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These Supplementary Materials provide additional information, detailed derivations and proof of
the results shown in the main text. Specifically, in Section S-I we provide a local stability analysis
and draw the phase diagram in the case d = 1 and d = 2. In Section S-II, we present a heuristic
derivation of the stochastic differential equation (SDE) for the microscopic states. Next, in Section
S-III, we show a derivation of the ODE for the macroscopic states from the weak formulation of the
PDE. We then establish the full proof of the Theorem 1 in Section S-IV. Finally, we present the local
stability analysis of the ODE’s fixed points in Section S-V.

Notation: Throughout the paper, we use Id to denote the d× d identity matrix. Depending on the
context, ‖·‖ denotes either the `2 norm of a vector or the spectral norm of a matrix. For any x ∈ R,
the floor operation bxc gives the largest integer that is smaller than or equal to x. We denote [v]i the
ith element of the vector v and denote [M ]i,j the element at ith row and jth column of the matrix
M . Finally, C(T ) denotes a constant that depends on the terminal time T , and C denotes a general
constant that does not depends on T and n. Both C and C(T ) can vary line to line.

S-I Phase diagram for the case d = 1 and d = 2

In what follows, we provide a thorough study of all the fixed points of the ODE (13) when the number
of feature d = 1 and d = 2. In particular, three major phases are identified under different settings of
the learning rates τ and τ̃ with the fixed model parameters ηT, ηG, Λ, and Λ̃ .

Phase diagram for d = 1. By analyzing the local stabilities of these fixed points as illustrated in
Figure 1(a), we obtain the phase diagram as shown in Figure 1(b). For simplicity, we only present
the result when ηT = ηG = 1, and Λ = Λ̃, which is denoted by Λ used in the remaining part of this
section. Detailed derivations are presented in S-V.

Even in this simplest case, we find there are in total 5 types of fixed points, the locations of which are
visualized in the 3-dimensional space (P, q, r) shown in Figure 1(a). Each type of the fixed points
has an intuitive meaning in terms of the two-player game between G and D. We list the detailed

information in Table 1, in which we define a function β(τ) =

{
[1 + (Λ

2 −
Λ
τ )−1]−1, if τ ≤ 2Λ

Λ+2

+∞, otherwise
.

Noninformative phase: We say that the ODE (13) is in a noninformative phase if either a type-1
or type-2 fixed point in Table 1 is stable. In this case, P = 0, which indicates that the generator’s
parameter vector V has no correlation with the true feature vector U . In Figure 1(b), the region
labeled as noninfo-1 is the stable region for the type-1 fixed point, and noninfo-2 is the stable region
for the type-2 fixed point. The two regions have no overlap. However, we note that in noninfo-1, the
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Table 1: List of the fixed points of the ODE (13) when d = 1 and Λ = Λ̃.

Type Location Existence Stable Region Intuitive Interpretation

1 P = q = 0,
r = 0

always τ > Λ2, τ̃τ <
τ+Λ

Λ

Both G and D fail, and
they are uncorrelated

2 P = q = 0
r = ±r∗ 6= 0

τ̃
τ ≥

τ+Λ
Λ or

τ̃
τ ≤ 1− τ

2

max{2, τ+Λ
Λ } ≤

τ̃
τ ≤

β(τ)
Both G and D fail, and

they are correlated

3 q = r = 0
|P | ∈ (0, 1]

always
|P | = 1 is stable if τ̃τ ≤
min{ 2τ

Λ ,max{ τ
2Λ−1

|τ−Λ| , 4}}
G wins and D loses

4 P = r = 0
q = ±q∗ 6= 0

always always unstable G loses and D wins

5 None of P , q
or r is zero

not always, at most
8 fixed points

can be computed
numerically

Both G and D are
informative

type-3 fixed points can also be stable, in which case the stationary point of the ODE is determined by
the initial condition.

Informative phase: We say that the ODE (13) is in an informative phase if neither type-1 nor type-2
fixed point is stable, and if at least one fixed point of type-3 and type-5 is stable. In this case, it is
guaranteed that P is nonzero, indicating that the generator can achieve non-vanishing correlation
with the real feature vector. In addition, the stable regions for the type-3 and type-5 fixed points are
disjoint. They are shown in Figure 1(b) as info-1 and info-2, respectively. The difference between
the two region is that, in info-1, q is exactly 0 indicating that the discriminator is completely fooled,
whereas in info-2, q is nonzero.

Oscillating phase: We say that the ODE (13) is in an oscillating phase if none of the fixed points in
Table 1 is stable. In this phase, limiting cycles emerge and the system will oscillate on these cycles
indefinitely. Moreover, we found two types of limiting cycles.

To further illustrate the phase transitions, we draw ODE trajectories and phase portraits in Figure 2
corresponding to different choices of the step sizes (from left to right, τ̃ = 0.03, 0.2, 0.4, 0.47).

The two figures in the first column of Figure 2 show a case in the Info-1 phase. The bottom red dot
in Figure 1.(b) represents this configuration of the step sizes, where τ̃ /τ is small. The top figure of
Figure 2.(a) shows the dynamics of Pt, qt and rt, and the bottom figure shows the phase portrait on
P − q plane. Top figure of Figure 2.(a) shows an interesting phenomenon that dynamics are separated
into two stages. At the first stage, qt (red dots, cosine similarity between the true feature vector and
discriminator’s estimation) increases drastically from 0 to some value near 1, while Pt (blue dots,
cosine similarity between the true feature vector and generator’s estimation) almost doesn’t change.
Intuitively, at this stage, the discriminator learns the true model while the generator is unchanged. In
the second stage, the generator start to fool the discriminator, where |Pt| increases and qt decreases.
In fact, these two-stage dynamics can be understood from the ODE (13): When τ/τ is small, the
process can be decomposed into two processes in different time scales. In particular, the discriminator
is associated with the faster dynamics as τ � τ̃ , and the generator governs the slower dynamics.
Figure 1 in the main text shows that this picture is still hold for multi-feature cases in the hierarchical
dynamics.

The figures in the middle two columns of Figure 2 show the two types of limiting cycles that
can emerge in the oscillating phase. The middle two red dots in Figure 1.(b) represents these
configurations of the step sizes. The last column of Figure 2 shows another stable phase in Info-2. In
this phase, τ/τ is relatively large. The two time-scale dynamics are mixed, and another type of stable
fixed points emerges.

