Supplementary material
Learning search spaces for Bayesian optimization:
Another view of hyperparameter transfer learning

Valerio Perrone, Huibin Shen, Matthias Seeger, Cédric Archambeau, Rodolphe Jenatton*
Amazon
Berlin, Germany
{vperrone, huibishe, matthis, cedrica}@amazon.com

A Tuning SGD for ridge regression

The problem we consider in the toy SGD example is the following: denoting the squared loss by
l;(u) = $(6,u — 7;)%, we focus on solving

uckp

min L(w) = 3 _{fi(w) +rllul?} M

with the stochastic gradient (SGD) update rule at step k:

v=yv+nVL; (u(k)) 2

ub+ =y _y 3)

where 0; € RP and 7; € R refer to input and target of the regression problem while we use the
momentum v € [0.3,0.999] together with the learning rate parametrization n € [0.001, 1.0] and
r € [0.001, 10]. The data (6;, 7;)’s are otherwise generated like in [2].

The complete results for this setting are presented in Figure[AT] The Box and E11ipsoid approaches
can significantly boost the baseline methods: Random, GP, GP warping and SMAC.

Aggregated Toy SGD results

—— Random

= = Ellipsoid + Random
----- Box + Random

----- Box + SMAC
GP warping
Box + GP warping

0.0 \ e N
% \

A,
-0.2 z wd""“‘“"“"“""-wwa_g lllll

0.2 &

logl@(normalized RMSE)

) 10 20 30 40 50
iteration

Figure Al: Tuning SGD for ridge regression. Comparison of BO algorithms with Box transfer
learning counterparts.

We next studied the impact of introducing slack variables in the Box approach to exclude outliers.
An example of a learned Box search space for the 3 hyperparameters of SGD on one of the ridge

*Work done while affiliated with Amazon; now at Google Brain, Berlin, rjenatton@google . com

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

regressions is illustrated in Figure [A2] together with its slack counterpart. The slack extension
effectively provides a more compact search space by leaving out the outlier learning rate value (~
0.06). A similar result was obtained with the E11ipsoid-based learned search space.

242 0.9 LT 0.9
. 08 € 4 08 E
07 £ 07 g
Cl - -
’ 06 £ e 06 £
5L ¢ 05 £ oa F 05 8
. . > -
- i o. 1 - 04 .y .. 3 . 04
[et 03 - TN ”
. 10 . 10
— 8 o &
5 o™ 6 oo™
200001 ;05 0;““-___ Fl \a\ﬂ?‘ 000001 0y 053\“\‘“ 4 \a‘ﬂ?\
lep 2 0.03 1 PR learn 203 .04 2 o8
ing rata 005 ngg 0 & g o 005 ggg 0 €
@) ®)

Figure A2: Visualization of the learned Box search space (a) without and (b) with slack variables. The
blue dots are the observed evaluations and the orange dots are the samples drawn from the learned
Box. The slack-extension successfully exclude the outlier values for the learning rate.

B Tuning binary classifiers over multiple OpenML data sets

We first give more details on the experimental setup and then discuss some additional results not
included in the main text. We follow the protocol and data collection from [1]], which we describe
below to provide a self-contained description.

B.1 Experiment setup

In the OpenML [3] experiments, we considered the optimization of the hyperparameters of the
following three algorithms:

e Support vector machine (SVM, flow_id 5891),
e Extreme gradient boosting (XGBoost, flow_id 6767).
e Random forest (RF. flow_id 6794).

Note that some hyperparameters can be log scaled. In Section[D] we show an additional set of results
for the log scaled search spaces.
B.1.1 Support vector machine

The SVM tuning task consists of the following 4 hyperparameters:

e cost (float, min: 0.000986, max: 998.492437; can be log-scaled),
e degree (int, min: 2.0, max: 5.0),
e gamma (float, min: 0.000988, max: 913.373845; can be log-scaled),

e kernel (string, [linear, polynomial, radial, sigmoid]).

This tuning task exhibits conditional relationships with respect to the choice of the kernelE]

For this flow_id, we considered the 30 most evaluated data sets whose task_ids are: 10101,
145878, 146064, 14951, 34536, 34537, 3485, 3492, 3493, 3494, 37, 3889, 3891, 3899, 3902, 3903,
3913, 3918, 3950, 6566, 9889, 9914, 9946, 9952, 9967, 9971, 9976, 9978, 9980, 9983.

