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Abstract

We consider massive distributed datasets that consist of elements modeled as key-
value pairs and the task of computing statistics or aggregates where the contribution
of each key is weighted by a function of its frequency (sum of values of its elements).
This fundamental problem has a wealth of applications in data analytics and
machine learning, in particular, with concave sublinear functions of the frequencies
that mitigate the disproportionate effect of keys with high frequency. The family
of concave sublinear functions includes low frequency moments (𝑝 ≤ 1), capping,
logarithms, and their compositions. A common approach is to sample keys, ideally,
proportionally to their contributions and estimate statistics from the sample. A
simple but costly way to do this is by aggregating the data to produce a table of keys
and their frequencies, apply our function to the frequency values, and then apply
a weighted sampling scheme. Our main contribution is the design of composable
sampling sketches that can be tailored to any concave sublinear function of the
frequencies. Our sketch structure size is very close to the desired sample size and
our samples provide statistical guarantees on the estimation quality that are very
close to that of an ideal sample of the same size computed over aggregated data.
Finally, we demonstrate experimentally the simplicity and effectiveness of our
methods.

1 Introduction

We consider massive distributed datasets that consist of elements that are key-value pairs 𝑒 =
(𝑒.key , 𝑒.val) with 𝑒.val > 0. The elements are generated or stored on a large number of servers
or devices. A key 𝑥 may repeat in multiple elements, and we define its frequency 𝜈𝑥 to be the
sum of values of the elements with that key, i.e., 𝜈𝑥 :=

∑︀
𝑒|𝑒.key=𝑥 𝑒.val . For example, the keys

can be search queries, videos, terms, users, or tuples of entities (such as video co-watches or term
co-occurrences) and each data element can correspond to an occurrence or an interaction involving
this key: the search query was issued, the video was watched, or two terms co-occurred in a typed
sentence. An instructive common special case is when all elements have the same value 1 and the
frequency 𝜈𝑥 of each key 𝑥 in the dataset is simply the number of elements with key 𝑥.

A common task is to compute statistics or aggregates, which are sums over key contributions.
The contribution of each key 𝑥 is weighted by a function of its frequency 𝜈𝑥. One example of
such sum aggregates are queries of domain statistics

∑︀
𝑥∈𝐻 𝜈𝑥 for some domain (subset of keys)

𝐻 . The domains of interest are often overlapping and specified at query time. Sum aggregates
also arise as components of a larger pipeline, such as the training of a machine learning model
with parameters 𝜃, labeled examples 𝑥 ∈ 𝒳 with frequencies 𝜈𝑥, and a loss objective of the form
ℓ(𝒳 ;𝜃) =

∑︀
𝑥 𝑓(𝜈𝑥)𝐿(𝑥;𝜃). The function 𝑓 that is applied to the frequencies can be any concave

sublinear function. Concave sublinear functions, which we discuss further below, are used in
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applications to mitigate the disproportionate effect of keys with very high frequencies. The training
of the model typically involves repeated evaluation of the loss function (or of its gradient that also
has a sum form) for different values of 𝜃. We would like to compute these aggregates on demand,
without needing to go over the data many times.

When the number of keys is very large it is often helpful to compute a smaller random sample
𝑆 ⊆ 𝒳 of the keys from which aggregates can be efficiently estimated. In some applications,
obtaining a sample can be the end goal. For example, when the aggregate is a gradient, we can use
the sample itself as a stochastic gradient. To provide statistical guarantees on our estimate quality,
the sampling needs to be weighted (importance sampling), with heavier keys sampled with higher
probability, ideally, proportional to their contribution (𝑓(𝜈𝑥)). When the weights of the keys are
known, there are classic sampling schemes that provide estimators with tight worst-case variance
bounds [33, 17, 8, 13, 37, 38].

The datasets we consider here are presented in an unaggregated form: each key can appear multiple
times in different locations. The focus of this work is designing composable sketch structures
(formally defined below) that allow to compute a sample over unaggregated data with respect to
the weights 𝑓(𝜈𝑥). One approach to compute a sample from unaggregated data is to first aggregate
the data to produce a table of key-frequency pairs (𝑥, 𝜈𝑥), compute the weights 𝑓(𝜈𝑥), and apply a
weighted sampling scheme. This aggregation can be performed using composable structures that are
essentially a table with an entry for each distinct key that occurred in the data. The number of distinct
keys, however, and hence the size of that sketch, can be huge. For our sampling application, we
would hope to use sketches of size that is proportional to the desired sample size, which is generally
much smaller than the number of unique keys, and still provide statistical guarantees on the estimate
quality that are close to that of a weighted sample computed according to 𝑓(𝜈𝑥).

Concave Sublinear Functions. Typical datasets have a skewed frequency distribution, where
a small fraction of the keys have very large frequencies and we can get better results or learn a
better model of the data by suppressing their effect. The practice is to apply a concave sublinear
function 𝑓 to the frequency, so that the importance weight of the key is 𝑓(𝜈𝑥) instead of simply its
frequency 𝜈𝑥. This family of functions includes the frequency moments 𝜈𝑝𝑥 for 𝑝 ≤ 1, ln(1 + 𝜈𝑥),
cap𝑇 (𝜈𝑥) = min{𝑇, 𝜈𝑥} for a fixed 𝑇 ≥ 0, their compositions, and more. A formal definition
appears in Section 2.4.

Two hugely popular methods for producing word embeddings from word co-occurrences use this form
of mitigation: word2vec [30] uses 𝑓(𝜈) = 𝜈0.5 and 𝑓(𝜈) = 𝜈0.75 for positive and negative examples,
respectively, and GloVe [35] uses 𝑓(𝜈) = min{𝑇, 𝜈0.75} to mitigate co-occurrence frequencies.
When the data is highly distributed, for example, when it originates or resides at millions of mobile
devices (as in federated learning [29]), it is useful to estimate the loss or compute a stochastic gradient
update efficiently via a weighted sample.

The suppression of higher frequencies may also directly arise in applications. One example is
campaign planning for online advertising, where the value of showing an ad to a user diminishes
with the number of views. Platforms allow an advertiser to specify a cap value 𝑇 on the number of
times the same ad can be presented to a user [23, 34]. In this case, the number of opportunities to
display an ad to a user 𝑥 is a cap function of the frequency of the user 𝑓(𝜈𝑥) = min{𝑇, 𝜈𝑥}, and
the number for a segment of users 𝐻 is the statistics

∑︀
𝑥∈𝐻 𝑓(𝜈𝑥). When planning a campaign, we

need to quickly estimate the statistics for different segments, and this can be done from a sample that
ideally is weighted by 𝑓(𝜈𝑥).

Our Contribution. In this work, we design composable sketches that can be tailored to any concave
sublinear function 𝑓 , and allow us to compute a weighted sample over unaggregated data with respect
to the weights 𝑓(𝜈𝑥). Using the sample, we will be able to compute unbiased estimators for the
aggregates mentioned above. In order to compute the estimators, we need to make a second pass over
the data: In the first pass, we compute the set of sampled keys, and in the second pass we compute
their frequencies. Both passes can be done in a distributed manner.

A sketch 𝑆(𝐷) is a data structure that summarizes a set 𝐷 of data elements, so that the output of
interest for 𝐷 (in our case, a sample of keys) can be recovered from the sketch 𝑆(𝐷). A sketch
structure is composable if we can obtain a sketch 𝑆(𝐷1 ∪𝐷2) of two sets of elements 𝐷1 and 𝐷2

from the sketches 𝑆(𝐷1) and 𝑆(𝐷2) of the sets. This property alone gives us full flexibility to
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parallelize or distribute the computation. The size of the sketch determines the communication and
storage needs of the computation.

We provide theoretical guarantees on the quality (variance) of the estimators. The baseline for our
analysis is the bounds on the variance that are guaranteed by PPSWOR on aggregated data. PPSWOR
[37, 38] is a sampling scheme with tight worst-case variance bounds. The estimators provided by our
sketch have variance at most 4/((1− 𝜀)2) times the variance bound for PPSWOR. The parameter
𝜀 ≤ 1/2 mostly affects the run time of processing a data element, which grows near-linearly in 1/𝜀.
Thus, our sketch allows us to get approximately optimal guarantees on the variance while avoiding
the costly aggregation of the data.

We remark that these guarantees are for soft concave sublinear functions. This family approximates
any concave sublinear function up to a multiplicative factor of 1− 1/𝑒. As a result, our sketch can be

used with any (non-soft) concave sublinear function while incurring another factor of
(︁
1 + 1

𝑒−1

)︁2
in

the variance.

The space required by our sketch significantly improves upon the previous methods (which all require
aggregating the data). In particular, if the desired sample size is 𝑘, we show that the space required
by the sketch at any given time is 𝑂(𝑘) in expectation. We additionally show that, with probability
at least 1 − 𝛿, the space will not exceed 𝑂

(︁
𝑘 +min{log𝑚, log log

(︁
Sum𝐷

Min(𝐷)

)︁
}+ log

(︀
1
𝛿

)︀)︁
at any

time while processing the dataset 𝐷, where 𝑚 is the number of elements, Sum𝐷 the sum of
weights of all elements, and Min(𝐷) is the minimum value of an element in 𝐷. In the common
case where all elements have weight 1, this means that for any 𝛿, the needed space is at most
𝑂
(︀
𝑘 + log log𝑚+ log

(︀
1
𝛿

)︀)︀
with probability at least 1− 𝛿.1

We complement our work with a small-scale experimental study. We use a simple implementation of
our sampling sketch to study the actual performance in terms of estimate quality and sketch size. In
particular, we show that the estimate quality is even better than the (already adequate) guarantees
provided by our worst-case bounds. We additionally compare the estimate quality to that of two
popular sampling schemes for aggregated data, PPSWOR [37, 38] and priority (sequential Poisson)
sampling [33, 17]. In the experiments, we see that the estimate quality of our sketch is close to what
achieved by PPSWOR and priority sampling, while our sketch uses much less space by eliminating
the need for aggregation.

The paper is organized as follows. The preliminaries are presented in Section 2. We provide an
overview of PPSWOR and the statistical guarantees it provides for estimation. Then, we formally
define the family of concave sublinear functions. Our sketch uses two building blocks. The first
building block, which can be of independent interest, is the analysis of a stochastic PPSWOR sample.
Typically, when computing a sample, the data from which we sample is a deterministic part of the
input. In our construction, we needed to analyze the variance bounds for PPSWOR sampling that
is computed over data elements with randomized weights (under certain assumptions). We provide
this analysis in Section 3. The second building block is the SumMax sampling sketch, which is
discussed in Section 4. This is an auxiliary sketch structure that supports datasets with a certain type
of structured keys. We put it all together and describe our main result in Section 5. The experiments
are discussed in Section 6.

Related Work. There are multiple classic composable weighted sampling schemes for aggregated
datasets (where keys are unique to elements). Schemes that provide estimators with tight worst-case
variance bounds include priority (sequential Poisson) sampling [33, 17] and VarOpt sampling [8, 13].
We focus here on PPSWOR [37, 38] as our base scheme because it extends to unaggregated datasets,
where multiple elements can additively contribute to the frequency/weight of each key.

There is a highly prolific line of research on developing sketch structures for different task over
streamed or distributed unaggregated data with applications in multiple domains. Some early
examples are frequent elements [31] and distinct counting [20], and the seminal work of [1] providing
a theoretical model for frequency moments. Composable sampling sketches for unaggregated datasets
were also studied for decades. The goal is to meet the quality of samples computed on aggregated

1For streaming algorithms we are typically interested in deterministic worst-case bounds on the space, but
streaming algorithms with randomized space have also been considered in some cases, in particular when
studying the sliding window model [3, 7].
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frequencies while using a sketch structure that can only hold a final-sample-size number of distinct
keys. These include a folklore sketch for distinct sampling (𝑓(𝜈) = 1 when 𝜈 > 0) [27, 39] and
sketch structures for sum sampling (𝑓(𝜈) = 𝜈) [12]. The latter generalizes the discrete sample and
hold scheme [22, 18, 14] and PPSWOR. Sampling sketches for cap functions (𝑓(𝜈) = min{𝑇, 𝜈})
were provided in [11] and have a slight overhead over the aggregated baseline. The latter work also
provided multi-objective/universal samples that with a logarithmic overhead simultaneously provide
statistical guarantees for all concave sublinear 𝑓 . In the current work we propose sampling sketches
that can be tailored to any concave sublinear function and only have a small constant overhead.