Phase diagram for d = 2. Figure 3 shows the phase diagram when d = 2. In particular, the
two red lines between Info-1 and Noninfo-1 in Figure 3 are determined by the left inequality in
(15). In Info-1, both feature vectors are recovered by the generator. The dynamics of this phase are
shown in Figure 1.(a) in the main text. In the Half-info phase, only the feature vector with the larger
signal-to-noise ratio is recovered. The dynamics of this phase are shown in Figure 1.(c) in the main
text. The blue line between Info-1 and oscillating phases shows the boundary between oscillation
state and stable state.
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Figure 1: (a): The locations of the five types of fixed points of the ODE (13). Their properties
are listed in Table 1. (b): The phase diagram for the stationary state of the ODE (13). The colored
lines illustrate the theoretical prediction of the boundaries between the different phases. Simulations
results for a single numerical experiment are also shown to illustrate the oscillating phase: Each
grey square represents the value of 1

200

∫ 1000

800
[(Pt − 〈Pt〉)2 + (qt − 〈qt〉)2 + (rt − 〈rt〉)2] dt where

〈Pt〉 = 1
200

∫ 1000

800
Pt dt, and 〈qt〉 and 〈rt〉 are defined similarly. Note that the above quantity measures

the variation (over time) of the training process as it approaches steady states. We see that the variation
is indeed nonzero in the oscillating phase (see Figure 2), whereas the variation is close to zero in all
other phases.
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Figure 2: Macroscopic dynamics of Example 1 with d = 1. In the first row, the red, blue and yellow
dots represent Pt, qt, and rt respectively of the experimental results of a single trial. The black curves
under the dots are theoretical predictions given by the ODE (13). We set a fix the discriminator’s
learning rate τ = 0.3 and vary the generator’s learning rate τ̃ = 0.03, 0.2, 0.4, 0.47 from left to
right column. These parameter settings are marked by the four red dots in the phase diagram in
Figure 1. The second row is the phase portraits of the trajectories shown in the first row onto the
P–q plane. Figure (a) shows a case in the phase of info-1, where a subset of type (3) fixed points are
stable. Figure (b) and (c) are in the oscillating phase, and (d) is in info-2, where the fixed points of
type-5 are stable. The blue dots in the figures show the stable fixed points.
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Figure 3: The phase diagram for the stationary states of the ODE (13) when d = 2. This phase
diagram is generated by numerically computing the fixed points and eigenvalues of the Jacobian of
the ODE (13).

S-II Heuristic derivations of the dynamics of the microscopic states

In this section, we derive the stochastic differential equations (10) in the main text for the microscopic
states in a non-rigorous way. Specifically, we directly discard higher-order terms without any
justification, in order to highlight the main ideas. In Section S-IV, we rigorously justify these steps
by providing bounds on those terms.

Our starting point is the iterative algorithm (5) in the main text. Substituting the objective function L
defined in (4) into (5), we have

wk+1 = wk + τ
n

[
ykf(y>k wk)− ỹ2kf̃(ỹ>2kwk)− λwkH

′(w>k wk)
]

(S-1)

V k+1 = V k + τ̃
n

[
wkc̃

>
2k+1f̃(ỹ>2k+1wk)− λV kdiag(H ′(V >k V k))

]
, (S-2)

where yk and ỹk are true and fake samples generated according to (1) and (2) respectively. The two
functions f , f̃ stand for f(x) = d

dxF (D̂(x)) and f̃(x) = d
dx F̃ (D̂(x)). The function H ′ is derivative

of H . If the input of H ′(·) is a matrix, H ′ applies to the input matrix element-wisely. The operation
diag(A) is a diagonal matrix ofA, where the off-diagonal term are set to zero.

We note that the elements of wk and V k are O( 1√
n

) number as the norm of wk and the norms of
column vectors of V k are all O(1) numbers. To investigate the dynamics of the microscopic state, it
is convenient to rescale wk and V k by a factor of

√
n. We define ûi and v̂k,i as the column view of

the i’th row of the matrices
√
nU and

√
nV k respectively, and ŵk,i

def
=
√
n[wk+1]i. The update rule

of ((ûi, v̂k,i, ŵk,i)i=1,...,n)k=0,1,2,... is

ŵk+1,i − ŵk,i = τ
n

[(
û>i ck +

√
nηTak,i

)
fk −

(
v̂>k,ic̃2k +

√
nηGã2k,i

)
f̃2k − λH ′(zk)ŵk,i

]
,

(S-3)

v̂k+1,i − v̂k,i = τ̃
n

[
ŵk,ic̃2k+1f̃2k+1 − λdiag(H ′(Sk))v̂k,i

]
, (S-4)

where ak,i, ãk,i are the ith elements of ak and ãk respectively, and fk and f̃k are shorthands for

fk = f(y>k wk/
√
n) = f

(
q>k ck +

√
ηT
n

∑n
j=1ak,jŵk,j

)
f̃k = f̃(ỹ>k wbk/2c/

√
n) = f̃

(
r>bk/2cc̃k +

√
ηG
n

∑n
j=1ãk,jŵbk/2c,j

)
,

respectively, and the empirical macroscopic quantities qk, rk, zk and Sk are defined as follows

qk
def
= U>wk = 1

n

∑n
i=1ûiŵi, rk

def
= V >k wk = 1

n

∑n
i=1v̂k,iŵi,

zk
def
= w>k wk = 1

n

∑n
i=1ŵ

2
k,i, Sk

def
= V >k V k = 1

n

∑n
i=1v̂k,iv̂

>
k,i,

P k
def
= U>V k = 1

n

∑n
i=1ûiv̂

>
k,i.

(S-5)
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The matrix P k is not used in this section, but we put it here with the other macroscopic quantities for
future reference.

Now we derive (10) from (S-3) and (S-4).

First, it is trivial to get the first equation of the SDE dût = 0 in (10) in the main text, since ûi does
not change over time.

Next, we derive the second equation in (10). Averaging over c̃2k+1 and ã2k+1 on the both sides of
(S-4), we get

〈
v̂k+1,i − v̂k,i

〉
c̃2k+1,ã2k+1

= τ̃
n

[〈
f̃
(
r>k c̃+

√
ηG
n

∑n
j=1[ã]jŵk,j

])
c̃

〉
c̃,ã

ŵk,i − λdiag(H ′(Sk))v̂k,i

]
.

The bracket 〈·〉c̃,ã here denotes the average over c̃ ∼ Pc̃, and standard Gaussian vector ã, where c̃
and ã are the random variables generating the fake sample in the generator as described in (2). Noting
that ã is a Gaussian vector, the term 1√

n

∑n
j=1[ã]jŵk,j in the above equation is also a Gaussian

random variable, whose mean is zero and variance is zk, which is defined in (S-5). Therefore, we
have 〈

v̂k+1,i − v̂k,i
〉
c̃2k+1,ã2k+1

= τ̃
n

[
g̃kŵk,i +Lkv̂k,i

]
, (S-6)

where

g̃k =

〈
f̃
(
r>k c̃+

√
zkηGe

])
c̃

〉
c̃,e

(S-7)

Lk = −λdiag(H ′(Sk)), (S-8)

where 〈·〉c̃,e denotes the average over c̃ ∼ Pc̃ and e ∼ N (0, 1). In addition, from (S-4), we also
know that the second moment〈(

v̂k+1,i − v̂k,i
)2〉

c̃2k+1,ã2k+1

= O(n−
3
2 ). (S-9)

The moments estimations (S-6) and (S-9) imply the second equation in (10) in the main text. Since
the second moments growth smaller than O(n−1), the differential equation for v̂t has no diffusion
term.

Finally, we derive the last equation in (10) in the main text from the update rule of ŵk (S-3). We
observe that both the terms inside the function f and outside of f in (S-3) depend on ak,i. Using
Taylor’s expansion, we linearize the contribution of ak,i to the function f :

fk = f
(
q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j +

√
ηT
n ak,iŵk,i

)
= f(q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j) + f ′(q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j)

√
ηT
n ak,iŵk,i +O( 1

n ).

