were chosen
uniformly at random with the constraint the leading dnoise eigenvectors had close-to-median principal
angles with respect to the subspace containing the Lorenz attractor.
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B.2 Monkey motor cortical dataset

O’Doherty et al. [5] released multi-electrode spiking data for both M1 and S1 for two monkeys during
a continuous grid-based reaching task. We used M1 data from the subject “Indy” (specifically, we
used the file “indy_20160627_01.mat”). We discarded single units with fewer than 5,000 spikes,
leaving 109 units. We binned the spikes into non-overlapping bins (100 ms in Fig. 3, 50 ms in Figures
2 and 4), square-root transformed the data and mean-centered the data using a sliding window 30 s in
width.

B.3 Rat hippocampal data

Glaser et al. [6] released the original data of Mizuseki et al. [7] (dataset “hc2”, session “ec014.333”).
The data consist of 93 minutes of extracellular recordings from layer CA1 of dorsal hippocampus
while a rat chased rewards on a square platform. We discarded single units with fewer than 10 spikes,
leaving 55 units. We binned the spikes into non-overlapping 50 ms bins, then square-root transformed
the data.

B.4 Temperature dataset

The temperature dataset consists of hourly temperature data for 30 U.S. cities over a period of 7
years from OpenWeatherMap.org [8]. We downsampled the data by a factor of 24 to obtain daily
tempeartures.

B.5 Accelerometer dataset

Malekzadeh et al. [9] released accelerometer data which records roll, pitch, yaw, gravity {x, y, z},
rotation {x, y, z} and acceleration {x, y, z} for a total of 12 kinematic variables. The sampling rate
is 50 Hz. We used the file “sub_19.csv” from “A_DeviceMotion_data.zip”.

C Frequency-domain predictive information computation

Consider a one-dimensional discrete-time Gaussian process Y with zero mean and autocovariance
function f(∆t). We can use Theorem 2.5 from Li and Xie [10] (see also [11]) to compute the
predictive information of Y in terms of the discrete-time Fourier transform (DTFT) of f(∆t).
Specifically, this theorem says that when the asymptotic predictive information Ipred

T→∞(Y ) is finite,
we have

Ipred
T→∞(Y ) =

∞∑
k=1

kb2k, (4)

as stated in the main text. The numbers {bk} are called the cepstrum coefficients of Y . They comprise
the DTFT of the logarithm of the DTFT of f(∆t):

bk =
1

2π

∫ π

−π
dλe−iλk log f̃(λ), f̃(λ) =

∞∑
k=−∞

e−iλkf(k). (5)

In practice, rather than directly computing the autocovariance function f(∆t) of Y and taking its
DTFT, we compute the power spectral density of Y , which is equivalent to the DTFT of f(∆t).
Specifically, we use the FFT in conjunction with a window function to compute the power spectral
density in many length-2T windows of Y , then average the results together. If f(∆t) falls off to
zero with a timescale τ � 2T , then this method computes the full asymptotic predictive information
Ipred
T→∞(Y ) in the limit of infinite samples. If f(∆t) does not fall off this quickly, then the window

function effectively forces the autocovariance to decay to zero at ∆t = ±2T , yielding a regularized
estimate of Ipred

T (Y ).
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D Asymtotic predictive information derivations

D.1 Exponential autocovariance

Let Y1 be a discrete-time Gaussian process whose autocovariance function f1(∆t) is an exponential:

f1(∆t) = exp

(
−
∣∣∣∣∆tτ

∣∣∣∣) . (6)

It is easy to show that f1(∆t) is the autocovariance function of an AR(1) process

yt = Ayt−1 + et (7)

where
〈
e2
t

〉
t

= Ω2 and 〈etet+∆t〉t = 0 for |∆t| ≥ 1. The autocovariance of this process is

E[ytyt+∆t] =
Ω2

1−A2
A−|∆t|, (8)

and if we set Ω2 = 1− e 2
τ and A = e

1
τ we have

E[ytyt+∆t] = e−
|k|
τ = f1(∆t). (9)

Since this process is Markovian, Ipred
T (Y1) is simply the mutual information between two consecutive

time steps for all T ≥ 1. Thus, we have

Ipred
T→∞ (Y1) = −1

2
log
(
1− f1(1)2

)
= −1

2
log
(

1− e− 2
τ

)
(10)

and for τ � 1, this becomes

Ipred
T→∞ (Y1) =

1

2
log

τ

2
. (11)