An important line of work uses sketches based on random linear projections to estimate frequency
statistics and to sample. In particular, ℓ𝑝 sampling sketches [21, 32, 2, 26, 25] sample (roughly)
according to 𝑓(𝜈) = 𝜈𝑝 for 𝑝 ∈ [0, 2]. These sketches have a higher logarithmic overhead on the
space compared to sample-based sketches, and do not support all concave sublinear functions of
the frequencies (for example, 𝑓(𝜈) = ln (1 + 𝜈)). In some respects they are more limited in their
application – for example, they are not designed to produce a sample that includes raw keys. Their
advantage is that they can be used with super-linear (𝑝 ∈ (1, 2]) functions of frequencies and can
also support signed element values (the turnstile model). For the more basic problem of sketches
that estimate frequency statistics over the full data, a complete characterization of the frequency
functions for which the statistics can be estimated via polylogarithmic-size sketches is provided
in [6, 4]. Universal sketches for estimating ℓ𝑝 norms of subsets were recently considered in [5]. The
seminal work of Alon et al. [1] established that for some functions of frequencies (moments with
𝑝 > 2), statistics estimation requires polynomial-size sketches. A double logarithmic size sketch,
extending [19] for distinct counting, that computes statistics over the entire dataset for all soft concave
sublinear functions is provided in [10]. Our design builds on components of that sketch.

2 Preliminaries

Consider a set 𝐷 of data elements of the form 𝑒 = (𝑒.key , 𝑒.val) where 𝑒.val > 0. We denote
the set of possible keys by 𝒳 . For a key 𝑧 ∈ 𝒳 , we let Max𝐷(𝑧) := max𝑒∈𝐷|𝑒.key=𝑧 𝑒.val and
Sum𝐷(𝑧) :=

∑︀
𝑒∈𝐷|𝑒.key=𝑧 𝑒.val denote the maximum value of a data element in 𝐷 with key

𝑧 and the sum of values of data elements in 𝐷 with key 𝑧, respectively. Each key 𝑧 ∈ 𝒳 that
appears in 𝐷 is called active. If there is no element 𝑒 ∈ 𝐷 with 𝑒.key = 𝑧, we say that 𝑧 is
inactive and define Max𝐷(𝑧) := 0 and Sum𝐷(𝑧) := 0. When 𝐷 is clear from context, it is omitted.
For a key 𝑧, we use the shorthand 𝜈𝑧 := Sum𝐷(𝑧) and refer to it as the frequency of 𝑧. The
sum and the max-distinct statistics of 𝐷 are defined, respectively, as Sum𝐷 :=

∑︀
𝑒∈𝐷 𝑒.val and

MxDistinct𝐷 :=
∑︀

𝑧∈𝒳 Max𝐷(𝑧). For a function 𝑓 , 𝑓𝐷 :=
∑︀

𝑧∈𝒳 𝑓(Sum𝐷(𝑧)) =
∑︀

𝑧∈𝒳 𝑓(𝜈𝑧) is
the 𝑓 -frequency statistics of 𝐷.

For a set 𝐴 ⊆ R, we use 𝐴(𝑖) to denote the 𝑖-th order statistic of 𝐴, that is, the 𝑖-th lowest element in
𝐴.

2.1 The Composable Bottom-𝑘 Structure

In this work, we will use composable sketch structures in order to efficiently summarize streamed
or distributed data elements. A composable sketch structure is specified by three operations: The
initialization of an empty sketch structure 𝑠, the processing of a data element 𝑒 into a structure 𝑠,
and the merging of two sketch structures 𝑠1 and 𝑠2. To sketch a stream of elements, we start with
an empty structure and sequentially process data elements while storing only the sketch structure.
The merge operation is useful with distributed or parallel computation and allows us to compute the
sketch of a large set 𝐷 =

⋃︀
𝑖 𝐷𝑖 of data elements by merging the sketches of the parts 𝐷𝑖.

In particular, one of the main building blocks that we use is the bottom-𝑘 structure [15], specified in
Algorithm 1. The structure maintains 𝑘 data elements: For each key, consider only the element with
that key that has the minimum value. Of these elements, the structure keeps the 𝑘 elements that have
the lowest values.

2.2 The PPSWOR Sampling Sketch

In this subsection, we describe a scheme to produce a sample of 𝑘 keys, where at each step the
probability that a key is selected is proportional to its weight. That is, the sample we produce will

4



Algorithm 1: Bottom-𝑘 Sketch Structure
// Initialize structure
Input: the structure size 𝑘
𝑠.𝑠𝑒𝑡← ∅ // Set of ≤ 𝑘 key-value pairs
// Process element
Input: element 𝑒 = (𝑒.key , 𝑒.val), a bottom-𝑘 structure 𝑠
if 𝑒.key ∈ 𝑠.𝑠𝑒𝑡 then

replace the current value 𝑣 of 𝑒.key in 𝑠.𝑠𝑒𝑡 with min{𝑣, 𝑒.val}
else

insert (𝑒.key , 𝑒.val) to 𝑠.𝑠𝑒𝑡
if |𝑠.𝑠𝑒𝑡| = 𝑘 + 1 then

Remove the element 𝑒′ with maximum value from 𝑠.𝑠𝑒𝑡

// Merge two bottom-𝑘 structures
Input: 𝑠1,𝑠2 // Bottom-𝑘 structures
Output: 𝑠 // Bottom-𝑘 structure
𝑃 ← 𝑠1.𝑠𝑒𝑡 ∪ 𝑠2.𝑠𝑒𝑡
𝑠.𝑠𝑒𝑡← the (at most) 𝑘 elements of 𝑃 with lowest values (at most one element per key)

Algorithm 2: PPSWOR Sampling Sketch
// Initialize structure
Input: the sample size 𝑘
Initialize a bottom-𝑘 structure 𝑠.sample // Algorithm 1
// Process element
Input: element 𝑒 = (𝑒.key , 𝑒.val), PPSWOR sample structure 𝑠
𝑣 ∼ Exp[𝑒.val ]
Process the element (𝑒.key , 𝑣) into the bottom-𝑘 structure 𝑠.sample
// Merge two structures 𝑠1, 𝑠2 to obtain 𝑠
𝑠.sample←Merge the bottom-𝑘 structures 𝑠1.sample and 𝑠2.sample

be equivalent to performing the following 𝑘 steps. At each step we select one key and add it to the
sample. At the first step, each key 𝑥 ∈ 𝒳 (with weight 𝑤𝑥) is selected with probability 𝑤𝑥/

∑︀
𝑦 𝑤𝑦 .

At each subsequent step, we choose one of the remaining keys, again with probability proportional
to its weight. Since the total weight of the remaining keys is lower, the probability that a key is
selected in a subsequent step (provided it was not selected earlier) is only higher. This process is
called probability proportional to size and without replacement (PPSWOR) sampling.

A classic method for PPSWOR sampling is the following scheme [37, 38]. For each key 𝑥 with
weight 𝑤𝑥, we independently draw seed(𝑥) ∼ Exp(𝑤𝑥). Outputting the sample that includes the 𝑘
keys with smallest seed(𝑥) is equivalent to PPSWOR sampling as described above. This method
together with a bottom-𝑘 structure can be used to implement PPSWOR sampling over a set of data
elements 𝐷 according to 𝜈𝑥 = Sum𝐷(𝑥). This sampling sketch is presented here as Algorithm 2.
The sketch is due to [12] (based on [22, 18, 14]).

Proposition 2.1. Algorithm 2 maintains a composable bottom-𝑘 structure such that for each key
𝑥, the lowest value of an element with key 𝑥 (denoted by seed(𝑥)) is drawn independently from
Exp(𝜈𝑥). Hence, it is a PPSWOR sample according to the weights 𝜈𝑥.

The proof is provided in Appendix A.

2.3 Estimation Using Bottom-𝑘 Samples

PPSWOR sampling (Algorithm 2) is a special case of bottom-𝑘 sampling [38, 15, 16].

Definition 2.2. Let 𝑘 ≥ 2. A bottom-𝑘 sample over keys 𝒳 is obtained by drawing independently for
each active key 𝑥 a random variable seed(𝑥) ∼ SeedDist𝑥. The 𝑘 − 1 keys with lowest seed(𝑥)
values are considered to be included in the sample 𝑆, and the 𝑘-th lowest value 𝜏 := {seed(𝑥) | 𝑥 ∈
𝒳}(𝑘) is the inclusion threshold.
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The distributions SeedDist𝑥 are such that for all 𝑡 > 0, Pr[seed(𝑥) < 𝑡] > 0, that is, there is
positive probability to be below any positive 𝑡. Typically the distributions SeedDist𝑥 come from a
family of distributions that is parameterized by the frequency 𝜈𝑥 of keys. The frequency is positive
for active keys and 0 otherwise. In the special case of PPSWOR sampling by frequency, SeedDist𝑥
is Exp(𝜈𝑥).

We review here how a bottom-𝑘 sample is used to estimate domain statistics of the form
∑︀

𝑥∈𝐻 𝑓(𝜈𝑥)
for 𝐻 ⊆ 𝒳 . More generally, we will show how to estimate aggregates of the form∑︁

𝑥∈𝒳
𝐿𝑥𝑓(𝜈𝑥) (1)

for any set of fixed values 𝐿𝑥. Note that we can represent domain statistics in this form by setting
𝐿𝑥 = 1 for 𝑥 ∈ 𝐻 and 𝐿𝑥 = 0 for 𝑥 /∈ 𝐻 . For the sake of this discussion, we treat 𝑓𝑥 := 𝑓(𝜈𝑥) as
simply a set of weights associated with keys, assuming we can have 𝑓𝑥 > 0 only for active keys.

In order to estimate statistics of the form (1), we will define an estimator ̂︀𝑓𝑥 for each 𝑓𝑥. The estimator̂︀𝑓𝑥 will be non-negative ( ̂︀𝑓𝑥 ≥ 0), unbiased (E
[︁ ̂︀𝑓𝑥]︁ = 𝑓𝑥), and such that ̂︀𝑓𝑥 = 0 when the key 𝑥 is

not included in the bottom-𝑘 sample (𝑥 ̸∈ 𝑆 using the terms of Definition 2.2).

As a general convention, we will use the notation ̂︀𝑧 to denote an estimator of any quantity 𝑧. We
define the sum estimator of the statistics

∑︀
𝑥∈𝒳 𝐿𝑥𝑓𝑥 to be∑︁

𝑥∈𝒳
𝐿𝑥𝑓𝑥 :=

∑︁
𝑥∈𝑆

𝐿𝑥
̂︀𝑓𝑥

We also note that since ̂︀𝑓𝑥 = 0 for 𝑥 /∈ 𝑆, computing the sum only over 𝑥 ∈ 𝑆 is the same as
computing the sum over all 𝑥 ∈ 𝒳 , that is,

∑︀
𝑥∈𝑆 𝐿𝑥

̂︀𝑓𝑥 =
∑︀

𝑥∈𝒳 𝐿𝑥
̂︀𝑓𝑥.

Note that the sum estimator can be computed as long as the fixed values 𝐿𝑥 and the per-key estimateŝ︀𝑓𝑥 for 𝑥 ∈ 𝑆 are available. From linearity of expectation, we get that the sum estimate is unbiased:

E

[︃∑︁
𝑥∈𝒳

𝐿𝑥𝑓𝑥

]︃
= E

[︃∑︁
𝑥∈𝑆

𝐿𝑥
̂︀𝑓𝑥]︃

= E

[︃∑︁
𝑥∈𝒳

𝐿𝑥
̂︀𝑓𝑥]︃ =

∑︁
𝑥∈𝒳

𝐿𝑥E
[︁ ̂︀𝑓𝑥]︁ = ∑︁

𝑥∈𝒳
𝐿𝑥𝑓𝑥.