?For details, we refer the reader to the API from www . rdocumentation.org/packages/e1071/versions/1.6-8/topics/svm

B.1.2 XGBoost

The XGBoost tuning task consists of 10 hyperparameters:

e alpha (float, min: 0.000985, max: 1009.209690; can be log-scaled),

e booster (string, ['gbtree’, ’gblinear’]),

e colsample_bylevel (float, min: 0.046776, max: 0.998424),

e colsample_bytree (float, min: 0.062528, max: 0.999640),

e eta (float, min: 0.000979, max: 0.995686),

e lambda (float, min: 0.000978, max: 999.020893; can be log-scaled)

e max_depth (int, min: 1, max: 15; can be log-scaled),

e min_child_weight (float, min: 1.012169, max: 127.041806; can be log-scaled),
e nrounds (int, min: 3, max: 5000; can be log-scaled),

e subsample (float, min: 0.100215, max: 0.999830).

This tuning task exhibits conditional relationships with respect to the choice of the boosterE]

For this flow_id, we considered the 30 most evaluated data sets whose task_ids are: 10093,
10101, 125923, 145847, 145857, 145862, 145872, 145878, 145953, 145972, 145976, 145979,
146064, 14951, 31, 3485, 3492, 3493, 37, 3896, 3903, 3913, 3917, 3918, 3, 49, 9914, 9946, 9952,
9967.

B.1.3 Random forest

The random forest tuning task consists of the following 5 hyperparameters:

e mitry (int, min: 1, max: 36),

num_tree (int, min: 1, max: 2000; can be log-scaled),

replace (string, [true, false]),

respect_unordered_factors (string, [true, false]),
sample_fraction (float, 0.1, 0.99999)

For this flow_id, we considered the 30 most evaluated data sets whose task_ids are: 125923,
145804, 145836, 145839, 145855, 145862, 145878, 145972, 145976, 146065, 31, 3492, 3493, 37,
3896, 3902, 3913, 3917, 3918, 3950, 3, 49, 9914, 9952, 9957, 9967, 9970, 9971, 9978, 9983.

B.2 Results

We first considered GP warm-start T=29, which transfers the k& best evaluations from each of the
29 left-out problems, appending the meta-feature vector to the hyperparameter configuration as input
to the GP. The results are shown in Figure[BTa] It is clear that Box and E11ipsoid combined with
random already outperform this transfer learning baseline.

We also ran experiments with Box + GP warm-start T=29 (n=+*) and Box + ABLR (n=%) [28],
where n evaluations from each related problem are used to find the bounding box, and 256 — n
are used for GP and ABLR. In all cases, both Box + Random and the vanilla transfer learning
approaches are significantly outperformed by Box + GP warm-start (in Figure[BTb) and Box +
ABLR (in Figure [BIc). This demonstrates that alternative transfer learning algorithms can benefit
from additional speed-ups when a subset of the available evaluations from the related problems are
used to tighten the search space.

Next, we studied the effect of the number n of samples from each problem on Box + Random. Results
are reported in Figure We found that with a small number (n = 8) of samples per problem,
learning the search space already provides sizable gains. We also studied the effects of the number of

3For details, we refer the interested readers to the API from
www.rdocumentation. org/packages/xgboost/versions/0.6-4

Aggregated OpenML results Aggregated OpenML results Aggregated OpenML results
—— Random
----- Box + Random
ABLR
----- Box + ABLR (n=255)
----- Box + ABLR (n=248)

Box + ABLR (n=192)

0.5

= Random = Random

----- Box + Random ===+« Box + Random

= GP warm-start T=29

----- Box + GP warm-start T=29 (n=198)
Box + GP warm-start T=29 (n=140)

----- Box + GP warm-start T=29 (n=24)

0.4
— = Ellipsoid + Random

GP
~ GP warm-start T=29 (top 1)
= GP warm-start T=29 (top 2)
—— GP warm-start T=29 (top 4)
= GP warm-start T=29 (top 8)

0.3 0.3
0.2
0.1

0.0

logl0(normalized (1-AUC))
1og10(normalized (1-AUC))
logl0(normalized (1-AUC))

-0.1 -0.1 -0.1
0 10 20 30 40 50] 10 20 30 40 50] 10 20 30 40 50
iteration iteration iteration
(a) (b) (©

Figure B1: OpenML. (a) Performance of GP warm-start T=29 vs. our approaches. (b) Box + GP
warm-start T=29 vs. GP warm-start T=29. (c) Box + ABLR vs. ABLR.

source problems. Results are given in Figure[B2b] By reducing the search space, our transfer learning
approach performs well even if only 3 previous problems are available, while transferring from 9
problems yields most of the improvements. The results for E11ipsoid + Random are qualitatively
similar.

Aggregated OpenML results Aggregated OpenML results

0.5 0.5
= Random = Random
0.4 = Box + Random (n=1) 0.4 = Box + Random (T=3)
5 ' = Box + Random (n=2) 5 ' —— Box + Random (T=9)
2 = Box + Random (n=4) 2 = Box + Random (T=15)
:' 0.3 = Box + Random (n=8) :' 0.3 = Box + Random (T=21)
- = Box + Random (n=16) - = Box + Random (T=27)
N 0.2 Box + Random (n=32) ~ N 0.2
= = Box + Random (n=64) o
g 0.1 Box + Random (n=128) E 0.1
£ Box + Random (n=256) £
2 2
o 0.0 o 0.0
o o
- —
-0.1 -0.1
0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration
(a) (b)

Figure B2: OpenML. (a) Sample size complexity and (b) robustness the number of related problems
for Box + Random.