(S-10)

Similarly, we have

f̃2k = f̃(r>k c̃2k +
√

ηG
n

∑
j 6=iãk,jŵk,j +

√
ηG
n ã2k,iŵk,i)

= f̃(r>k c̃2k +
√

ηG
n

∑
j 6=iãk,jŵk,j) + f̃ ′(r>k c̃2k +

√
ηG
n

∑
j 6=iãk,jŵk,j)

√
ηG
n ã2k,iŵk,i +O( 1

n )

(S-11)
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Substituting (S-10) and (S-11) into (S-3), we have

ŵk+1,i − ŵk,i
τ/n

= û>i ckf(q>k ck +
√

ηT
n

∑
j 6=iak,jŵk,j)− v̂

>
k,ic̃2kf̃(r>k c̃2k +

√
ηG
n

∑
j 6=iãk,jŵk,j)

+ ŵk,i

[
a2
k,if

′(q>k ck +
√

ηT
n

∑
j 6=iak,jŵk,j)− ã

2
k,if̃

′(r>k c̃2k +
√

ηG
n

∑
j 6=iã2k,jŵk,j)− λH ′(zk)

]
+
√
n
[
ak,if(q>k ck +

√
ηT
n

∑
j 6=iak,jŵk,j) + ã2k,if̃

′(r>k c̃2k +
√

ηG
n

∑
j 6=iã2k,jŵk,j)

]
+ δk,i,

(S-12)
where δk,i collects all higher-order terms whose contributions will vanish as n → ∞. From this
equation, we can already infer the SDE (10). Specifically, on the right hand side of (S-12), the terms
in the first two lines correspond to the drift term in the SDE. Furthermore, the first term in the third
line in (S-12) contributes to the SDE as a Brownian motion. More precisely, we can derive the third
equation of the SDE (10) in the main text by the moments estimations. Specifically, the first-order
moment is〈

ŵk+1,i − ŵk,i
〉
ck,ak,c̃2k,ã2k

= τ
n

[
û>i gk − v̂

>
k,ig̃k + ŵk,ihk

]
+O(n−

3
2 ) (S-13)

where g̃k is defined in (S-7), and

gk =
〈
cf(q>k c+

√
zkηTe)

〉
c,e

(S-14)

hk = ηT

〈
f ′(q>k c+

√
zkηTe)

〉
c,e
− η̃G

〈
f̃ ′(r>k c̃+

√
zkηGe)

〉
c̃,e
− λH ′(zk). (S-15)

The second moment is〈(
ŵk+1,i − ŵk,i

)2〉
ck,ak,c̃2k,ã2k

= τ2

n bk +O(n−
3
2 ), (S-16)

where
bk = ηT

〈
f2(q>k c+

√
zkηTe)

〉
c,e

+ ηG

〈
f̃2(r>k c̃+

√
zkηGe)

〉
c̃,e
. (S-17)

From the (S-13) and (S-16), we derive the SDE for ŵt in (10) in the main text.

S-III Derive the ODE in Theorem 1 from the weak formulation of the PDE

In this section, we show how to derive the ODE (8) from the weak formulation of the PDE (12).
Choosing the test function ϕ being each element of ûv̂>, ûŵ, v̂ŵ, v̂v̂>, ŵ2, and substituting those
ϕ into the weak formulation of the PDE (12), we will get the ODE (8) as presented in Theorem 1. In
what follows, we provide additional details of this derivation.

We first derive the first ODE d
dtP t = . . . in (8). Let ϕ = [û]`[v̂]`′ , `, `′ = 1, 2, . . . , d, we have

∇v̂ϕ = [û]`s`′ , where s`′ is the `′th canonical basis (i.e., all elements in s`′ are zeros, except that
`′th element is 1). From the PDE (12) in the main text, we have ∀`, `′ = 1, 2, . . . , d:〈

µt, ϕ(û, v̂, ŵ)
〉

=
〈
µt, [û]`[v̂]`′

〉
= [P t]`,`′ ,〈

µt, (ŵg̃
>
t + v̂>Lt)∇v̂ϕ

〉
=
〈
µt, ([û]`ŵ)[g̃t]`′ + ([û]`v̂

>)[Lt]:,`′
〉

= [qt]l[g̃t]`′ + [P t]`,:[Lt]:,`′ ,

where [P t]`,: and [Lt]:,`′ are `th row of P t and `′th column of L, respectively. In addition, we know
that ∂

∂ŵϕ = ∂2

∂ŵ2ϕ = 0. Combining above results, we can recover the first ODE in (8).

Next, we derive the second ODE dqt
dt = . . . in (8). Let ϕ = [û]`ŵ, ` = 1, 2, . . . , d. We have

∇v̂ϕ = 0, ∂
∂ŵϕ = [û]` and ∂2

∂ŵ2ϕ = 0. Then ∀` = 1, 2, . . . , d,〈
µt, ϕ(û, v̂, ŵ)

〉
=
〈
µt, [û]`ŵ

〉
= [qt]`

6



and 〈
µt, (û

>gt − v̂
>g̃t + htŵ)

∂

∂ŵ
ϕ

〉
=
〈
µt, (û

>gt − v̂
>g̃t + htŵ)[û]`

〉
= [gt]` − [P t]`g̃t + [qt]`ht.

With above results, we can obtain the second ODE in (8).

Next, let’s derive the ODE for dStdt . We set ϕ = [v̂]`[v̂]`′ . If ` 6= `′, we have∇v̂ϕ = [v̂]`s`′+[v̂]`′s`,
where s`′ is the `′th canonical basis. Then〈

µt, ϕ(û, v̂, ŵ)
〉

= [St]`,`′

and 〈
µt, (ŵg̃

>
t + v̂>Lt)∇v̂ϕ

〉
=
〈
µt, ([v̂]`ŵ)[g̃t]`′ + ([v̂]`v̂

>)[Lt]:,`′
〉

+
〈
µt, ([v̂]`′ŵ)[g̃t]` + ([v̂]`′ v̂

>)[Lt]:,`

〉
= [rt]`[g̃t]`′ + [g̃t]`[rt]`′ + [St]`,:[Lt]:,`′ + [Lt]`,:[St]:,`′

If ` = `′, we have ∇v̂ϕ = 2[v̂]`s`, then〈
µt, ϕ(û, v̂, ŵ)

〉
= [St]`,`

and 〈
µt, (ŵg̃

>
t + v̂>Lt)∇v̂ϕ

〉
= 2([rt]`[g̃t]` + [St]`,:[Lt]:,`)

Plugging back the above two equations and combining the fact that ∂
∂ŵϕ = ∂2

∂ŵ2ϕ = 0, we recover
the ODE of dStdt .

The rest two ODEs can be obtained in the similar way by letting ϕ to be each distinct component of
v̂ŵ and ŵ2.