We now define the per-key estimators ̂︀𝑓𝑥. The following is a conditioned variant of the Horvitz-
Thompson estimator [24].
Definition 2.3. Let 𝑘 ≥ 2 and consider a bottom-𝑘 sample, where 𝑆 is the set of 𝑘 − 1 keys in the
sample and 𝜏 is the inclusion threshold. For any 𝑥 ∈ 𝒳 , the inverse-probability estimator of 𝑓𝑥 is

̂︀𝑓𝑥 =

{︃
𝑓𝑥

Prseed(𝑥)∼SeedDist𝑥 [seed(𝑥)<𝜏 ] 𝑥 ∈ 𝑆

0 𝑥 /∈ 𝑆
.

In order to compute these estimates, we need to know the weights 𝑓𝑥 and distributions SeedDist𝑥 for
the sampled keys 𝑥 ∈ 𝑆. In particular, in our applications when 𝑓𝑥 = 𝑓(𝜈𝑥) is a function of frequency
and the seed distribution is parameterized by frequency, then it suffices to know the frequencies of
sampled keys.2

Claim 2.4. The inverse-probability estimator is unbiased, that is, E
[︁ ̂︀𝑓𝑥]︁ = 𝑓𝑥.

Proof. We first consider ̂︀𝑓𝑥 when conditioned on the seed values of all other keys 𝒳 ∖ {𝑥} and in
particular on

𝜏𝑥 := {seed(𝑧) | 𝑧 ∈ 𝒳 ∖ {𝑥}}(𝑘−1),

2In the general case, we assume these functions of the frequency are computationally tractable or can be
easily approximated up to a small constant factor. For our application, the discussion will follow in Section 5.4.
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which is the 𝑘 − 1 smallest seed on 𝒳 ∖ {𝑥}. Under this conditioning, a key 𝑥 is included in 𝑆 with
probability Prseed(𝑥)∼SeedDist𝑥 [seed(𝑥) < 𝜏𝑥]. When 𝑥 ̸∈ 𝑆, the estimate is 0. When 𝑥 ∈ 𝑆, we
have that 𝜏𝑥 = 𝜏 and the estimate is the ratio of 𝑓𝑥 and the inclusion probability. So our estimator is
a plain inverse probability estimator and thus E

[︁ ̂︀𝑓𝑥 | 𝜏𝑥]︁ = 𝑓𝑥.

Finally, from the fact that the estimator is unbiased when conditioned on 𝜏𝑥, we also get that it is
unconditionally unbiased: E

[︁ ̂︀𝑓𝑥]︁ = E𝜏𝑥

[︁
E
[︁ ̂︀𝑓𝑥 | 𝜏𝑥]︁]︁ = E𝜏𝑥 [𝑓𝑥] = 𝑓𝑥.

We now turn to analyze the variance of the estimators. The guarantees we can obtain on the quality
of the sum estimates depend on how well the distributions SeedDist𝑥 are tailored to the values
𝑓𝑥, where ideally, keys should be sampled with probabilities proportional to 𝑓𝑥. PPSWOR, where
seed(𝑥) ∼ Exp(𝑓𝑥), is such a “gold standard” sampling scheme that provides us with strong
guarantees: For domain statistics

∑︀
𝑥∈𝐻 𝑓𝑥, we get a tight worst-case bound on the coefficient of

variation3 of 1/
√︀
𝑞(𝑘 − 2), where 𝑞 =

∑︀
𝑥∈𝐻 𝑓𝑥/

∑︀
𝑥∈𝒳 𝑓𝑥 is the fraction of the statistics that is

due to the domain 𝐻 . Moreover, the estimates are concentrated in a Chernoff bounds sense. For
objectives of the form (1), we obtain additive Hoeffding-style bounds that depend only on sample
size and the range of 𝐿𝑥.

When we cannot implement “gold-standard” sampling via small composable sampling structures, we
seek guarantees that are close to that. Conveniently, in the analysis it suffices to bound the variance of
the per-key estimators [9, 11]: A key property of bottom-𝑘 estimators is that ∀𝑥, 𝑧, cov( ̂︀𝑓𝑥, ̂︀𝑓𝑧) ≤ 0
(equality holds for 𝑘 ≥ 3) [11]. Therefore, the variance of the sum estimator can be bounded by the
sum of bounds on the per-key variance. This allows us to only analyze the per-key variance Var

(︁ ̂︀𝑓𝑥)︁.
To achieve the guarantees of the “gold standard” sampling, the desired bound on the per-key variance
for a sample of size 𝑘 − 1 (a bottom-𝑘 sample where the 𝑘-th lowest seed is the inclusion threshold)
is

Var
(︁ ̂︀𝑓𝑥)︁ ≤ 1

𝑘 − 2
𝑓𝑥
∑︁
𝑧∈𝒳

𝑓𝑧 . (2)

So our goal is to establish upper bounds on the per-key variance that are within a small constant of
(2). We refer to this value as the overhead. The overhead factor in the per-key bounds carries over to
the sum estimates.

We next review the methodology for deriving per-key variance bounds. The starting point is to first
bound the per-key variance of ̂︀𝑓𝑥 conditioned on 𝜏𝑥.

Claim 2.5. With the inverse probability estimator we have

Var
(︁ ̂︀𝑓𝑥)︁ = E𝜏𝑥

[︁
Var

(︁ ̂︀𝑓𝑥 | 𝜏𝑥)︁]︁ = E𝜏𝑥

[︂
𝑓2
𝑥

(︂
1

Pr[seed(𝑥) < 𝜏𝑥]
− 1

)︂]︂
.

Proof. Follows from the law of total variance and the unbiasedness of the conditional estimates for
any fixed value of 𝜏𝑥, E

[︁ ̂︀𝑓𝑥 | 𝜏𝑥]︁ = 𝑓𝑥.

For the “gold standard” PPSWOR sample, we have Pr[seed(𝑥) < 𝑡] = 1− exp(−𝑓𝑥𝑡) and using
𝑒−𝑥

1−𝑒−𝑥 ≤ 1
𝑥 , we get

Var
(︁ ̂︀𝑓𝑥 | 𝜏𝑥)︁ = 𝑓2

𝑥

(︂
1

Pr[seed(𝑥) < 𝜏𝑥]
− 1

)︂
≤ 𝑓𝑥

𝜏𝑥
. (3)

In order to bound the unconditional per-key variance, we use the following notion of stochastic
dominance.

Definition 2.6. Consider two density functions 𝑎 and 𝑏 both with support on the nonnegative reals.
We say that 𝑎 is dominated by 𝑏 (𝑎 ⪯ 𝑏) if for all 𝑧 ≥ 0,

∫︀ 𝑧

0
𝑎(𝑦)𝑑𝑦 ≤

∫︀ 𝑧

0
𝑏(𝑦)𝑑𝑦.

3Defined as the ratio of the standard deviation to mean. For our unbiased estimators it is equal to the relative
root mean squared error.
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Note that since they are both density functions, it implies that the CDF of 𝑎 is pointwise at most the
CDF of 𝑏. In particular, the probability of being below some value 𝑦 under 𝑏 is at least that of 𝑎.4

When bounding the variance, we use a distribution 𝐵 that dominates the distribution of 𝜏𝑥 and is
easier to work with and then compute the upper bound

Var
[︁ ̂︀𝑓𝑥]︁ = E𝜏𝑥

[︂
𝑓2
𝑥

(︂
1

Pr[seed(𝑥) < 𝜏𝑥]
− 1

)︂]︂
(4)

≤ E𝑡∼𝐵

[︂
𝑓2
𝑥

(︂
1

Pr[seed(𝑥) < 𝑡]
− 1

)︂]︂
.

With PPSWOR, the distribution of 𝜏𝑥 is dominated by the distribution Erlang[
∑︀

𝑧∈𝒳 𝑓𝑧, 𝑘 − 1],
where Erlang[𝑉, 𝑘] is the distribution of the sum of 𝑘 independent exponential random variables
with parameter 𝑉 . The density function of Erlang[𝑉, 𝑘] is 𝐵𝑉,𝑘(𝑡) =

𝑉 𝑘𝑡𝑘−1𝑒−𝑉 𝑡

(𝑘−1)! . Choosing 𝐵 to
be Erlang[

∑︀
𝑧∈𝒳 𝑓(𝜈𝑧), 𝑘 − 1] in (4) and using (3), we get the bound in (2).

Note that if we have an estimator that gives a weaker bound of 𝑐 · 𝑓𝑥𝜏𝑥 on the conditional variance
and the distribution of 𝜏𝑥 is similarly dominated by Erlang[

∑︀
𝑧∈𝒳 𝑓𝑧, 𝑘 − 1], we will obtain a

corresponding bound on the unconditional variance with overhead 𝑐.

2.4 Concave Sublinear Functions

A function 𝑓 : [0,∞)→ [0,∞) is soft concave sublinear if for some 𝑎(𝑡) ≥ 0 it can be expressed
as5

𝑓(𝜈) = ℒc[𝑎](𝜈) :=

∫︁ ∞

0

𝑎(𝑡)(1− 𝑒−𝜈𝑡)𝑑𝑡 . (5)

ℒc[𝑎](𝜈) is called the complement Laplace transform of 𝑎 at 𝜈. The function 𝑎(𝑡) is the inverse
Laplace𝑐 (complement Laplace) transform of 𝑓 :

𝑎(𝑡) = (ℒc)−1[𝑓 ](𝑡) . (6)
A table with the inverse Laplace𝑐 transform of several common functions (in particular, the moments
𝜈𝑝 for 𝑝 ∈ (0, 1) and ln (1 + 𝜈)) appears in [10]. We additionally use the notation

ℒc[𝑎](𝜈)𝛽𝛼 :=

∫︁ 𝛽

𝛼

𝑎(𝑡)(1− 𝑒−𝜈𝑡)𝑑𝑡 .

The sampling schemes we present in this work will be defined for soft concave sublinear functions
of the frequencies. However, this will allow us to estimate well any function that is within a small
multiplicative constant of a soft concave sublinear function. In particular, we can estimate concave
sublinear functions. These functions can be expressed as

𝑓(𝜈) =

∫︁ ∞

0

𝑎(𝑡)min{1, 𝜈𝑡}𝑑𝑡 (7)

for 𝑎(𝑡) ≥ 0.6 The concave sublinear family includes all functions such that 𝑓(0) = 0, 𝑓 is
monotonically non-decreasing, 𝜕+𝑓(0) <∞, and 𝜕2𝑓 ≤ 0.

Any concave sublinear function 𝑓 can be approximated by a soft concave sublinear function as
follows. Consider the corresponding soft concave sublinear function 𝑓 using the same coefficients
𝑎(𝑡). The function 𝑓 closely approximates 𝑓 pointwise [10]:

(1− 1/𝑒)𝑓(𝜈) ≤ 𝑓(𝜈) ≤ 𝑓(𝜈) .

4We note in our applications, lower values mean higher inclusion probabilities. In most applications, higher
values are associated with better results, and accordingly, first-order stochastic dominance is usually defined as
the reverse.

5The definition also allows 𝑎(𝑡) to have discrete mass at points (that is, we can add a component of the form∑︀
𝑖 𝑎(𝑡𝑖)(1− 𝑒−𝜈𝑡𝑖)). We generally ignore this component for the sake of presentation, but one way to model

this is using Dirac delta.
6Here we also allow 𝑎(𝑡) to have discrete mass using Dirac delta. For the sake of presentation, we also

assume bounded 𝜈 – otherwise we need to add a linear component 𝐴∞𝜈 for some 𝐴∞ ≥ 0. The component
𝐴∞𝜈 can easily be added to the final sketch presented in Section 5, for example, by taking the minimum with
another independent PPSWOR sketch.
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Our weighted sample for 𝑓 will respectively approximate a weighted sample for 𝑓 (later explained in
Remark 5.11).