We then studied the ability of the proposed slack-extensions of our method to remove outliers and
lead to a more compact search space. As the number of related problems grows, the volume of the
smallest box or ellipsoid enclosing all minimum points may be overly large due to some outlier
solutions. For example, we observed that the optimal learning rate 1 of XGBoost is typically < 0.3,
except that =~ 1 for one data set. Our slack extensions are able to neutralize such outliers, as shown
in Figure [B3a]for an example 2-d slice of the slack-ellipsoid. On the XGBoost problems, the slack
formulations are able to appropriately shrink the search space and considerably improve performance
(Figure[B3b). The performance gain does not emerge for SVM in Figure [B4aland RF in Figure [B4b]
which can be attributed to the available solutions being more homogeneous across problems.

C Exploring the search space with more resources

The approach we propose aims to lift the burden of choosing the search space. When running
experiments for a fixed amount of iterations, this has the effect of exploring the (restricted) search
space more densely, which we showed to be beneficial. To assess how much accuracy can potentially
be lost compared to methods that search the entire space (with more resources), we re-ran our
experiments with 16 times as many iterations. Figure [CTa]and Figure [CID|respectively show the
OpenML and neural network results aggregated across all tasks: restricting the search space leads to
considerably faster convergence and GP fails to find a better solution, only eventually catching up in
the neural network case. This suggests that there is almost no loss of performance, but just a speed-up
effect of finding a very good solution in as few evaluations as possible.

Aggregated XGBoost results

0.2 ¢
\ —— Random
20000 i Box + Random
15000 S 6.1 1 + Slack-Box + Random
2 . == Ellipsoid + Random
10000) =\ Slack-Ellipsoid + Random
w5000 o, @ - 0.0 —
E ?. ¥ 3 o | B
E 0 o Pae . s .
[IR, N
E g1 N TelSo e
-5000 E 0.1
- LN ~—
....... ~
—10000 % """"""" : ------ --.-*ll'ﬂ.-‘“'
-15000 S-0.2
0.0 0z 0.4 06 08 10
eta
0.3 10 20 30 40 50
(a) iteration

(b)

Figure B3: XGBoost. (a) The fitted slack-ellipsoid effectively removes the outlier step size eta. (b)
The slack extensions further boost performance over the vanilla box and ellipsoid formulations.

0.20 Aggregated RF results Aggregated SVM results

0.20
—— Random ——— Random
----- Box + Random ===== Box + Random
—~ 0.15 st —~ 0.15
s R | ack-Box + Random c T R | [Slack-Box + Random
2 == Ellipsoid + Random 2 — = Ellipsoid + Random
:'1 0.10 o Slack-Ellipsoid + Random : 0.10 Slack-Ellipsoid + Random
=l =
I &
= 0.05 = 0.05
© ©
E E
s s
£ 0.00 £ 0.00
=l =3
= =
g g
~-0.05 ~-0.05
018 10 20 30 40 s 910 10 20 30 40 50
iteration iteration
(@) (b)

Figure B4: Results for the slack extensions on random forest (RF) (a) and SVM (b).

D Tuning OpenML binary classifiers in the log scaled search space

We presented results on the OpenML data in the main text and Section [B] of the supplementary
material. One feature of the OpenML setting is that the hyperparameter search spaces can be wide,
such as the n_rounds of XGBoost which can go up to 5000. Therefore, we re-ran the OpenML
experiments in the alternative scenario of log-scaled search spaces. A key message is that the
conclusions are qualitatively similar, while the gaps between the different models are smaller since
the tasks are overall simpler.

We repeated the experiments on Box combined with Random, GP, SMAC and show the results in
Figure [DTa] where we see consistent improvements using the Box approach. Comparing to the
vanilla transfer learning method, namely GP warm-start, Box + GP also demonstrated improved
performance as shown in Figure [DIb] Crucially, we can combine GP warm-start with Box to
achieve even better performance as shown in Figure

We then studied the effects of the number of samples and number of related problems used to learn the
search space of E11ipsoid + Random and Box + Random. Both the E11ipsoid and Box are quite
robust to the number of samples: the difference is smaller than in the setting without log scaling, and
they both improve over Random, as shown in Figure[D2a]and Figure[D3a] Figure[D2b|and Figure[D3b]
show that, while using 3 related problems seems not enough to learn a good search space for the two
approaches, with 9 related problems both the Box and the E11ipsoid improve on Random, especially
at the beginning of the optimization. Finally, the E11ipsoid approach tends to outperforms Box,
pointing to the benefits of a more flexible representation of the search space.