S-IV Proof of Theorem 1

In this section, we prove Theorem 1 shown in the main text. In the previous section, we have
already provided a derivation of the ODE in Theorem 1 from the weak formulation of the PDE
for the microscopic states. In this section, we follow a different path to prove the theorem without
referencing the PDE, because it is easier to establish the rigorous bound of the convergence rate.
Thus, the proof itself also provides another derivation of the ODE, where the most relevant part is
Lemma 5.

S-IV.1 Sketch of the proof

The proof follows the standard procedure of the convergence of stochastic processes [1, 2]. We here
build the whole proof on Lemma 2 in the supplementary materials of [3]. For reader’s convenient, we
present that lemma below.
Lemma 1 (Lemma 2 in the supplementary materials of [3]). Consider a sequence of stochastic pro-
cess {x(n)

k , k = 0, 1, 2, . . . , bnT c}n=1,2,..., with some constant T > 0. If x(n)
k can be decomposed

into three parts
x

(n)
k+1 − x

(n)
k = 1

nφ(x
(n)
k ) + ρ

(n)
k + δ

(n)
k (S-18)

such that

(C.1) The process
∑k
k′=0 ρ

(n)
k′ is a martingale, and E ‖ρ(n)

k ‖2 ≤ C(T )/n1+ε1 for some positive ε1;

(C.2) E ‖δ(n)
k ‖ ≤ C(T )/n1+ε2 for some positive ε2;

(C.3) φ(x) is a Lipschitz function, i.e., ‖φ(x)− φ(x̃)‖ ≤ C‖x− x̃‖;

(C.4) E ‖x(n)
k ‖2 ≤ C for all k ≤ bnT c;

(C.5) E ‖x(n)
0 − x∗0‖ ≤ C/nε3 for some positive ε3 and a deterministic vector x∗0,

7



then we have
‖x(n)

k − x( kn )‖ ≤ C(T )n−min{ 1
2 ε1,ε2,ε3},

where x(t) is the solution of the ODE
d
dtx(t) = φ(x(t)), with x(0) = x∗0.

In Theorem 1, the stochastic process is the macroscopic states {Mk, k = 0, 1, . . .}, whereMk is a
symmetric matrix consists of 5 non-trivial parts P k, qk, rk, Sk, and zk as shown in (6) in the main
text. Following (S-18), we have the following decomposition forMk

Mk+1 −Mk = 1
nφ(Mk) + (Mk+1 − EkMk+1) + [EkMk+1 −Mk − 1

nφ(Mk)], (S-19)
in which the matrix-valued function φ(M) represents the functions on the right hand sides of the
ODE (8), and Ek denotes the conditional expectation given the state of the Markov chain Xk.
Note that the stochastic process of the macroscopic stateMk is driven by the Markov chain of the
microscopic stateXk. Thus, Ek is well-defined. For future reference, we denotes E the unconditional
expectation of all the randomness of the Markov chain Xk, i.e., the initial state U ,V 0,w0 and
{ak, ck, ãk, c̃k|k = 0, 1, 2, . . .}. By definition,

∑k
k′=0(Mk′+1 − E k′Mk′) is a Martingale.

S-IV.2 Check the conditions provided in Lemma 1

In this subsection, we check the condition (C.1)–(C.5) for the decomposition of (S-19). Once all
conditions are proved to be satisfied, Theorem 1 will be proved.

We first note that (C.5) is the assumption (A.5) in the main text. Thus, (C.5) is satisfied. Before
proving other conditions, we declare a lemma.
Lemma 2. Under the same setting as Theorem 1, given T > 0, then

E

 d∑
`=1

[V k]4i,` + [wk]4i

 ≤ C(T )n−2, ∀i = 1, 2, . . . , n, and k = 0, 1, . . . , bnT c , (S-20)

The proof can be founded in Section S-IV.3.

Check Condition (C.4)

Lemma 3. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

E ‖P k‖2 ≤ C(T ), E ‖qk‖2 ≤ C(T ),

E ‖Sk‖2 ≤ C(T ), E z2
k ≤ C(T ),

E ‖rk‖2 ≤ C(T ).

Proof. It’s a direct consequence of Lemma 2. We first verify E z2
k ≤ C(T ).Using Holder’s inequality,

we have
E z2

k = E
(∑n

i=1w
2
k,i

)2

≤ nE
∑n
i=1w

4
k,i ≤ C(T )

For [Sk]`,`, ` = 1, . . . , d, similarly, we have

E [Sk]2`,` = E
(∑n

i=1[V k]2i,`

)2

≤ C(T ).

and for E [Sk]2`,`′ , ` 6= `′, we have:

E [Sk]2`,`′ = E
(∑n

i=1[V k]i,`[V k]i,`′
)2

≤ E
(∑n

i=1[V k]2i,`

)(∑n
i=1[V k]2i,`′

)
≤
√
E
(∑n

i=1[V k]2i,`

)2

E
(∑n

i=1[V k]2i,`′
)2

≤ C(T )

where in reaching the third and last line, we used the Cauchy-Schwartz inequality. Now, we get
E ‖Sk‖2 ≤ C(T ). The rest bounds of E ‖P k‖2, E ‖qk‖2 and E ‖rk‖2 in Lemma 3 can also be
directly verified using the Cauchy-Schwartz inequality.
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Check Condition (C.3)

Lemma 4. If Assumption (A.3) hold, φ(M) is a Lipschitz function.

Proof. It suffices to verify each component of gradient ∇φ(M) is bounded. Assumption (A.3)
ensures that H ′ is Lipschitz and the derivatives up to fourth order of the functions f , f̃ exists and
uniformly bounded. These conditions guarantee that the partial derivatives of φ(M) w.r.t. P , q, S
and r are bounded. The remaining thing is to show that ∂φ(M)

∂z is also bounded. Since there is a
√
z

term in φ(M), the boundness can be potentially broken at z = 0. However, we can show that it is
not the case. For example, we can show that

〈
cf(c>q + e

√
z)
〉
c,e

is a Lipschitz function, because

∂
∂z

〈
cf(c>q + e

√
z)
〉
c,e

= 1
2z
− 1

2

〈
ecf ′(cq + e

√
z)
〉
c,e

= 1
2

〈
cf ′′(cq + e

√
z)
〉
c,e

is always a well-defined bounded function. In reaching the first line, we here interchanged the
expectation and derivative, which is valid because of the boundness of f(·), and in reaching the
second line, we used the Stein’s lemma. Finally, other terms in (9) involving

√
z can be treated in the

same way. Thus, φ(M) is a Lipschitz function.

Check Condition (C.2)

Lemma 5. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

E ‖EkMk+1 −Mk − 1
nφ(Mk)‖ ≤ C(T )n−

3
2 .