3 Stochastic PPSWOR Sampling

In this section, we provide an analysis of PPSWOR for a case that will appear later in our main sketch.
The case we consider is the following. In the PPSWOR sampling scheme described in Section 2.2,
the weights 𝑤𝑥 of the keys were part of the deterministic input to the algorithm. In this section, we
consider PPSWOR sampling when the weights are random variables. We will show that under certain
assumptions, PPSWOR sampling according to randomized inputs is close to sampling according to
the expected values of these random inputs.

Formally, let 𝒳 be a set of keys. Each key 𝑥 ∈ 𝒳 is associated with 𝑟𝑥 ≥ 0 independent random
variables 𝑆𝑥,1, . . . , 𝑆𝑥,𝑟𝑥 in the range [0, 𝑇 ] (for some constant 𝑇 > 0). The weight of key 𝑥 is the
random variable 𝑆𝑥 :=

∑︀𝑟𝑥
𝑖=1 𝑆𝑥,𝑖. We additionally denote its expected weight by 𝑣𝑥 := E[𝑆𝑥], and

the expected sum statistics by 𝑉 :=
∑︀

𝑥 𝑣𝑥.

A stochastic PPSWOR sample is a PPSWOR sample computed for the key-value pairs (𝑥, 𝑆𝑥). That
is, we draw the random variables 𝑆𝑥, then we draw for each 𝑥 a random variable seed(𝑥) ∼ Exp[𝑆𝑥],
and take the 𝑘 keys with lowest seed values.

We prove two results that relate stochastic PPSWOR sampling to a PPSWOR sample according to the
expected values 𝑣𝑥. The first result bounds the variance of estimating 𝑣𝑥 using a stochastic PPSWOR
sample. We consider the conditional inverse-probability estimator of 𝑣𝑥 (Definition 2.3). Note that
even though the PPSWOR sample was computed using the random weight 𝑆𝑥, the estimator ̂︀𝑣𝑥 is
computed using 𝑣𝑥 and will be 𝑣𝑥

Pr[seed(𝑥)<𝜏 ] for keys 𝑥 in the sample. Based on the discussion in
Section 2.3, it suffices to bound the per-key variance and relate it to the per-key variance bound for a
PPSWOR sample computed directly for 𝑣𝑥. We show that when 𝑉 ≥ 𝑇𝑘, the overhead due to the
stochastic sample is at most 4 (that is, the variance grows by a multiplicative factor of 4). The proof
details would also reveal that when 𝑉 ≫ 𝑇𝑘, the worst-case bound on the overhead is actually closer
to 2.
Theorem 3.1. Let 𝑘 ≥ 3. In a stochastic PPSWOR sample, if 𝑉 ≥ 𝑇𝑘, then for every key 𝑥 ∈ 𝒳 ,
the variance Var [𝑣𝑥] of the bottom-𝑘 inverse probability estimator of 𝑣𝑥 is bounded by

Var [𝑣𝑥] ≤
4𝑣𝑥𝑉

𝑘 − 2
.

Note that in order to compute these estimates, we need to be able to compute the values 𝑣𝑥 = E[𝑆𝑥]
and Pr[seed(𝑥) < 𝜏 ] for sampled keys. With stochastic sampling, the precise distribution SeedDist𝑥
depends on the distributions of the random variables 𝑆𝑥,𝑖. For now, however, we assume that
SeedDist𝑥 and 𝑣𝑥 are available to us with the sample. In Section 5, when we use stochastic sampling,
we will also show how to compute SeedDist𝑥.

The second result in this section provides a lower bound on the probability that a key 𝑥 is included in
the stochastic PPSWOR sample of size 𝑘 = 1. We show that when 𝑉 ≥ 1

𝜀 ln
(︀
1
𝜀

)︀
𝑇 , the probability

key 𝑥 is included in the sample is at least 1− 2𝜀 times the probability it is included in a PPSWOR
sample according to the expected weights.
Theorem 3.2. Let 𝜀 ≤ 1

2 . Consider a stochastic PPSWOR sample of size 𝑘 = 1. If 𝑉 ≥ 1
𝜀 ln

(︀
1
𝜀

)︀
𝑇 ,

the probability that any key 𝑥 ∈ 𝒳 is included in the sample is at least (1− 2𝜀) 𝑣
𝑉 .

The proofs of the two theorems are deferred to Appendix B.

4 SumMax Sampling Sketch

In this section, we present an auxiliary sampling sketch which will be used in Section 5. The sketch
processes elements 𝑒 = (𝑒.key , 𝑒.val) with keys 𝑒.key = (𝑒.key .𝑝, 𝑒.key .𝑠) that are structured to
have a primary key 𝑒.key .𝑝 and a secondary key 𝑒.key .𝑠. For each primary key 𝑥, we define

SumMax𝐷(𝑥) :=
∑︁

𝑧|𝑧.𝑝=𝑥

Max𝐷(𝑧)
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Algorithm 3: SumMax Sampling Sketch
// Initialize empty structure 𝑠
Input: Sample size 𝑘
𝑠.ℎ← fully independent random hash with range Exp[1]
Initialize 𝑠.sample // A bottom-𝑘 structure (Algorithm 1)
// Process element 𝑒 = (𝑒.key , 𝑒.val) where 𝑒.key = (𝑒.key .𝑝, 𝑒.key .𝑠)
Process element (𝑒.key .𝑝, 𝑠.ℎ(𝑒.key)/𝑒.val) to structure 𝑠.sample // bottom-𝑘 process
element (Algorithm 1)

// Merge structures 𝑠1, 𝑠2 (with 𝑠1.ℎ = 𝑠2.ℎ) to get 𝑠
𝑠.ℎ← 𝑠1.ℎ // 𝑠1.ℎ = 𝑠2.ℎ
𝑠.sample←Merge 𝑠1.sample, 𝑠2.sample// bottom-𝑘 merge (Algorithm 1)

where Max is as defined in Section 2. If there are no elements 𝑒 ∈ 𝐷 such that 𝑒.key .𝑝 = 𝑥, then
by definition Max𝐷(𝑧) = 0 for all 𝑧 with 𝑧.𝑝 = 𝑥 (as there are no elements in 𝐷 with key 𝑧) and
therefore SumMax𝐷(𝑥) = 0. Our goal in this section is to design a sketch that produces a PPSWOR
sample of primary keys 𝑥 according to weights SumMax𝐷(𝑥). Note that while the key space of
the input elements contains structured keys of the form 𝑒.key = (𝑒.key .𝑝, 𝑒.key .𝑠), the key space
for the output sample will be the space of primary keys only. Our sampling sketch is described in
Algorithm 3.

The sketch structure consists of a bottom-𝑘 structure and a hash function ℎ. We assume we have a
perfectly random hash function ℎ such that for every key 𝑧 = (𝑧.𝑝, 𝑧.𝑠), ℎ(𝑧) ∼ Exp[1] independently
(in practice, we assume that the hash function is provided by the platform on which we run). We
process an input element 𝑒 by generating a new data element with key 𝑒.key .𝑝 (the primary key of
the key of the input element) and value

ElementScore(𝑒) := ℎ(𝑒.key)/𝑒.val

and then processing that element by our bottom-𝑘 structure. The bottom-𝑘 structure holds our current
sample of primary keys.

By definition, the bottom-𝑘 structure retains the 𝑘 primary keys 𝑥 with minimum

seed𝐷(𝑥) := min
𝑒∈𝐷|𝑒.key.𝑝=𝑥

ElementScore(𝑒) .

To establish that this is a PPSWOR sample according to SumMax𝐷(𝑥), we study the distribution of
seed𝐷(𝑥).
Lemma 4.1. For all primary keys 𝑥 that appear in elements of 𝐷, seed𝐷(𝑥) ∼
Exp[SumMax𝐷(𝑥))]. The random variables seed𝐷(𝑥) are independent.

The proof is deferred to Appendix C.

Note that the distribution of seed𝐷(𝑥), which is Exp[SumMax𝐷(𝑥)], does not depend on the
particular structure of 𝐷 or the order in which elements are processed, but only on the parameter
SumMax𝐷(𝑥). The bottom-𝑘 sketch structure maintains the 𝑘 primary keys with smallest seed𝐷(𝑥)
values. We therefore get the following corollary.
Corollary 4.2. Given a stream or distributed set of elements 𝐷, the sampling sketch in Algorithm 3
produces a PPSWOR sample according to the weights SumMax𝐷(𝑥).

5 Sampling Sketch for Functions of Frequencies

In this section, we are given a set 𝐷 of elements 𝑒 = (𝑒.key , 𝑒.val) and we wish to maintain a sample
of 𝑘 keys, that will be close to PPSWOR according to a soft concave sublinear function of their
frequencies 𝑓(𝜈𝑥). At a high level, our sampling sketch is guided by the sketch for estimating the
statistics 𝑓𝐷 due to Cohen [10]. Our sketch uses a parameter 𝜀 that will tradeoff the running time of
processing an element with the bound on the variance of the inverse-probability estimator.

Recall that a soft concave sublinear function 𝑓 can be represented as 𝑓(𝑤) = ℒc[𝑎](𝑤)∞0 =∫︀∞
0

𝑎(𝑡)(1 − 𝑒−𝑤𝑡)𝑑𝑡 for 𝑎(𝑡) ≥ 0. Using this representation, we express 𝑓(𝜈𝑥) as a sum of two
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contributions for each key 𝑥:

𝑓(𝜈𝑥) = ℒc[𝑎](𝜈𝑥)
𝛾
0 + ℒc[𝑎](𝜈𝑥)

∞
𝛾 ,

where 𝛾 is a value we will set adaptively while processing the elements. Our sampling sketch is
described in Algorithm 4. It maintains a separate sampling sketch for each set of contributions.
The sketch for ℒc[𝑎](𝜈𝑥)

𝛾
0 is discussed in Section 5.1, and the sketch for ℒc[𝑎](𝜈𝑥)

∞
𝛾 is discussed

in Section 5.2. In order to produce a sample from the sketch, these separate sketches need to be
combined. Algorithm 5 describes how to produce a final sample from the sketch. This is discussed
further in Section 5.3. Finally, we discuss the computation of the inverse-probability estimators 𝑓(𝜈𝑥)
for the sampled keys in Section 5.4. In particular, in order to compute the estimator, we need to know
the values 𝑓(𝜈𝑥) for the keys in the sample, which will require a second pass over the data. The
analysis will result in the following main theorem.