D.2 Squared-exponential autocovariance

Let Y2 be a discrete-time Gaussian process whose autocovariance function f2(∆t) is a squared-
exponential:

f2(∆t) = exp

(
−∆t2

τ2

)
. (12)

We will compute the predictive information using the cepstrum coefficients. The DTFT f̃2(λ) of
f2(∆t) is

f̃2(λ) =

∞∑
k=−∞

cos(kλ)f2(k) =
√
πτe−

1
4λ

2τ2
∞∑

k=−∞

e−τ
2(k2π2+kπλ). (13)

Taking the log gives

log f̃2(λ) =
1

2

√
π + log τ − 1

4
λ2τ2 + log

(
1 + e−τ

2(π2+πλ) + e−τ
2(π2−πλ) + · · ·

)
. (14)

For τ � 1, the logarithmic term on the RHS is approximately log 1 = 0 (this is not true close to the
endpoints λ = ±π where this term is approximately log 2, however log f̃2(λ) also contains a term
quadratic in τ which dominates the logarithmic term close to λ = ±π). Taking another DTFT gives
the cepstrum coefficients:

bk ≈
1

π

∫ π

0

cos(kλ)

(
1

2

√
π + log τ − 1

4
λ2τ2

)
dλ = −τ

2 cos(kπ)

2k2
. (15)

Thus, we have

Ipred
T→∞(Y2) =

1

2

∞∑
k=1

kb2k =
τ4

8

∞∑
k=1

1

k3
=
ζ(3)

8
τ4 ≈ 0.15026× τ4 (16)

where ζ is the Riemann zeta function.
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E Note on Slow Feature Analysis

If we allow for one-dimensional projections of X with negative one-time step autocorrelation ρ1 < 0,
then the one time-step mutual information I1 is non-monotonically related to ρ1 across different
projections according to I1 = − 1

2 log
(
1− ρ2

1

)
. As a result, SFA is no longer guaranteed to coincide

with DCA for d = 1, nor for time-reversible processes with d ≥ 1. However, if we modify SFA to
order the projections according to decreasing ρ2

1, rather than decreasing ρ1, then these guarantees are
restored. The notion that slowness (ρ1 > 0) and fastness (ρ1 < 0) are equivalent in the eyes of mutual
information was pointed out by Creutzig and Sprekeler [12], who presented the information-theoretic
interpretation of SFA for time-reversible processes.

F Note on the Past-Future Information Bottleneck

The problem of finding representations of time series that optimally capture past-future mutual
information has been studied in the context of the Information Bottleneck (IB), a method for com-
pressing data in a way that retains its relevant aspects [13]. In particular, the Past-Future Information
Bottleneck (PFIP) seeks a compressed representation Y of Xpast that has maximal mutual information
with Xfuture, subject to a fixed amount of compression [12, 14, 15]. This corresponds to a variational
problem with the Lagrangian

LPFIB = I (Xpast;Y )− βI (Y ;Xfuture) , (17)

where β controls the tradeoff between compression of Xpast and prediction of Xfuture. The most
fundamental difference between the PFIB and DCA is that the PFIB compresses only the past,
whereas DCA compresses both the past and the future by projecting to a lower-dimensional space.
However, there is nonetheless a case in which the PFIB and DCA solutions coincide.

When the “observed” and “relevant” variables in an IB problem (Xpast and Xfuture in the PFIB)
are jointly Gaussian, then the solution is closely related to CCA [16]. As β is increased, the
solution undergoes a cascade of structural phase transitions which increase the dimensionality of the
compressed representation, i.e., the number of CCA components retained. For one-time step past
and future windows, the PFIB solution is to retain the top-d left singular vectors of C−1/2

0 C1C
−1/2
0 ,

where d is determined by β. For time-reversible processes, the PFIB solution coincides with that of
DCA (and with SFA [12]). This is potentially surprising, since the PFIB maximizes I (yt;xt+1) while
DCA maximizes I (yt; yt+1). Put differently, in Gaussian processes with time-reversal symmetry,
the features of the past which are the most self-predictive are also the most predictive overall. For
time-irreversible processes, DCA, SFA and the PFIB admit mutually distinct solutions: we show in
the main text that DCA and SFA disagree, and the PFIB solution must be different from those of
both DCA and SFA since the solutions to both of these methods are invariant under time-reversal
transformations while the solution to the PFIB is not.