Proof. The above inequality can be split into 5 parts

E ‖Ek P k+1 − P k − τ̃
n (qkg̃

>
k + P kLk)‖ ≤ C(T )n−

3
2 (S-21)

E ‖E kqk+1 − qk − τ
n (gk − P kg̃k + qkhk)‖ ≤ C(T )n−

3
2 (S-22)

E ‖E kSk+1 − Sk − τ̃
n

(
rkg̃

>
k + g̃kr

>
k + SkLk +LkSk

)
‖ ≤ C(T )n−

3
2 (S-23)

E ‖E kzk+1 − zk − 2τ
n

(
q>k gk − r>k g̃k + zkhk

)
− τ2

n bk‖ ≤ C(T )n−
3
2 , (S-24)

E ‖E krk+1 − rk − τ
n

(
P>k gk − Skg̃k + rkhk

)
− τ̃

n (zkg̃k +Lkrk)‖ ≤ C(T )n−
3
2 (S-25)

where g̃k, Lk, gk, hk, bk are defined in (S-7), (S-8), (S-14), (S-15) and (S-17), respectively.

We first prove (S-21). From (S-2), we have

V k+1 − V k = τ̃
n

[
wkc̃

>
2k+1f̃(c̃>2k+1V

>
k wk + ηGã

>
2k+1wk)− λV kdiag(H ′(Sk))

]
. (S-26)

Averaging both sides of the above equation over c̃2k+1 and ã2k+1, we have

Ek V k+1 − V k = τ̃
n

[
wkg̃

>
k + V kLk

]
, (S-27)

where g̃k and Lk are defined in (S-7) and (S-8), respectively. Multiplying U> from the left on the
both sides of the above equation, we have

Ek P k+1 − P k = τ̃
n

[
qkg̃

>
k + P kLk

]
,

which implies (S-21). In fact, there is no higher-order term in (S-21), and the left hand side of (S-21)
is exactly zero.

Then, we prove (S-22). From (S-1), we have

wk+1 −wk = τ
n

[
ykf(y>k wk)− ỹ2kf̃(ỹ>2kwk)− λwkdiag(H ′(zk))

]
, (S-28)
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where yk = Uck +
√
ηTak and ỹ2k = V kc̃2k +

√
ηGã2k. Averaging both sides of the above

equation over ck, akc̃2k and ã2k, we have

Ekwk+1 −wk = τ
n

[
Ugk +

〈
akf(c>k qk +

√
ηTa

>
k wk)

〉
− V kg̃k −

〈
ã2kf̃(c̃>2krk +

√
ηGã

>
2kwk)

〉
− λwkdiag(H ′(zk))

]
.

Multiplying U> from the left on the both sides of the above equation, we have

Ek qk+1 − qk = τ
n

[
gk − P kg̃k +

√
ηT

〈
U>akf(c>k qk +

√
ηTa

>
k wk)

〉
c,a

−√ηG

〈
U>ãf̃(c̃>rk +

√
ηGã

>wk)
〉
c̃,ã
− λqkdiag(H ′(zk))

]
(S-29)

We note that

[
U>ak
w>k ak

]
are Gaussian random vector with zero-mean and covariance matrix

[
I qk
q>k zk

]
.

We can rewrite〈
U>af(c>qk +

√
ηTa

>wk)
〉
c,a

= z
−1/2
k U>wk

〈
ef(c>qk +

√
zkηTe

〉
c,e

(S-30)

=
√
ηTqk

〈
f ′(c>qk +

√
zkηTe

〉
c,e
,

where the second line is due to Stein’s lemma (i.e., integral by part for Gaussian random variable.)
Similarly, we have〈

U>ãf̃(c̃>rk +
√
ηGã

>wk)
〉
c̃,ã

=
√
ηGqk

〈
f̃ ′(c̃>rk +

√
zkηGe

〉
c̃,e
. (S-31)

Substituting (S-30) and (S-31) into (S-29), we get

Ek qk+1 − qk = τ
n [gk − P kg̃k + qkhk] ,

where g̃k, gk, and hk are defined in (S-7), (S-14), and (S-15), respectively. Now, we proved (S-22),
which again has no higher-order term.

We next prove (S-23). Note that

Sk+1 − Sk = (V k + V k+1 − V k)>(V k + V k+1 − V k)− Sk
= V >k (V k+1 − V k) + (V k+1 − V k)

>
V k + (V k+1 − V k)

>
(V k+1 − V k) .

Averaging both sides of the above equation over c̃2k+1 and ã2k+1 and substituting (S-27) into above
equation, we have

Ek Sk+1−Sk = τ̃
n

[
rkg̃

>
k + SkLk + g̃kr

>
k +LkSk

]
+ τ̃2

n2

[
wkg̃

>
k +V kLk

]>[
wkg̃

>
k +V kLk].

(S-32)
We know that

E ‖
[
wkg̃

>
k + V kLk

]>[
wkg̃

>
k + V kLk]‖ ≤ E ‖wkg̃

>
k + V kLk‖2

≤ 2zk‖g̃k‖2 + 2‖Sk‖‖Lk‖2

≤ CE
[
zk + ‖Sk‖

]
≤ C(T ), (S-33)

where g̃k, Lk are defined in (S-7) and (S-8), respectively. The third line of the above inequalities is
due to the fact that f̃ and H ′ are uniformly bounded, and in reaching the last line, we used Lemma 3.
Combining (S-32) and (S-33), we reach (S-23).

The other two inequalities (S-24) and (S-25) can be proved in a similar way. We omit the details
here.
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Check Condition (C.1)

Lemma 6. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

E ‖Mk+1 − EkMk+1‖2 ≤ C(T )n−2.

Proof. Note that E ‖Mk+1 − EkMk+1‖2 = E ‖Mk+1 − Mk − Ek (Mk+1 − Mk)‖2 ≤
E ‖Mk+1 −Mk‖2. It is sufficient to prove

E ‖Mk+1 −Mk‖2 ≤ C(T )n−2. (S-34)
In what follows, we are going to bound the second-order moment of each element inMk+1 −Mk.
In particular, we bound the 5 blocks P k, Sk, qk, zk and rk ofMk separately.

We first bound E ‖P k+1 − P k‖2. Multiplying U> from left on both sides of (S-26), we have

P k+1 − P k = τ̃
n

[
qkc̃
>
2k+1f̃(c̃>2k+1V

>
k wk + ηGã

>
2k+1wk)− λP kdiag(H ′(V >k V k))

]
We then get

E ‖P k+1 − P k‖2 ≤ Cn−2E
[
‖qk‖2Ek ‖c̃2k+1‖2 + ‖P k‖2

]
≤ Cn−2E

[
1 + ‖qk‖2 + ‖P k‖2

]
≤ C(T )n−2. (S-35)

Here the last line is due to Lemma 3.

We next bound E ‖qk+1 − qk‖2 in the same way. Specifically, multiplying U> from the left on both
sides of (S-28), we get

qk+1 − qk = τ
n

[
U>ykf(y>k wk)−U>ỹ2kf̃(ỹ>2kwk)− λqkdiag(H ′(w>k wk))

]
.

We then have
E ‖qk+1 − qk‖2

≤ τ2

n2E
[
‖ck‖2f2

k + ‖U>ak‖2f2
k + ‖P k‖2‖c̃2k‖2f̃2

2k + ‖U>ã2k‖2f̃2
2k + ‖qk‖2h2

k

]
≤ Cn−2

[
1 +

√
E ‖U>ak‖4

√
E f4

k +

√
E ‖U>ã2k‖4

√
E f̃4

2k + E z2
k + E ‖Sk‖2

]
≤ Cn−2[1 + E z2

k + E ‖Sk‖2]

≤ C(T )n−2, (S-36)

where fk and f̃2k are shorthands for f(y>k wk) and f̃(ỹ>2kwk) respectively. In reaching the last line,
we used Lemma 3 again.