Algorithm 4: Sampling Sketch Structure for 𝑓
// Initialize empty structure 𝑠
Input: 𝑘: Sample size, 𝜀, 𝑎(𝑡) ≥ 0
Initialize 𝑠.SumMax // SumMax sketch of size 𝑘 (Algorithm 3)
Initialize 𝑠.𝑝𝑝𝑠𝑤𝑜𝑟 // PPSWOR sketch of size 𝑘 (Algorithm 2)
Initialize 𝑠.𝑠𝑢𝑚← 0 // A sum of all the elements seen so far
Initialize 𝑠.𝛾 ←∞ // Threshold
Initialize 𝑠.Sideline // A composable max-heap/priority queue
// Process element
Input: Element 𝑒 = (𝑒.key , 𝑒.val), structure 𝑠
Process 𝑒 by 𝑠.𝑝𝑝𝑠𝑤𝑜𝑟
𝑠.𝑠𝑢𝑚← 𝑠.𝑠𝑢𝑚+ 𝑒.val

𝑠.𝛾 ← 2𝜀
𝑠.𝑠𝑢𝑚

// 𝑟 = 𝑘/𝜀
foreach 𝑖 ∈ [𝑟] do

𝑦 ∼ Exp[𝑒.val ] // Exponentially distributed with parameter 𝑒.val
// Process in Sideline
if The key (𝑒.key , 𝑖) appears in 𝑠.Sideline then

Update the value of (𝑒.key , 𝑖) to be the minimum of 𝑦 and the current value
else

Add the element ((𝑒.key , 𝑖), 𝑦) to 𝑠.Sideline

while 𝑠.Sideline contains an element 𝑔 = (𝑔.key , 𝑔.val) with 𝑔.val ≥ 𝑠.𝛾 do
Remove 𝑔 from 𝑠.Sideline
if
∫︀∞
𝑔.val

𝑎(𝑡)𝑑𝑡 > 0 then
Process element (𝑔.key ,

∫︀∞
𝑔.val

𝑎(𝑡)𝑑𝑡) by 𝑠.SumMax

// Merge two structures 𝑠1 and 𝑠2 to 𝑠 (with same 𝑘, 𝜀, 𝑎 and same ℎ in
SumMax sub-structures)

𝑠.𝑠𝑢𝑚← 𝑠1.𝑠𝑢𝑚+ 𝑠2.𝑠𝑢𝑚

𝑠.𝛾 ← 2𝜀
𝑠.𝑠𝑢𝑚

𝑠.Sideline← merge 𝑠1.Sideline and 𝑠2.Sideline // Merge priority queues.
𝑠.𝑝𝑝𝑠𝑤𝑜𝑟 ← merge 𝑠1.𝑝𝑝𝑠𝑤𝑜𝑟 and 𝑠2.𝑝𝑝𝑠𝑤𝑜𝑟// Merge PPSWOR structures
𝑠.SumMax← merge 𝑠1.SumMax and 𝑠2.SumMax // Merge SumMax structures
while 𝑠.Sideline contains an element 𝑔 = (𝑔.key , 𝑔.val) with 𝑔.val ≥ 𝑠.𝛾 do

Remove 𝑔 from 𝑠.Sideline
if
∫︀∞
𝑔.val

𝑎(𝑡)𝑑𝑡 > 0 then
Process element (𝑔.key ,

∫︀∞
𝑔.val

𝑎(𝑡)𝑑𝑡) by 𝑠.SumMax

Theorem 5.1. Let 𝑘 ≥ 3, 0 < 𝜀 ≤ 1
2 , and 𝑓 be a soft concave sublinear function. Algorithms 4 and

5 produce a stochastic PPSWOR sample of size 𝑘 − 1, where each key 𝑥 has weight 𝑉𝑥 that satisfies
𝑓(𝜈𝑥) ≤ E[𝑉𝑥] ≤ 1

(1−𝜀)𝑓(𝜈𝑥). The per-key inverse-probability estimator of 𝑓(𝜈𝑥) is unbiased and
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Algorithm 5: Produce a Final Sample from a Sampling Sketch Structure (Algorithm 4)
Input: Sampling sketch structure 𝑠 for 𝑓
Output: Sample of size 𝑘 of key and seed pairs
if
∫︀∞
𝛾

𝑎(𝑡)𝑑𝑡 > 0 then
foreach 𝑒 ∈ 𝑠.Sideline do

Process element (𝑒.key ,
∫︀∞
𝛾

𝑎(𝑡)𝑑𝑡) by sketch 𝑠.SumMax

foreach 𝑒 ∈ 𝑠.SumMax .sample do
𝑒.val ← 𝑟 * 𝑒.val // Multiply value by 𝑟

if
∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡 > 0 then

foreach 𝑒 ∈ 𝑠.ppswor.sample do
𝑒.val ← 𝑒.val∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡

// Divide value by 𝐵(𝛾)

sample← merge 𝑠.SumMax .sample and 𝑠.ppswor.sample // Bottom-𝑘 merge
(Algorithm 1)

else
sample← 𝑠.SumMax .sample

return sample

has variance

Var
[︁
𝑓(𝜈𝑥)

]︁
≤

4𝑓(𝜈𝑥)
∑︀

𝑧∈𝒳 𝑓(𝜈𝑧)

(1− 𝜀)2(𝑘 − 2)
.

The space required by the sketch at any given time is 𝑂(𝑘) in expectation. Additionally, with prob-

ability at least 1 − 𝛿, the space will not exceed 𝑂
(︁
𝑘 +min{log𝑚, log log

(︁
Sum𝐷

Min(𝐷)

)︁
}+ log

(︀
1
𝛿

)︀)︁
at any time while processing 𝐷, where 𝑚 is the number of elements in 𝐷, Min(𝐷) is the minimum
value of an element in 𝐷, and Sum𝐷 is the sum of frequencies of all keys.
Remark 5.2. The parameter 𝜀 mainly affects the run time of processing an element. For each element
processed by the stream, we generate 𝑟 = 𝑘

𝜀 output elements that are then further processed by the
sketch. Hence, the run time of processing an element grows with 1

𝜀 . The space is affected by 𝜀 when
considering worst case over the randomness. The total number of possible keys for output elements is
𝑟 times the number of active keys, and in the worst case (over the randomness), we may store all of
them in Sideline.

The sketch and estimator specification use the following functions in a black-box fashion

𝐴(𝛾) :=

∫︁ ∞

𝛾

𝑎(𝑡)𝑑𝑡

𝐵(𝛾) :=

∫︁ 𝛾

0

𝑡𝑎(𝑡)𝑑𝑡

where 𝑎(𝑡) is the inverse complement Laplace transform of 𝑓 , as specified in Equation (6) (Sec-
tion 2.4). Closed expressions for 𝐴(𝑡) and 𝐵(𝑡) for some common concave sublinear functions 𝑓 are
provided in [10]. These functions are well-defined for any soft concave sublinear 𝑓 . Also note that it
suffices to approximate the values of 𝐴 and 𝐵 within a small multiplicative error (which will carry
over to the variance, see Remark 5.11), so one can also use a table of values to compute the function.

While processing the stream, we will keep track of the sum of values of all elements Sum𝐷 =∑︀
𝑥∈𝒳 𝜈𝑥. We will then use Sum𝐷 to set 𝛾 adaptively to be 2𝜀

Sum𝐷
. Thus, this is a running “candidate”

value that can only decrease over time. The final value of 𝛾 will be set when we produce a sample
from the sketch in Algorithm 5. In the discussion below, we will show that setting 𝛾 = 2𝜀

Sum𝐷
satisfies

the conditions needed for each of the sketches for ℒc[𝑎](𝜈𝑥)
𝛾
0 and ℒc[𝑎](𝜈𝑥)

∞
𝛾 .

5.1 The Sketch for ℒc[𝑎](𝜈𝑥)
𝛾
0

For the contributions ℒc[𝑎](𝜈𝑥)
𝛾
0 =

∫︀ 𝛾

0
𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡, we will see that as long as we choose a

small enough 𝛾,
∫︀ 𝛾

0
𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 will be approximately

(︀∫︀ 𝛾

0
𝑎(𝑡)𝑡𝑑𝑡

)︀
𝜈𝑥, up to a multiplicative
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1 − 𝜀 factor. Note that
(︀∫︀ 𝛾

0
𝑎(𝑡)𝑡𝑑𝑡

)︀
𝜈𝑥 is simply the frequency 𝜈𝑥 scaled by 𝐵(𝛾) =

∫︀ 𝛾

0
𝑎(𝑡)𝑡𝑑𝑡.

A PPSWOR sample is invariant to the scaling, so we can simply use a PPSWOR sampling sketch
according to the frequencies 𝜈𝑥 (Algorithm 2). The scaling only needs to be considered in a final step
when the samples of the two sets of contributions are combined to produce a single sample.7

Lemma 5.3. Let 𝜀 > 0 and 𝛾 ≤ 2𝜀
max𝑥 𝜈𝑥

. Then, for any key 𝑥,

(1− 𝜀)

(︂∫︁ 𝛾

0

𝑎(𝑡)𝑡𝑑𝑡

)︂
𝜈𝑥 ≤

∫︁ 𝛾

0

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 ≤
(︂∫︁ 𝛾

0

𝑎(𝑡)𝑡𝑑𝑡

)︂
𝜈𝑥.

Proof. Consider a key 𝑥 with frequency 𝜈𝑥. Using 1− 𝑒−𝑧 ≤ 𝑧, we get∫︁ 𝛾

0

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 ≤
∫︁ 𝛾

0

𝑎(𝑡)𝜈𝑥𝑡𝑑𝑡 =

(︂∫︁ 𝛾

0

𝑎(𝑡)𝑡𝑑𝑡

)︂
𝜈𝑥.

Now, using 1− 𝑒−𝑧 ≥ 𝑧 − 𝑧2

2 for 𝑧 ≥ 0,∫︁ 𝛾

0

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 ≥
∫︁ 𝛾

0

𝑎(𝑡)

(︂
𝜈𝑥𝑡−

(𝜈𝑥𝑡)
2

2

)︂
𝑑𝑡.

Note that 𝛾 ≤ 2𝜀
max𝑦 𝜈𝑦

≤ 2𝜀
𝜈𝑥

. Hence, for every 0 ≤ 𝑡 ≤ 𝛾, 𝜈𝑥𝑡 ≤ 2𝜀, and 𝜈𝑥𝑡− (𝜈𝑥𝑡)
2

2 ≥ (1− 𝜀)𝜈𝑥𝑡.
As a result, we get that ∫︁ 𝛾

0

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 ≥ (1− 𝜀)

(︂∫︁ 𝛾

0

𝑎(𝑡)𝑡𝑑𝑡

)︂
𝜈𝑥.

Note that our choice of 𝛾 = 2𝜀
Sum𝐷

satisfies the condition of Lemma 5.3.

5.2 The Sketch for ℒc[𝑎](𝜈𝑥)
∞
𝛾

The sketch for ℒc[𝑎](𝜈𝑥)
∞
𝛾 =

∫︀∞
𝛾

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 processes elements in the following way. We
map each input element 𝑒 = (𝑒.key , 𝑒.val) into 𝑟 = 𝑘

𝜀 output elements with keys (𝑒.key , 1) through
(𝑒.key , 𝑟) and values 𝑌𝑖 ∼ Exp[𝑒.val ] drawn independently. Each of these elements is then processed
separately.

The main component of the sketch is a SumMax sampling sketch of size 𝑘. Our goal is that
for each generated output element ((𝑒.key , 𝑖), 𝑌𝑖), the SumMax sketch will process an element
((𝑒.key , 𝑖), 𝐴(max{𝑌𝑖, 𝛾})). However, since 𝛾 decreases over time and we do not know its final
value, we only process the elements with 𝑌𝑖 ≥ 𝛾 into the SumMax sketch. We keep the rest of the
elements in an auxiliary structure (implemented as a maximum priority queue) that we call Sideline.
Every time we update the value of 𝛾, we remove the elements with 𝑌𝑖 ≥ 𝛾 and process them into the
SumMax sketch. Thus, at any time the Sideline structure only contains elements with value less
than 𝛾.8

For any active input key 𝑥 and 𝑖 ∈ [𝑟], let 𝑀𝑥,𝑖 denote the minimum value 𝑌𝑖 that was generated with
key (𝑥, 𝑖). We have the following invariants that we will use in our analysis:

1. Either the element ((𝑥, 𝑖),𝑀𝑥,𝑖) is in Sideline or an element ((𝑥, 𝑖), 𝐴(𝑀𝑥,𝑖)) was pro-
cessed by the SumMax sketch.

2. Since 𝛾 is decreasing over time, all elements ejected from the Sideline have value that is at
least 𝛾.

We also will use the following property of the sketch.

7In our implementation (Section 6) we incorporated an optimization where we only keep in the PPSWOR
sample elements that may contribute to the final sample.

8In our implementation (see Section 6) we only keep in Sideline elements that have the potential to modify
the SumMax sketch when inserted.

13



Lemma 5.4. For any key 𝑥 that was active in the input and 𝑖 ∈ [𝑟], 𝑀𝑥,𝑖 ∼ Exp[𝜈𝑥] and these
random variables are independent for different pairs (𝑥, 𝑖).