G Absolute R2 values

Fig 1 shows the absolute held-out R2 values for the DCA vs. SFA comparison in Fig 4 of the main
text. Note that SFA does not depend on T .

H Neural Forecasting

For the M1 and hippocampus datasets in Fig 4 of the main text, we also ran the forecasting analysis in
which the projected neural state is used to predict future full-dimensional neural states. Fig 2 shows
comparisons of DCA with PCA and SFA. At short time lags, PCA is expected to have higher R2 due
to the optimality of PCA at capturing the Frobenius norm. At longer time lags, DCA, PCA, and SFA
all have relatively low predictive power.

I Kalman Filter and Gaussian Process Factor Analysis

Two popular dynamical generative models used to infer latent dynamics from time series data are the
Kalman Filter (KF) and Gaussian Process Factor Analysis (GPFA). The KF assumes that a latent
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Figure 1: Absolute R2. Absolute held-out R2 values for the DCA vs. SFA comparisons in Fig 4 of
the main text. See main text for legends.

Figure 2: Neural forecasting. For the M1 and hippocampus datasets, the held-out R2 is shown
across dimension and lags.

time series with linear, Gaussian dynamics has been linearly embedded into observation space with
Gaussian observation noise. Similarly, GPFA assumes that a latent time series whose components
are independent Gaussian processes with a common kernel, but independent timescales, has been
linearly embedded into observation space with Gaussian observation noise. In both cases, the model
parameters are fit using the expectation-maximization (EM) algorithm [17, 18]. To infer the latent state
at time t, each model admits both a causal procedure, which uses observations at times t′ ∈ [1, . . . , t],
as well as a non-causal procedure, which uses observations at times t′ ∈ [1, . . . , T ]. For the KF,
the causal and non-causal procedures are called Kalman filtering and smoothing, respectively. For
each of the four datasets analyzed in the main text, we inferred latent states using the KF and GPFA
using both causal and non-causal inference procedures using 5-fold cross validation. Note that while
both the causal and non-causal procedures for each method use many observations to infer each
time step of the latent dynamics, DCA uses only one. Thus, performance comparisons between
DCA and the KF or GPFA are somewhat ill-posed since the latent factors for DCA incorporate less
information. However, between the causal and non-causal inference procedures, the causal procedures
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are better suited for comparison to DCA since their resulting latent factors do not incorporate future
observations.

The KF model was fit using its EM algorithm, as derived in Ghahramani and Hinton [17]. During the E
step, which computes the parameters of the Gaussian distribution over the latent states using forward
and backward passes, we employed a steady-state optimization in which we did not recompute
matrices which had converged to their steady-state values during each pass1. Latent factors inferred
using both the causal and non-causal inference procedures for the KF performed better than factors
extracted using DCA at decoding behavioral variables from neural data, and the performance gap
was largest for large numbers of factors and short time lags (Fig. 3, M1 and Hippocampus). For
the non-neural datasets, factors extracted using DCA generally had better forecasting performance,
particularly for the accelerometer dataset (Fig. 3, Temperature and Accelerometer).
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Figure 3: DCA vs. the Kalman filter. For all panels, color indicates the number of factors and
marker type indicates the lag for prediction (see Fig. 4 of the main text for legends). Each panel
compares held-out R2 for DCA vs. PCA as a function of the number of factors and prediction lag.
Top row: causal inference procedure (Kalman filtering). Bottom row: non-causal inference procedure
(Kalman smoothing).

We used the MATLAB code accompanying Yu et al. [18] for EM and inference in the GPFA model.
For all datasets, the data were segmented into non-overlapping “trials” of 100 time steps, which
provided substantial speedups. For performance evaluation, factors extracted by DCA were segmented
to have the same trial structure as those inferred using GPFA and care was taken to not evaluate
decoding or forecasting performance across trial boundaries. EM was initialized using factor analysis
and run for 300 iterations, which we confirmed was adequate for convergence based on inspection of
the log-likelihood over training. The provided implementation of GPFA automatically segmented our
trials of length 100 into shorter segments of length 20 during fitting. Latent factors inferred using the
causal procedure for GPFA performed slightly better than factors extracted using DCA at decoding
behavioral variables from neural data (Fig. 4, M1 and Hippocampus, top row) while the performance
gap for the non-causal inference procedure was larger (Fig. 4, M1 and Hippocampus, bottom row).
For the non-neural datasets, factors extracted using DCA performed slightly better than those inferred
using either the causal or non-causal procedures for GPFA (Fig. 4, Temperature and Accelerometer).