Similarly, we can also prove that

E ‖Sk+1 − Sk‖2 ≤ C(T )n−2

E (zk+1 − zk)2 ≤ C(T )n−2

E ‖rk+1 − rk‖2 ≤ C(T )n−2.

(S-37)

Combining (S-35), (S-36) and (S-37), we can prove (S-34), which concludes the whole proof.

S-IV.3 Proof of Lemma 2

Before proving Lemma 2, we first present and prove the following lemma. Let ui and vk,i denote
the ith row vectors of U and V k in column view, respectively, and let wk,i be the ith element of the
vector wk.
Lemma 7. Under the same setting as Theorem 1, for all k = 0, 1, . . . , bnT c with a given T > 0,
then

‖Ek vk+1,i − vk,i‖ ≤ Cn−1
(
‖vk,i‖+

∣∣wk,i∣∣) (S-38)∣∣Ek wk,i − wk,i∣∣ ≤ Cn−1
(
‖ui‖+ ‖vk,i‖+

∣∣wk,i∣∣) . (S-39)
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In the proof of this lemma and Lemma 2, we omit the two constants ηT and ηG for simplicity.

Proof. From (S-2) and knowing that the function f̃ and H ′ are uniformly bounded, we can immedi-
ately prove (S-38).

Next, we are going to prove (S-39). From (S-1), we know∣∣Ek wk+1,i − wk,i
∣∣

≤ τ
n

( ∣∣∣∣u>i 〈ckf(y>k wk)
〉
ck,ak

∣∣∣∣+

∣∣∣∣〈ak,if(y>k wk)
〉
ck,ak

∣∣∣∣
+

∣∣∣∣v>k,i 〈c̃2kf̃(ỹ>2kwk)
〉
c̃2k,ã2k

∣∣∣∣+

∣∣∣∣〈ã2k,if̃(ỹ>2kwk)
〉
c̃2k,ã2k

∣∣∣∣+ λ
∣∣∣wk,iH ′(w>k wk)

∣∣∣ )
≤Cn−1

(
‖ui‖+ ‖vk,i‖+

∣∣wk,i∣∣+

∣∣∣∣〈ak,if(y>k wk)
〉
ck,ak

∣∣∣∣+

∣∣∣∣〈ã2k,if̃(ỹ>2kwk)
〉
c̃2k,ã2k

∣∣∣∣ ),
(S-40)

where the last is due to the fact that H ′, f and f̃ are uniformly bounded. Using Taylor’s expansion
up-to zero-order

f(y>k wk) = f(q>k ck +
∑
j 6=iwk,jak,j + wk,jak,j)

= f(q>k ck +
∑
j 6=iwk,jak,j) + f ′(q>k ck +

∑
j 6=iwk,jak,j + χk,i)wk,jak,j ,

with χk,i being some number such that
∣∣χk,i∣∣ ≤ ∣∣wk,iak,i∣∣ , we have∣∣∣∣〈ak,if(y>k wk)

〉
ck,ak

∣∣∣∣
≤
∣∣∣∣〈f(q>k ck +

∑
j 6=iwk,jak,j)ak,i

〉
ck,ak

∣∣∣∣+

∣∣∣∣〈f ′(q>k ck +
∑
j 6=iwk,jak,j + χk,i)wk,ja

2
k,j

〉
ck,ak

∣∣∣∣
=

∣∣∣∣〈f ′(q>k ck +
∑
j 6=iwk,jak,j + χk,i)wk,ia

2
k,i

〉
ck,ak

∣∣∣∣
≤ C

∣∣wk,i∣∣ . (S-41)
The second line is due to the fact ak,i is zero-mean, and in reaching the last line, we used the
boundness of f ′. Similarly, we can get∣∣∣∣〈ã2k,if̃(ỹ>2kwk)

〉
c̃2k,ã2k

∣∣∣∣ ≤ C ∣∣wk,i∣∣ . (S-42)

Substituting (S-41) and (S-42) into (S-40), we prove (S-40).

Now we are in the position to prove Lemma 2.

Proof of Lemma 2. Because of the exchangeability, Ew4
k,i = Ew4

k,j , and E [V k]4i,` = E [V k]4j,` for
all i, j = 1, 2, . . . , n and ` = 1, 2, . . . , d. Thus, we only need to prove (S-20) for any specific i.

We first prove Ew4
k,i ≤ C(T )n−2. We know that

Ew4
k+1,i − Ew4

k,i = 4E
[
w3
k,iEk

(
wk+1,i − wk,i

)]
+ 6E

[
w2
k,iEk

(
wk+1,i − wk,i

)2]
(S-43)

+ 4E
[
wk,iEk

(
wk+1,i − wk,i

)3]
+ EEk

(
wk+1,i − wk,i

)4
.

From (S-1) and knowing that h, f and f̃ are uniformly bounded, we have

Ek
(
wk+1,i − wk,i

)γ ≤ C

nγ

(
1 + ‖ui‖γ + ‖vk,i‖γ +

∣∣wk,i∣∣γ) for γ = 2, 3, 4. (S-44)

Substituting (S-39) and (S-44) into (S-43) and using the Young’s inequality, we have

Ew4
k+1,i − Ew4

k,i ≤ C
n

(
n−2 + E ‖ui‖4 + E ‖vk,i‖4 + Ew4

k,i

)
.

≤ C
nE

(
n−2 +

∑d
`=1[V k]4i,` + w4

k,i

)
, (S-45)
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where the last line is due to Assumption A.4), which implies
∑
`[U ]4i,` ≤ C. Similarly, we can prove∑d

`=1E
(

[V k+1]4i,` − [V k]4i,`

)
≤ C

nE
(
n−2 +

∑d
`=1[V k]4i,` + w4

k,i

)
. (S-46)

Combining (S-45) and (S-46), we have

E (w4
k+1,i+

∑d
`=1[V k+1]4i,`)−E

(
w4
k,i +

∑d
`=1[V k]4i,`

)
≤ C

n

[
n−2 + E

(
w4
k,i +

∑d
`=1[V k]4i,`

)]
.

Using the above inequality iteratively, we have

E
(
w4
k,i +

∑d
`=1[V k]4i,`

)
≤
(
n−2 + w4

0,i +
∑d
`=1[V 0]4i,`

)
e
k
nC .

Since E
(
w4

0,i +
∑d
`=1[V 0]4i,`

)
are bounded in Assumption A.4), we now reach (S-20).

S-V Local stability analysis of the fixed points of the ODE

In this section, we provide additional details on the local stability analysis of the ODE for Example
1. We first its simplified ODE (13) in the main text. Then, we provide the derivation of the local
stability analysis when d = 1, where the main results are summarized in Section S-I. Finally, we
establish the proof of Claim 1 in the main text.