Proof. 𝑀𝑥,𝑖 by definition is the minimum of independent exponential random variables with sum of
parameters 𝜈𝑥.

In the following lemma, we bound the size of Sideline (and as a result, the entire sketch) with
probability 1− 𝛿 for 0 < 𝛿 < 1 of our choice.

Lemma 5.5. For a set of elements 𝐷, denote by 𝑚 the number of elements in 𝐷, and let Min(𝐷)
denote the minimum value of any element in 𝐷. The expected number of elements in Sideline at any
given time is 𝑂(𝑘), and with probability at least 1− 𝛿, the number of elements in Sideline will not

exceed 𝑂
(︁
𝑘 +min{log𝑚, log log

(︁
Sum𝐷

Min(𝐷)

)︁
}+ log

(︀
1
𝛿

)︀)︁
at any time while processing 𝐷.

The proof is deferred to Appendix D.

5.3 Generating a Sample from the Sketch

The final sample returned by Algorithm 5 is the merge of two samples:

1. The PPSWOR sample for ℒc[𝑎](𝜈𝑥)
𝛾
0 with frequencies scaled by 𝐵(𝛾) =

∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡.

2. The SumMax sample for ℒc[𝑎](𝜈𝑥)
∞
𝛾 with weights scaled by 1

𝑟 . Before the scaling, the
SumMax sample processes an element (𝑒.key , 𝐴(𝛾)) for each remaining 𝑒 ∈ Sideline.

The scaling is performed using a property of exponential random variables and is formalized in the
following lemma.

Lemma 5.6. Given a PPSWOR sample where each key 𝑥 has frequency 𝜈𝑥, we can obtain a PPSWOR
sample for the weights 𝑐 · 𝜈𝑥 by returning the original sample of keys but dividing the seed value of
each key by 𝑐.

Proof. A property of exponential random variables is that if 𝑌 ∼ Exp[𝑤], then for any constant
𝑐 > 0, 𝑦/𝑐 ∼ Exp[𝑐𝑤]. Consider the set of seed values {seed(𝑥) | 𝑥 ∈ 𝒳} computed for the
original PPSWOR sample according to the frequencies 𝜈𝑥. If we divided each seed value by 𝑐, the
seed of key 𝑥 would come from the distribution Exp(𝑐𝜈𝑥). Hence, a PPSWOR sample according to
the weights 𝑐𝜈𝑥 would contain the 𝑘 keys with lowest seed values after dividing by 𝑐, and these 𝑘
keys are the same keys that have lowest seed values before dividing by 𝑐.

Denote by 𝐸 the set of all elements that are passed on to the SumMax sketch, either during the
processing of the set of elements 𝐷 or in the final phase.

Lemma 5.7. The final sample computed by Algorithm 5 is a PPSWOR sample with respect to weights

𝑉𝑥 =
1

𝑟
SumMax𝐸(𝑥) + 𝜈𝑥

∫︁ 𝛾

0

𝑡𝑎(𝑡)𝑑𝑡 .

Proof. The sample 𝑠.ppswor in Algorithm 5 is a PPSWOR sample with respect to frequencies 𝜈𝑥,
which is then scaled by

∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡 to get a PPSWOR sample according to the weights 𝜈𝑥

∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡.

The sample 𝑠.SumMax is a SumMax sample, which by Corollary 4.2 is a PPSWOR sample
according to the weights SumMax𝐸(𝑥). This sample is scaled to be a PPSWOR sample according
to the weights 1

𝑟 SumMax𝐸(𝑥).

Note that these samples are independent. When we perform a bottom-𝑘 merge of the two samples, the
seed of key 𝑥 is then the minimum of two independent exponential random variables with parameters∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡 and 1

𝑟 SumMax𝐸(𝑥). Therefore, the distribution of seed(𝑥) in the merged sample is
Exp(

∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡+ 1

𝑟 SumMax𝐸(𝑥)), which means that the sample is a PPSWOR sample according
to those weights, as desired.
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We next interpret 1
𝑟 SumMax𝐸(𝑥). From the invariants listed in Section 5.2 and the description of Al-

gorithm 5, we have that for any active input key 𝑥 and 𝑖 ∈ [𝑟], the element ((𝑥, 𝑖), 𝐴(max{𝛾,𝑀𝑥,𝑖}))
was processed by the SumMax sketch. Because 𝐴 is monotonically non-increasing,

Max𝐸((𝑥, 𝑖)) = max
𝑒∈𝐸|𝑒.key=(𝑥,𝑖)

𝑒.val = 𝐴(max{𝛾,𝑀𝑥,𝑖}).

Now, 1
𝑟 SumMax𝐸(𝑥) =

∑︀𝑟
𝑖=1

1
𝑟 Max𝐸((𝑥, 𝑖)). By Lemma 5.4, the summands 1

𝑟 Max𝐸((𝑥, 𝑖))
are independent random variables for every 𝑥 and 𝑖. By the monotonicity of the function 𝐴, each
summand 1

𝑟 Max𝐸((𝑥, 𝑖)) is in the range
[︁
0, 𝐴(𝛾)

𝑟

]︁
.

The final sample returned by Algorithm 5 is then a stochastic PPSWOR sample as defined in Section 3.
The weight of key 𝑥 also includes the deterministic component 𝜈𝑥

∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡, which can be larger

than 𝐴(𝛾)
𝑟 . However, since this is summand is deterministic, we can break it into smaller deterministic

parts, each of which will be at most 𝐴(𝛾)
𝑟 . This way, the sample still satisfies the condition that the

weight of every key is the sum of independent random variables in
[︁
0, 𝐴(𝛾)

𝑟

]︁
. The next step is to

show that it satisfies the conditions of Theorem 3.1.
Lemma 5.8. For a key 𝑥, define 𝑉𝑥 = 1

𝑟 SumMax𝐸(𝑥) + 𝜈𝑥
∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡. Let 𝑉 =

∑︀
𝑥∈𝒳 𝑉𝑥. Then,

for any 0 < 𝜀 ≤ 1
2 and 𝑟 ≥ 𝑘

𝜀 ,

E[𝑉 ] ≥ 𝐴(𝛾)

𝑟
· 𝑘.

The proof, which is deferred to Appendix D, uses the following lemma which is due to Cohen [10].
Lemma 5.9. [10] For every input key 𝑥 and 𝑖 = 1, . . . , 𝑟,

E[Max𝐸((𝑥, 𝑖))] = ℒc[𝑎](𝜈𝑥)
∞
𝛾 =

∫︁ ∞

𝛾

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡.

The following theorem combines the previous lemmas to show how to estimate 𝑓(𝜈𝑥) using the
sample and bound the variance. Note that we need to specify how to compute the estimator. For
getting 𝑓(𝜈𝑥) we make another pass, and the computation of the conditioned inclusion probability is
described in the next subsection.
Theorem 5.10. The sample returned by Algorithm 5 is a stochastic PPSWOR sample, where each
key 𝑥 has weight 𝑉𝑥 that satisfies 𝑓(𝜈𝑥) ≤ E[𝑉𝑥] ≤ 1

(1−𝜀)𝑓(𝜈𝑥). The per-key inverse-probability
estimator according to the weights 𝑓(𝜈𝑥),

𝑓(𝜈𝑥) =

{︃
𝑓(𝜈𝑥)

Pr[seed(𝑥)<𝜏 ] 𝑥 ∈ 𝑆

0 𝑥 /∈ 𝑆
.

is unbiased and has variance

Var
[︁
𝑓(𝜈𝑥)

]︁
≤ 4E[𝑉𝑥]E[𝑉 ]

𝑘 − 2
≤

4𝑓(𝜈𝑥)
∑︀

𝑧∈𝒳 𝑓(𝜈𝑧)

(1− 𝜀)2(𝑘 − 2)

where 𝑉 =
∑︀

𝑥∈𝒳 𝑉𝑥.

Proof. We first prove that 𝑓(𝜈𝑥) ≤ E[𝑉𝑥] ≤ 1
(1−𝜀)𝑓(𝜈𝑥). The randomized weight 𝑉𝑥 is the sum of

two terms:

𝑉𝑥 =
1

𝑟
SumMax𝐸(𝑥) + 𝜈𝑥

∫︁ 𝛾

0

𝑡𝑎(𝑡)𝑑𝑡.

As in the proof of Lemma 5.8, using Lemma 5.9,

E
[︂
1

𝑟
SumMax𝐸(𝑥)

]︂
=

1

𝑟

𝑟∑︁
𝑖=1

E[Max𝐸((𝑥, 𝑖))] =
∫︁ ∞

𝛾

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡. (8)

The quantity 𝜈𝑥
∫︀ 𝛾

0
𝑡𝑎(𝑡)𝑑𝑡 is deterministic, and since 𝛾 ≤ 2𝜀

max𝑥 𝜈𝑥
, by Lemma 5.3,∫︁ 𝛾

0

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 ≤ 𝜈𝑥

∫︁ 𝛾

0

𝑡𝑎(𝑡)𝑑𝑡 ≤ 1

1− 𝜀

∫︁ 𝛾

0

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡. (9)
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Recall that 𝑓(𝜈𝑥) =
∫︀∞
0

𝑎(𝑡)(1 − 𝑒−𝜈𝑥𝑡)𝑑𝑡 =
∫︀ 𝛾

0
𝑎(𝑡)(1 − 𝑒−𝜈𝑥𝑡)𝑑𝑡 +

∫︀∞
𝛾

𝑎(𝑡)(1 − 𝑒−𝜈𝑥𝑡)𝑑𝑡.
Combining Equations (8) and (9), we get that

𝑓(𝜈𝑥) ≤ E[𝑉𝑥] ≤
1

(1− 𝜀)
𝑓(𝜈𝑥).

Now consider the estimator 𝑓(𝜈𝑥) for 𝑓(𝜈𝑥). To show that the estimator is unbiased, that is,
E
[︁
𝑓(𝜈𝑥)

]︁
= 𝑓(𝜈𝑥), we can follow the proof of Claim 2.4 exactly as written earlier. It is left

to bound the variance. For the sake of the analysis, consider the following estimator for E[𝑉𝑥]:

Ê[𝑉𝑥] =

{︃
E[𝑉𝑥]

Pr[seed(𝑥)<𝜏 ] 𝑥 ∈ 𝑆

0 𝑥 /∈ 𝑆
.

This is again the inverse-probability estimator from Definition 2.3. Our sample is a stochastic
PPSWOR sample according to the weights 𝑉𝑥, where each one of 𝑉𝑥 is a sum of independent random
variables in

[︁
0, 𝐴(𝛾)

𝑟

]︁
(recall that the deterministic part can also be expressed as a sum with each

summand in
[︁
0, 𝐴(𝛾)

𝑟

]︁
). Lemma 5.8 shows that E[𝑉 ] ≥ 𝐴(𝛾)

𝑟 · 𝑘. Hence, we satisfy the conditions of
Theorem 3.1, which in turn shows that

Var
[︁
Ê[𝑉𝑥]

]︁
≤ 4E[𝑉𝑥]E[𝑉 ]

𝑘 − 2
.

Finally, note that 𝑓(𝜈𝑥) = 𝑓(𝜈𝑥)
E[𝑉𝑥]

· Ê[𝑉𝑥]. We established above that 𝑓(𝜈𝑥)
E[𝑉𝑥]

≤ 1 and E[𝑉𝑥] ≤
1

(1−𝜀)𝑓(𝜈𝑥). We conclude that

Var
[︁
𝑓(𝜈𝑥)

]︁
= Var

[︂
𝑓(𝜈𝑥)

E[𝑉𝑥]
· Ê[𝑉𝑥]

]︂
=

(︂
𝑓(𝜈𝑥)

E[𝑉𝑥]

)︂2

Var
[︁
Ê[𝑉𝑥]

]︁
≤ 4E[𝑉𝑥]E[𝑉 ]

𝑘 − 2

≤
4𝑓(𝜈𝑥)

∑︀
𝑧∈𝒳 𝑓(𝜈𝑧)

(1− 𝜀)2(𝑘 − 2)
.