0.5 Aggregated OpenML results

Aggregated Neural Network results

1.50
— Random = Random
04 4 Box + Random 1.2 | wea Box + Random

= — GP _ —— GP
2 1 e Box + GP Wwolee e Box + GP
4 0.3 =
- T 0.75
g 0.2 3
~ 0. 3
s} T 0.50
© £
E g
s 0.1 £ 0.25
c (=]
=% >
> 0.0 S 0.00
o
S

-0.25

-0.1
-0.50
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
iteration iteration

(@) (b)

Figure C1: Results with 16 times more iterations on OpenML algorithms (a) and a 2-layer neural
network (b).

0.30 Aggregated OpenML results (log scaling) 0.30 Aggregated OpenML results (log scaling) 0.30 Aggregated OpenML results (log scaling)
3 —— Random —— Random ';\ —— Random

0.25 & Box + Random 0.25 E@ v Box + Random 0.25 @k e Box + Random
5 == Ellipsoid + Random = == Ellipsoid + Random 5 - —— GP warm-start
2 0.20 — GP 2 0.20 — GP 2 0.20 Box + GP warm-start (n=255)
a | e e Box + GP a | T e Box + GP o) \ «eee Box + GP warm-start (n=248)
- 0.15 —— SMAC - 0.15 —— GP warm-start (top 16) - 0.15 =) Box + GP warm-start (n=192)
& 0 e Box + SMAC 8 — GP warm-start (top 32) & :
= 0.10 —— GP warping = 0.10 —— GP warm-start (top 64) = 0.10
E 1 YR Box + GP warping £ —— GP warm-start (top 128) £
2 0.05 2 o0.65 2 o0.65
=Y > >
g 2 2
g 0.00 g 0.00 g 0.00
2 = S

-0.05 -0.05 -0.05

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration

() (b) (©

Figure D1: OpenML in log scaled search space. (a) Performance of BO algorithms and their transfer
learning counterparts. (b) Box, Ellipsoid vs. GP warm-start. (c) Box + GP warm start vs.
GP warm start.

0.5 A gregated OpenML results (log scaling) 0.5 A gregated OpenML results (log scaling)

Ellipsoid
Ellipsoid
Ellipsoid
Ellipsoid

Random (n=32)
Random (n=64)
Random (n=128)
Random (n=256)

= Random = Random

— Ellipsoid + Random (n=1) —— Ellipsoid + Random (T=3)
0.4 —— Ellipsoid + Random (n=2) 0.4 —— Ellipsoid + Random (T=9)

= Ellipsoid + Random (n=4) —— Ellipsoid + Random (T=15)
0.3 — Ellipsoid + Random (n=8) 0.3 = Ellipsoid + Random (T=21)

— = Ellipsoid + Random (T=27)

+
+
+
+
Ellipsoid + Random (n=16)
+
+
+
+

=)
-
=)
-

loglO(normalized (1-AUC))
(<]
N
loglO(normalized (1-AUC))
o
N

0.0

=)
(=)

0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration

(@ (b)

Figure D2: OpenML in log scaled search space: (a) Sample size complexity and (b) robustness to the
number of related problems for E11ipsoid Random.

0.5 A gregated OpenML results (log scaling) 0.5 Aggregated OpenML results (log scaling)

Random
Box + Random (n=1)

Random
Box + Random (T=3)

50~4 —— Box + Random (n=2) 50-4 —— Box + Random (T=9)
2 — Box + Random (n=4) 2 —— Box + Random (T=15)
i‘@ 3 —— Box + Random (n=8) ée 3 —— Box + Random (T=21)
- — Box + Random (n=16) - — Box + Random (T=27)
E —— Box + Random (n=32) .?:1)
=0.2 —— Box + Random (n=64) 7g.2
= —— Box + Randonm (n=128) £
= - Box + Random (n=256) <
0.1 0.1
o o
o o
— —
0.0 0.0
0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration
(@) (b)

Figure D3: OpenML in log scaled search space: (a) Sample size complexity and (b) robustness to the
number of related problems for Box Random.

References

[1] V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau. Scalable hyperparameter transfer
learning. In Advances in Neural Information Processing Systems (NIPS), 2018.

[2] L. Valkov, R. Jenatton, F. Winkelmolen, and C. Archambeau. A simple transfer-learning extension
of Hyperband. In NIPS Workshop on Meta-Learning, 2018.

[3] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. ACM SIGKDD Explorations Newsletter, 15(2):49-60, 2014.

	Tuning SGD for ridge regression
	Tuning binary classifiers over multiple OpenML data sets
	Experiment setup
	Support vector machine
	XGBoost
	Random forest

	Results

	Exploring the search space with more resources
	Tuning OpenML binary classifiers in the log scaled search space