S-V.1 Derive the reduced ODE for Example 1 when λ→∞

In Example 1, f(x) = f̃(x) = x. Plugging back to (9), we obtain that

gt = Λqt

g̃t = Λ̃rt

bt = ηT(q>t Λqt + ηTzt) + ηG(r>t Λ̃rt + ηGzt).

(S-47)

Correspondingly, ODE in (8) becomes:

d
dtP t = τ̃

(
qtr̃
>
t Λ̃ + P tLt

)
d
dtqt = τ

(
Λqt − P tΛ̃rt + qtht

)
d
dtrt = τ

(
P T
t Λqt − StΛ̃rt + rtht

)
+ τ̃
(
Λ̃rt +Ltrt

)
d
dtSt = τ̃

(
rtr
>
t Λ̃
>

+ Λ̃rtr
>
t + StLt +LtSt

)
d
dtzt = 2τ(q>t Λqt − r>t Λ̃rt + ztht)

+ τ2[ηT(q>t Λqt + ztηT) + ηG(r>t Λ̃rt + ztηG)]

(S-48)

The first four equations are exactly (13). From last two equations of (S-48), by setting d
dtdiag{St} =

0, d
dtzt = 0, diag(St) = I and zt = 1, we can get (14).

S-V.2 A complete study of all fixed points when d = 1

We next provide the local stability analysis of the fixed points of the ODE (13). When d = 1 and
λ→∞, the macroscopic state is described by only 3 scalars, Pt, qt and rt. The result is summarized
in Table 1. For the sake of simplicity, we only consider the case Λ = Λ̃, and set ηT = ηG = 1, but all
analysis can be extended to general cases.

The fixed points are given by the condition d
dtPt = d

dtqt = d
dtrt = 0. From (13), we get

τ̃Λr (q − rP ) = 0

τ
[
Λ− τ − Λ

(
1 + τ

2

)
q2
]
q − τΛ

[
P +

(
τ
2 − 1

)
rq
]
r = 0

τΛPq +
[
Λ(τ̃ − τ)− τ2

]
r + Λ

(
τ − τ̃ − τ2}

2

)
r3 − τΛ

(
1 + τ

2

)
rq2 = 0,

(S-49)
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where P, q, r are the stationary macroscopic state. The local stability of a fixed point is identified by
whether the Jacobian matrix

J(P, q, r)
def
=


∂
∂P g1

∂
∂q g1

∂
∂rg1

∂
∂P g3

∂
∂q g3

∂
∂rg3

∂
∂P g5

∂
∂q g5

∂
∂rg5


has eigenvalue with non-negative real part or not, where g1 = τ̃Λr (q − rP ), g2 =

τ
[
Λ− τ − Λ

(
1 + τ

2

)
q2
]
q−τΛ

[
P +

(
τ
2 − 1

)
rq
]
r and g5 = τΛPq+

[
Λ(τ̃−τ)− (ηT+ηG)τ2

2

]
r+

Λ
(
τ − τ̃ − τ2ηG

2

)
r3 − τΛ

(
1 + τηT

2

)
rq2.

Type (1) fixed point at P = q = r = 0

It is easy to verify that q = r = 0 and any P ∈ [−1, 1] is a solution of (S-49), but we first consider
P = 0.

The Jacobian at P = q = r = 0 is

J(0, 0, 0) =

0 0 0
0 τ(Λ− τ) 0
0 0 Λ (τ̃ − τ)− τ2

 .
Thus, type (1) fixed point is stable if and only if

τ ≥ Λ and τ̃
τ ≤

τ+Λ
Λ .

Type (2) fixed points at P = q = 0, r = ±r∗ 6= 0

We first analyze when such fixed point exists and then study its local stability.

If P = q = 0, the first two equations in (S-49) trivially hold. The third equation becomes

τ [Λ(r2 − 1)− τ
2 (Λr2 + 2)]− τ̃Λ(r2 − 1) = 0.

The solution is

r2 =
τ − τ̃ + τ2/Λ

τ − τ̃ − τ2/2
. (S-50)

Since only the positive solution corresponds a fixed one. Thus, type (2) fixed point exists if
τ̃
τ ≤ 1− τ

2 (S-51)

or τ̃
τ ≥

τ+Λ
Λ . (S-52)

Next, we investigate the local stability of this fixed point. The Jacobian at q̃ = q = 0 for a given r is

J(0, 0, r) =

−τ̃Λr2 τ̃Λr 0
−τΛr τ(Λ− τ)− Λτ( τ2 − 1)r2 0

0 0 3r2Λ(τ − τ2

2 − τ̃)− τ2 + Λ(τ̃ − τ)


(S-53)

Plugging (S-50) into [J(0, 0, r)]3,3 of (S-53), then [J(0, 0, r)]3,3 ≤ 0 implies
τ̃
τ ≥

τ
Λ + 1.

It indicates that the stationary points at the region (S-51) are always unstable. Thus, we only need to
consider the second region specified by (S-52).

For the upper-left 2× 2 sub-matrix of (S-53), the eigenvalues are non-positive if and only if

−τ̃Λr2 + τ(Λ− τ)− Λτ( τ2 − 1)r2 ≤ 0 (S-54)

τ + Λ( τ2 − 1)r2 + Λ− Λ ≥ 0. (S-55)
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Plugging (S-50) into (S-54), we can get
τ̃
τ ≥ 2. (S-56)

Plugging (S-50) into (S-55) and combining (S-52), we can get

[τ + Λ( τ2 − 1)]τ̃ ≥ τΛ( τ2 − 1).

Solving this inequality implies that

τ̃

τ
≤

( τ2 − 1)Λ

( τ2 − 1)Λ + τ
, when τ <

2Λ

Λ + 2
(S-57)

and
τ̃

τ
≥

( τ2 − 1)Λ

( τ2 − 1)Λ + τ
, when τ >

2Λ

Λ + 2
. (S-58)

Note that (S-58) is included by (S-56), as ( τ2−1)Λ

( τ2−1)Λ+τ ≤ 2 when τ > 2Λ
Λ+2 .

Then, combining (S-52), (S-56), and (S-57) we obtain the stability region for q̃ = q = 0,
τ̃

τ
≥ 1 +

τ

Λ
,
τ̃

τ
≥ 2, and

τ̃

τ
≤ β(τ),

where β(τ) is defined as

β(τ)
def
=

{
( τ2−1)Λ

( τ2−1)Λ+τ if τ ≤ 2Λ
Λ+2

+∞ otherwise.

Type (3) fixed points at q = r = 0 and |P | ∈ (0, 1]

As mentioned, we can check that q = r = 0 and any P ∈ [−1, 1] is a solution of (S-49). We next
investigate the stable region for the fixed point P = ±1 and q = r = 0, which represents the perfect
recovery state. For general P , we can analyze its fixed point similarly.