Remark 5.11. The theorem establishes a bound on the variance of the estimator for E[𝑉𝑥], and then
uses it to bound the variance of the estimator for 𝑓(𝜈𝑥), which is possible since E[𝑉𝑥] approximates
𝑓(𝜈𝑥). This results in increasing the variance by an 𝜀-dependent factor. Similarly, if we wish to
estimate 𝑓(𝜈𝑥) for a concave sublinear function 𝑓 (and not a soft concave sublinear function), we
can use the same idea and lose another constant factor in the variance.

5.4 Expressing Conditioned Inclusion Probabilities

To compute the estimator 𝑓(𝜈𝑥), we need to know both 𝑓(𝜈𝑥) and the precise conditioned inclusion
probability Pr[seed(𝑥) < 𝜏 ]. In order to get 𝑓(𝜈𝑥), we perform a second pass over the data elements
to obtain the exact frequencies 𝜈𝑥 for 𝑥 ∈ 𝑆. This can be done via a simple composable sketch that
collects and sums the values of data elements with keys that occur in the sample 𝑆.

We next consider computing the conditioned inclusion probabilities. The following lemma considers
the seed distributions of keys in the final sample. It shows that the distributions are parameterized by
𝜈𝑥 and describes their CDF.
Lemma 5.12. Algorithms 4 and 5 describe a bottom-𝑘 sampling scheme, where in the output
sample the seed of each key 𝑥 is drawn from a distribution SeedDist(𝐹 )[𝜈𝑥]. The distribution
SeedDist(𝐹 )[𝑤] has the following cumulative distribution function:

SeedCDF(𝐹 )(𝑤, 𝑡) := Pr
𝑠∼SeedDist(𝐹 )[𝑤]

[𝑠 < 𝑡] = 1− 𝑝1𝑝
𝑟
2 ,
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where

𝑝1 = exp(−𝑤𝐵(𝛾)𝑡)

𝑝2 =

∫︁ ∞

0

𝑤 exp(−𝑤𝑦) exp(−𝐴(max{𝑦, 𝛾})𝑡/𝑟)𝑑𝑦

The proof is deferred to Appendix D.

6 Experiments

We implemented our sampling sketch and report here the results of experiments on real and synthetic
datasets. Our experiments are small-scale and aimed to demonstrate the simplicity and practicality of
our sketch design and to understand the actual space and error bounds (that can be significantly better
than our worst-case bounds).

6.1 Implementation

Our Python 2.7 implementation follows the pseudocode of the sampling sketch (Algorithm 4), the
PPSWOR (Algorithm 2) and SumMax (Algorithm 3) substructures, the sample production from
the sketch (Algorithm 5), and the estimator (that evaluates the conditioned inclusion probabilities,
see Section 5.4). We incorporated two practical optimizations that are not shown in the pseudocode.
These optimizations do not affect the outcome of the computation or the worst-case analysis, but
reduce the sketch size in practice.

Removing redundant keys from the PPSWOR subsketch The pseudocode (Algorithm 4) main-
tains two samples of size 𝑘, the PPSWOR and the SumMax samples. The final sample of size 𝑘 is
obtained by merging these two samples. Our implementation instead maintains a truncated PPSWOR
sketch that removes elements that are already redundant (do not have a potential to be included in
the merged sample). We keep an element in the PPSWOR sketch only when the seed value is lower
than 𝑟𝐵(𝛾) times the current threshold 𝜏 of the SumMax sample. This means that the “effective”
inclusion threshold we use for the PPSWOR sketch is the minimum of the 𝑘th largest (the threshold
of the PPSWOR sketch) and 𝑟𝐵(𝛾)𝜏 . To establish that elements that do not satisfy this condition
are indeed redundant, recall that when we later merge the PPSWOR and the SumMax samples,
the value of 𝐵(𝛾) can only become lower and the SumMax threshold can only be lower, making
inclusion more restrictive. This optimization may result in maintaining much fewer than 𝑘 elements
and possibly an empty PPSWOR sketch. The benefit is larger for functions when 𝐴(𝑡) is bounded
(as 𝑡 approaches 0). In particular, when 𝑎(𝑡) = 0 for 𝑡 ≤ 𝛾 we get 𝐵(𝛾) = 0 and the truncation will
result in an empty sample.

Removing redundant elements from Sideline The pseudocode may place elements in Sideline
that have no future potential of modifying the SumMax sketch. In our implementation, we place
and keep an element ((𝑒.key , 𝑖), 𝑌 ) in Sideline only as long as the following condition holds: If
((𝑒.key , 𝑖), 𝐴(𝑌 )) is processed by the current SumMax sketch, it would modify the sketch. To
establish redundancy of discarded elements, note that when an element is eventually processed,
the value it is processed with is at most 𝐴(𝑌 ) (can be 𝐴(𝛾) for 𝛾 ≥ 𝑌 ) and also at that point the
SumMax sketch threshold can only be more restrictive.

6.2 Datasets and Experimental Results

We used the following datasets for the experiments:

∙ abcnews [28]: News headlines published by the Australian Broadcasting Corp. For each
word, we created an element with value 1.

∙ flicker [36]: Tags used by Flickr users to annotate images. The key of each element is a
tag, and the value is the number of times it appeared in a certain folder.

∙ Three synthetic generated datasets that contain 2× 106 data elements. Each element has
value 1, and the key was chosen according to the Zipf distribution (numpy.random.zipf),
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Table 1: Experimental Results: 𝑓(𝜈) = 𝜈0.5, 200 rep.
𝑘 NRMSE Benchmark max #keys max #elem

bound actual ppswor Pri. ave max ave max
Dataset: abcnews (7.07× 106 elements, 91.7× 103 keys)

25 0.834 0.213 0.213 0.217 31.7 37 50.9 76
50 0.577 0.142 0.128 0.137 58.5 66 95.1 136
75 0.468 0.120 0.111 0.110 85.4 94 134.8 181

100 0.404 0.105 0.098 0.103 111.2 120 171.1 256
Dataset: flickr (7.64× 106 elements, 572.4× 103 keys)

25 0.834 0.200 0.190 0.208 31.2 37 53.1 77
50 0.577 0.144 0.147 0.142 57.8 64 94.6 130
75 0.468 0.123 0.114 0.110 83.7 91 131.7 175

100 0.404 0.115 0.095 0.099 108.9 116 173.4 223
Dataset: zipf1.1 (2.00× 106 elements, 652.2× 103 keys)

25 0.834 0.215 0.198 0.217 31.8 39 52.5 75
50 0.577 0.123 0.137 0.131 58.7 66 95.0 130
75 0.468 0.109 0.115 0.114 84.7 91 135.2 186

100 0.404 0.106 0.103 0.097 111.2 119 176.3 221
Dataset: zipf1.2 (2.00× 106 elements, 237.3× 103 keys)

25 0.834 0.199 0.208 0.214 31.1 38 53.2 83
50 0.577 0.144 0.138 0.145 57.9 65 98.4 139
75 0.468 0.122 0.116 0.124 83.9 90 138.2 173

100 0.404 0.098 0.109 0.096 109.6 115 179.2 227
Dataset: zipf1.5 (2.00× 106 elements, 22.3× 103 keys)

25 0.834 0.201 0.207 0.194 30.1 35 53.4 74
50 0.577 0.152 0.139 0.142 56.1 60 101.5 136
75 0.468 0.115 0.115 0.112 81.6 86 151.8 199

100 0.404 0.098 0.094 0.086 107.1 113 196.3 248

with Zipf parameter values 𝛼 ∈ {1.1, 1.2, 1.5}. The Zipf family in this range is often a good
model to real-world frequency distributions.

We applied our sampling sketch with sample size parameter values 𝑘 ∈ {25, 50, 75, 100} and set the
parameter 𝜀 = 0.5 in all experiments. We sampled according to two concave sublinear functions: the
frequency moment 𝑓(𝜈) = 𝜈0.5 and 𝑓(𝜈) = ln(1 + 𝜈).

Tables 1 and 2 report aggregated results of 200 repetitions for each combination of dataset, 𝑘, and
𝑓 values. In each repetition, we were using the final sample to estimate the sum

∑︀
𝑥∈𝒳 𝑓(𝜈𝑥) over

all keys. For error bounds, we list the worst-case bound on the CV (which depends only on 𝑘 and
𝜀 and is proportional to 1/

√
𝑘) and report the actual normalized root of the average squared error

(NRMSE). In addition, we report the NRMSE that we got from 200 repetitions of estimating the
same statistics using two common sampling schemes for aggregated data, PPSWOR and priority
sampling, which we use as benchmarks.

Also, we consider the size of the sketch after processing each element. Since the representation of
each key can be explicit and require a lot of space, we separately consider the number of distinct keys
and the number of elements stored in the sketch. We report the maximum number of distinct keys
stored in the sketch at any point (the average and the maximum over the 200 repetitions) and the
respective maximum number of elements stored in the sketch at any point during the computations
(again, the average and the maximum over the 200 repetitions). The size of the sketch is measured at
end of the processing of each input element – during the processing we may store one more distinct
key and temporarily store up to 𝑟 = 𝑘/𝜀 additional elements in the Sideline.

We can see that the actual error reported is significantly lower than the worst-case bound. Furthermore,
the error that our sketch gets is close to the error achieved by the two benchmark sampling schemes.
We can also see that the maximum number of distinct keys stored in the sketch at any time is relatively
close to the specified sample size of 𝑘 and that the total sketch size in terms of elements rarely
exceeded 3𝑘, with the relative excess seeming to decrease with 𝑘. In comparison, the benchmark
schemes require space that is the number of distinct keys (for the aggregation), which is significantly
higher than the space required by our sketch.
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Table 2: Experimental Results: 𝑓(𝜈) = ln(1 + 𝜈), 200 rep.
𝑘 NRMSE Benchmark max #keys max #elem

bound actual ppswor Pri. ave max ave max
Dataset: abcnews (7.07× 106 elements, 91.7× 103 keys)

25 0.834 0.208 0.217 0.194 29.5 34 49.1 71
50 0.577 0.138 0.136 0.142 54.9 60 80.9 110
75 0.468 0.130 0.099 0.117 80.0 85 111.1 152

100 0.404 0.102 0.115 0.103 104.9 109 140.7 184
Dataset: flickr (7.64× 106 elements, 572.4× 103 keys)

25 0.834 0.227 0.199 0.180 28.0 31 41.4 69
50 0.577 0.144 0.151 0.129 53.3 59 72.2 101
75 0.468 0.119 0.121 0.109 78.2 83 99.8 135

100 0.404 0.097 0.104 0.095 102.7 106 130.3 166
Dataset: zipf1.1 (2.00× 106 elements, 652.2× 103 keys)

25 0.834 0.201 0.204 0.234 29.2 34 48.8 71
50 0.577 0.127 0.132 0.129 54.4 58 80.4 119
75 0.468 0.116 0.122 0.110 79.6 84 110.9 142

100 0.404 0.107 0.106 0.104 104.5 109 139.8 165
Dataset: zipf1.2 (2.00× 106 elements, 237.3× 103 keys)

25 0.834 0.209 0.195 0.218 28.5 33 48.0 72
50 0.577 0.147 0.144 0.139 53.7 57 80.5 113
75 0.468 0.120 0.111 0.113 78.8 84 111.4 143

100 0.404 0.098 0.106 0.102 103.9 108 140.3 173
Dataset: zipf1.5 (2.00× 106 elements, 22.3× 103 keys)

25 0.834 0.210 0.197 0.226 27.2 30 45.2 66
50 0.577 0.141 0.146 0.149 52.1 55 78.9 104
75 0.468 0.124 0.112 0.106 76.9 79 110.5 146

100 0.404 0.100 0.101 0.099 101.9 104 139.1 173

7 Conclusion

We presented composable sampling sketches for weighted sampling of unaggregated data tailored
to a concave sublinear function of the frequencies of keys. We experimentally demonstrated the
simplicity and efficacy of our design: Our sketch size is nearly optimal in that it is not much larger
than the final sample size, and the estimate quality is close to that provided by a weighted sample
computed directly over the aggregated data.
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A Proofs Deferred from Section 2

Proof of Proposition 2.1. Each data element 𝑒 = (𝑒.key , 𝑒.val) is processed by giving it a score
ElementScore(𝑒) ∼ Exp(𝑒.val) and then processing the element (𝑒.key , ElementScore(𝑒)) by
the bottom-𝑘 structure. For a key 𝑥, we define

seed(𝑥) := min
𝑒∈𝐷|𝑒.key=𝑥

ElementScore(𝑒)

to be the smallest score of an element with key 𝑥.