J Inferred states and leverage scores

For each of the four datasets considered, we visualized the extracted latent states after three-
dimensional projections found using DCA and PCA. Fig 5 shows the projections from DCA (top

1Our Kalman filter EM code is available at: https://github.com/davidclark1/FastKF

6

https://github.com/davidclark1/FastKF


0.0 0.8GPFA (C) R2
0.0

0.8

DC
A 

R
2

T = 5 bins
M1

0 0.3GPFA (C) R2
0

0.3

DC
A 

R
2

T = 5 bins
Hippocampus

0.6 1.0GPFA (C) R2
0.6

1.0

DC
A 

R
2

T = 5 bins
Temperature

0 1.0GPFA (C) R2
0

1.0

DC
A 

R
2

T = 5 bins
Accelerometer

0 0.8GPFA (NC) R2
0

0.8

DC
A 

R
2

T = 5 bins
M1

0 0.3GPFA (NC) R2
0

0.3

DC
A 

R
2

T = 5 bins
Hippocampus

0.6 1.0GPFA (NC) R2
0.6

1.0

DC
A 

R
2

T = 5 bins
Temperature

0 1.0GPFA (NC) R2
0

1.0

DC
A 

R
2

T = 5 bins
Accelerometer

Figure 4: DCA vs. GPFA. For all panels, color indicates the number of factors and marker type
indicates the lag for prediction (see Fig. 4 of the main text for legends). Each panel compares held-out
R2 for DCA vs. PCA as a function of the number of factors and prediction lag. Top row: causal
inference procedure. Bottom row: non-causal inference procedure.

panels in pairs) compared to the projections from PCA (bottom panel in pairs). Since DCA yields a
subspace rather than an ordered sequence of components, we transformed the DCA projections using
PCA so that the DCA components were ordered by variance explained, making the comparison to
PCA more clear. The Spearman’s rank-correlation between the top 3 components of DCA and PCA
are: M1 (0.98, 0.76, 0.3), HC (0.42, 0.15, 0.12), Temperature (1.0, 0.93, 0.78) and Accelerometer
(0.89, 0.88, -0.11). As expected, the DCA projections are typically lower amplitude compared to the
PCA projections. This is exaggerated in the hippocampus dataset. In the accelerometer dataset, the
DCA projections are smoother than their PCA counterparts.

The DCA and PCA subspaces can also be compared through their leverage scores [19] which measure
the level of alignment between a subspace and the original measurement axes. Given an orthonormal
basis V ∈ Rn×d for a d-dimensional subspace, the leverage score for measurement axis j is

πj =
1

d

d∑
i=1

(vij)
2 (18)

where, from the definition,
∑
j πj = 1 and 0 ≤ πj ≤ 1. This means that πj can be thought of as a

distribution.

Fig 6 shows the sorted leverage scores and a comparison of the DCA and PCA leverage scores across
measurement axes. For all datasets except for the hippocampus dataset, the DCA leverage scores
have a sharper peak compared to the PCA leverage scores. For the neural datasets, the DCA leverage
scores have a larger tail compared to the PCA leverage scores. On the temperature and accelerometer
datasets, DCA has a few measurement axes with large leverage scores and a slowly decaying tail
while the PCA leverage scores decay approximately linearly. Only on the M1 dataset are the DCA
and PCA leverage scores significantly correlated as measured by the Spearman’s rank-correlation
(RC).

7



2.5

0.0

2.5

DC
A

Dim 3 Dim 2 Dim 1

0 2 4 6 8 10 12
Time (s)

2.5

0.0

2.5

PC
A

5

0

5

DC
A

0 2 4 6 8 10 12
Time (s)

5

0

5

PC
A

2

0

2

DC
A

0 100 200 300 400 500 600
Time (days)

2

0

2

PC
A

5

0

5

DC
A

0 20 40 60 80 100
Time (s)

5

0

5

PC
A

M
1

HC
Te

m
pe

ra
tu

re
Ac

ce
le

ro
m

et
er
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