The Jacobian at q = r = 0 for any given P is

J(1, 0, 0) =

0 0 0
0 τ(Λ− τ) −τΛ
0 τΛ Λ (τ̃ − τ)− τ2

 .
In this case, J(1, 0, 0) always has an eigenvalue 0 and to calculate the rest two eigenvalues, we
only need to analyze the bottom-right 2× 2 sub-matrix of J(q̃). The characteristic polynomial of
this sub-matrix is f(λ) = λ2 − (a + d)λ + ad − bc,where a = τ(Λ − τ), b = −τΛ, c = τΛ,
and d = Λ (τ̃ − τ) − τ2. The roots of f(λ) = 0 both have non-positive real part if and only if
a+ d ≤ 0, ad− bc ≥ 0, which implies

τ̃
τ ≤

2τ
Λ and τ̃

τ (τ − Λ) ≤ τ2

Λ . (S-59)

Noting that when τ < Λ, the second inequality always hold, and when τ > Λ, τ2

Λ(τ−Λ) ≥ 4, we can
combine the two inequalities in (S-59) into compact form

τ̃
τ ≤ min{ 2τ

Λ ,max{ τ2

Λ|τ−Λ| , 4}}.

The stable regions of the fixed points for q = r = 0 and |P | < 1 can be derived in a similar way,
which turns out to be a subset of the stable region for P = ±1.

Type (4) fixed point at P = r = 0 and q 6= 0.

From (S-49), we know when at fixed point, q̃ = r = 0, then q2 = Λ−τ
Λ(1+τ/2) , so τ must satisfy τ ≤ Λ.

The corresponding Jacobian is:

J(0, 0, q) =

 0 0 τ̃Λq
0 τ(Λ− τ)− 3τΛq2(1 + τ

2 ) 0
τΛq 0 (τ̃ − τ)Λ− τ2 − τΛq2(1 + τ

2 )

 .
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After plugging in q2 = Λ−τ
Λ(1+τ/2) , we can obtain that the characteristic function det(λI − J(0, 0, q))

is equal to:

det(λI − J(0, 0, q)) = [λ+ 2τ(Λ− τ)][λ(λ+ (2τ − τ̃)Λ)− τ τ̃Λ2q2]

Clearly, det(λI − J(0, 0, q)) = 0 has a non-negative root, so J(0, 0, q) always has a non-negative
eigenvalue. This means type (4) fixed points are always unstable.

Type (5) fixed points at P, q, r 6= 0

The fixed points equation (S-49) can also have solutions that none of P , q and r is zero. In what
follows, we derive the analytical expression of this type of solutions. It turns out that there can
be maximum 8 solutions, which are symmetric by flipping the signs. We are unable to derive the
analytical expression for their stable region, but it can be computed numerically.

If P, q, r 6= 0, (S-49) yields

r = q
P (S-60)

Λ− τ − Λ(1 + τ
2 )q2 − Λ[Pq + ( τ2 − 1)r]r = 0 (S-61)

τΛP̃ q + r
[
Λ(τ̃ − τ)− τ2

]
+ r3Λ

(
τ − τ̃ − τ2

2

)
− rq2τΛ

(
1 + τ

2

)
= 0. (S-62)

Plugging (S-60) into (S-61), we can get

q−2 = − 1
τ [Λ( τ2 − 1)P−2 + Λ(1 + τ

2 )]. (S-63)

Then combining (S-60) (S-63) and (S-62), we can obtain the following equations:

AP−4 +BP−2 + C = 0 (S-64)

where A = Λ(τ̃ − τ)( 1
2 −

1
τ ) + τ̃ , B = Λ[ τ̃τ (1 + τ

2 )− 2], C = Λ(1 + τ
2 ). We can find that (S-64) is

an equation of P−2 with at most two roots. Combining (S-63), we know there are at most 2 solutions
for the pair (q−2, P−2) and hence there are at most 8 solutions for (q, P, r), where r = P/q.

S-V.3 Proof of Claim 1

Proof of Claim 1. We first compute the Jacobian ∂
{

d
dtP t,

d
dtqt,

d
dtrt,

}
/∂{P t, qt, rt} of the ODE

(13) when qt = rt = 0. In the Jacobian, the d× d matrix P t is considered as a d2 vector. In fact,
all elements in the Jacobian matrix related to P t are 0. Specifically, the Jacobian for any P and
qt = rt = 0 is

J(P ) =

0 0 0

0 τ(Λ− τη2Id) −τP Λ̃

0 τP>Λ Λ̃(τ̃ − τ)− τ2η2

 , (S-65)

where η2 = (η2
T + η2

G)/2.

When P is diagonal, under a suitable column-row permutation, the J(P ) in (S-65) becomes a block
diagonal matrix, where each non-zero block is a 2× 2 matrix[

τ([Λ]`,` − τη2) −τ [P ]`,`[Λ̃]`,`
τ [P ]`,`[Λ]`,` [Λ̃]`,`(τ̃ − τ)− τ2η2

]
(S-66)

for ` = 1, 2, . . . , d. Intuitively, the above matrix is the Jacobian matrix of
∂{ d

dt [qt]`,
d
dt [rt]`}/∂{[qt]`, [rt]`}, and the Jacobian ∂{ d

dt [qt]`,
d
dt [rt]`}/∂{[qt]`′ , [rt]`′} is zero

for ` 6= `′.

Now the problem reduces into investigate eigenvalues of n 2-by-2 matrices. For any given ` =
1, 2, . . . , n, we have studied this problem in Section S-V.2 (type (1) and type (3) fixed points).

Specifically, the perfect recovery point P = I , q = r = 0 is stable if and only if λmax(J(P )) ≤ 0,
where J(P ) is defined in (S-65). Similar to the analysis of the type (3) fixed points in Section S-V.2,
the condition that both eigenvalues of the matrix in (S-66) is non-positive implies

1
2 ([Λ]`,` − [Λ̃]`,` + α[Λ̃]`,`) ≤ τη2 (S-67)

and α(τη2 − [Λ]`,`) ≤ τη2

[Λ̃]`,`
(τη2 − [Λ]`,` + [Λ̃]`,`), (S-68)
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for all ` = 1, 2, . . . , n. The inequality (S-67) is the first inequality of (15) in Claim 1 in the main text.

Next, we investigate the condition when the trivial fixed point of the origin P = 0 and q = r = 0 is
unstable. Put P = 0 into (S-66), we get a diagonal matrix[

τ([Λ]`,` − τη2) 0

0 [Λ̃]`,`(τ̃ − τ)− τ2η2

]
.

When any eigenvalue of the above matrices for ` = 1, 2, . . . , n is positive, this trivial fixed point will
be unstable. A sufficient condition is the first eigenvalues of all matrices are positive:

τη2 < [Λ]`,` for all ` = 1, 2, . . . , n. (S-69)

The above inequality is the second inequality of (15) in the main text. In addition, (S-69) implies
(S-68) hold as the left hand side of (S-68) is negative. Now, we prove that (15) is a sufficient condition
that the perfect fixed point is stable and the trivial fixed point is unstable.

We further note that (15) is not a necessary condition. There may be a region that (S-69) does not
hold, but the origin is still unstable, and the perfect recovery point is stable. Such region is hard to
characterize analytically, and numerically, we found the training algorithms always converge to other
bad fixed points (e.g. mode collapsing state, or a state that P and q are still zero, but r is non-zero.
The situation of the latter is similar to the noninfo-2 phase in the d = 1 case, which converges to
the type (2) fixed point). Further study on those bad fixed points will be established in future works
under a more general model.
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