Since seed(𝑥) is the minimum of independent exponential random variables, its distribution
is Exp(𝑤𝑥). After processing the elements in 𝐷, the bottom-𝑘 structure contains the 𝑘 pairs
(𝑥, seed(𝑥)) with smallest seed(𝑥) values, and hence obtains the respective PPSWOR sample.

Consider now the sketch resulting from merging two sampling sketches computed for 𝐷1 and
𝐷2. For each key 𝑥, denote by seed1(𝑥) and seed2(𝑥) the values of 𝑥 in the sketches for 𝐷1

and 𝐷2, respectively. Then, the merged sketch contains the 𝑘 pairs (𝑥, seed(𝑥)) with smallest
seed(𝑥) := min{𝑠𝑒𝑒𝑑1(𝑥), 𝑠𝑒𝑒𝑑2(𝑥)} values. As seed(𝑥) is the minimum of two independent
exponential random variables with parameters Sum𝐷1

(𝑥) and Sum𝐷2
(𝑥), we get that seed(𝑥) ∼

Exp(Sum𝐷1∪𝐷2
(𝑥)), as desired.
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B Proofs Deferred from Section 3

B.1 Threshold Distribution and Fixed-Threshold Inclusion Probability

Before proceeding, we establish two technical lemmas that will be useful later. The first lemma shows
that the distribution of the 𝑘-th lowest seed is dominated by the Erlang distribution which takes the
sum of the expected weights 𝑉 as a parameter. The lemma will be useful later when we consider the
inclusion threshold 𝜏𝑥.
Lemma B.1. Consider a set of keys𝒳 , such that the weight of each 𝑥 ∈ 𝒳 is a random variable 𝑆𝑥 ≥
0. Let 𝑉 =

∑︀
𝑥∈𝒳 E[𝑆𝑥], and for each 𝑥 with 𝑆𝑥 > 0, draw seed(𝑥) ∼ Exp[𝑆𝑥] independently.

Then, the distribution of the 𝑘-th lowest seed, {seed(𝑥) | 𝑥 ∈ 𝑋}(𝑘), is dominated by Erlang[𝑉, 𝑘].

We first establish the dominance relation Exp[𝑆] ⪯ Exp[E[𝑆]] for any nonnegative random variable
𝑆.
Lemma B.2. Let 𝑆 ≥ 0 be a random variable. Let 𝑋 be a random variable such that 𝑋 ∼ Exp[𝑆]
when 𝑆 > 0 and 𝑋 =∞ otherwise.9 Then, the distribution of 𝑋 is dominated by Exp[E[𝑆]], that is,
∀𝜏,Pr𝑋∼Exp[𝑆][𝑋 ≤ 𝜏 ] ≤ 1− 𝑒−𝐸[𝑆]𝜏 .

Proof. Follows from Jensen’s inequality:

Pr[𝑋 ≤ 𝜏 ] = E𝑆 [1− 𝑒−𝑆𝜏 ] = 1− E𝑆 [𝑒
−𝑆𝜏 ] ≤ 1− 𝑒−𝐸[𝑆]𝜏

Therefore, for any key 𝑥, the seed(𝑥) distribution with stochastic weights is dominated by
Exp[E[𝑆𝑥]], which is the distribution used by PPSWOR according to the expected weights. We now
consider the distribution of {seed(𝑥) | 𝑥 ∈ 𝑋}(𝑘), which is the 𝑘-th lowest seed value. We show
that the distribution of the 𝑘-th lowest seed is dominated by Erlang[𝑉, 𝑘] (recall that 𝑉 =

∑︀
𝑥 E[𝑆𝑥]).

In the proof, we will use the following property of dominance (the proof of the following property is
standard and included here for completeness).
Claim B.3. Let 𝑋1, . . . , 𝑋𝑘, 𝑌1, . . . , 𝑌𝑘 be independent random variables such that the distribution
of 𝑋𝑖 is dominated by that of 𝑌𝑖. Then the distribution of 𝑋1 + . . . +𝑋𝑘 is dominated by that of
𝑌1 + . . .+ 𝑌𝑘.

Proof. We prove for 𝑘 = 2 (the proof for 𝑘 > 2 follows from a simple induction argument). Denote
by 𝑓𝑖 and 𝐹𝑖 the PDF and CDF functions of 𝑋𝑖, respectively, and by 𝑔𝑖 and 𝐺𝑖 the PDF and CDF of
𝑌𝑖. From the dominance assumption, we know that 𝐹𝑖(𝑡) ≤ 𝐺𝑖(𝑡) for all 𝑖. Now,

Pr[𝑋1 +𝑋2 < 𝑡] =

∫︁ ∞

0

𝑓1(𝑥) Pr[𝑋2 < 𝑡− 𝑥]𝑑𝑥

=

∫︁ 𝑡

0

𝑓1(𝑥)𝐹2(𝑡− 𝑥)𝑑𝑥

≤
∫︁ 𝑡

0

𝑔1(𝑥)𝐹2(𝑡− 𝑥)𝑑𝑥

[from dominance as 𝐹2(𝑡− 𝑥) is non-increasing in 𝑥]

≤
∫︁ 𝑡

0

𝑔1(𝑥)𝐺2(𝑡− 𝑥)𝑑𝑥

= Pr[𝑌1 + 𝑌2 < 𝑡]

9𝑋 takes values in R and cannot be ∞. However, the random variable 𝑋 represents the minimum seed value
(or the inclusion threshold 𝜏𝑥 as in Section 2.3), and the event 𝑋 ≤ 𝜏 represents whether the inclusion threshold
for key 𝑥 is at most 𝜏 . The case 𝑆 = 0 corresponds to no elements generated with keys in 𝒳 ∖ {𝑥}, so we
can say that the inclusion threshold for 𝑥 is ∞ (the event we care about is whether 𝑥 enters the sample or not).
Here we are trying to show a distribution that dominates the distribution of the inclusion threshold, and for that
purpose, any threshold 𝜏 > 0 is more restrictive than ∞. From a technical perspective, when 𝑆 = 0, we can
still use the CDF of Exp[𝑆] since Pr[𝑋 ≤ 𝜏 ] = 0 = 1− 𝑒−𝑆𝜏 . Later, when we consider the 𝑘-th lowest seed,
we will similarly allow it to be ∞ when less than 𝑘 keys are active.
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We are now ready to prove Lemma B.1.

Proof of Lemma B.1. Conditioned on the values of 𝑆𝑥, the distribution of {seed(𝑥) | 𝑥 ∈ 𝑋}(𝑘)
is dominated by Erlang[

∑︀
𝑥∈𝒳 𝑆𝑥, 𝑘] (for a proof, see Appendix C in [11]). The distribution of

{seed(𝑥) | 𝑥 ∈ 𝑋}(𝑘) (unconditioned on the values of 𝑆𝑥) is a linear combination of distri-
butions, which are each dominated by the respective Erlang distribution. Using the definition
of dominance (Definition 2.6) and the law of total probability, we get that the distribution of
{seed(𝑥) | 𝑥 ∈ 𝑋}(𝑘) (unconditioned on 𝑆𝑥) is dominated by Erlang[

∑︀
𝑥∈𝒳 𝑆𝑥, 𝑘] (uncondi-

tioned on 𝑆𝑥). A random variable drawn from Erlang[
∑︀

𝑥∈𝒳 𝑆𝑥, 𝑘] has the same distribution as the
sum of 𝑘 independent random variables drawn from Exp(

∑︀
𝑥∈𝒳 𝑆𝑥). The distribution of each of

these 𝑘 exponential random variables is dominated by Exp(𝑉 ) (by Lemma B.2). Using Claim B.3,
we get that Erlang[

∑︀
𝑥∈𝒳 𝑆𝑥, 𝑘] ⪯ Erlang[𝑉, 𝑘]. The assertion of the lemma then follows from the

transitivity of dominance.

The second lemma provides lower bounds on the CDF of Exp(𝑆) under certain conditions.

Lemma B.4. Let the random variable 𝑆 =
∑︀𝑟

𝑖=1 𝑆𝑖 be a sum of 𝑟 independent random variables in
the range [0, 𝑇 ]. Let 𝑣 = E[𝑆]. Then,

Pr
𝑋∼Exp[𝑆]

[𝑋 ≤ 𝜏 ] ≥ 1− 𝑒−𝑣𝜏(1−𝜏𝑇/2) .

In the regime 𝜏𝑇 < 1, we get that the probability of being less than 𝜏 is close to that of Exp(E[𝑆]).
Lemma B.5. Let 𝑆 be a random variables in [0, 𝑇 ] with expectation E[𝑆] = 𝑣. Then for all 𝜏 ,

Pr
𝑋∼Exp[𝑆]

[𝑋 ≤ 𝜏 ] ≥ 𝑣

𝑇
(1− 𝑒−𝑇𝜏 ) .

Proof. Denote the probability density function of 𝑆 by 𝑝𝑆 . Conditioned on the value of 𝑆, the
probability of 𝑋 ∼ Exp[𝑆] being below 𝜏 is

Pr[𝑋 ≤ 𝜏 |𝑆 = 𝑠] = 1− 𝑒−𝑠𝜏 .

It follows that

Pr[𝑋 ≤ 𝜏 ] = E[1− 𝑒−𝑆𝜏 ] =

∫︁ 𝑇

0

𝑝𝑆(𝑥)(1− 𝑒−𝑥𝜏 )𝑑𝑥.

Consider the function 𝑓(𝑥) = 1− 𝑒−𝑥𝜏 for a fixed 𝜏 ≥ 0. Since 𝑓 is concave, for every 𝑥 ∈ [0, 𝑇 ],

𝑓(𝑥) = 𝑓
(︁(︁

1− 𝑥

𝑇

)︁
· 0 + 𝑥

𝑇
· 𝑇
)︁

≥
(︁
1− 𝑥

𝑇

)︁
· 𝑓(0) + 𝑥

𝑇
· 𝑓(𝑇 )

=
𝑥

𝑇
(1− 𝑒−𝑇𝜏 ).

By monotonicity, ∫︁ 𝑇

0

𝑝𝑆(𝑥)(1− 𝑒−𝑥𝜏 )𝑑𝑥 ≥
∫︁ 𝑇

0

𝑝𝑆(𝑥) ·
𝑥

𝑇
(1− 𝑒−𝑇𝜏 )𝑑𝑥

and finally,

Pr[𝑋 ≤ 𝜏 ] ≥ 1− 𝑒−𝑇𝜏

𝑇
·
∫︁ 𝑇

0

𝑝𝑆(𝑥)𝑥𝑑𝑥 =
𝑣

𝑇
· (1− 𝑒−𝑇𝜏 ).

Lemma B.6. Let the random variable 𝑆 =
∑︀𝑟

𝑖=1 𝑆𝑖 be a sum of 𝑟 independent random variables in
the range [0, 𝑇 ]. Let 𝑣 = E[𝑆]. Then,

Pr
𝑋∼Exp[𝑆]

[𝑋 ≤ 𝜏 ] ≥ 1− exp
(︁
− 𝑣

𝑇
(1− 𝑒−𝑇𝜏 )

)︁
.
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Proof. Let 𝑋 ∼ Exp[𝑆]. Since 𝑆 =
∑︀𝑟

𝑖=1 𝑆𝑖, we could define 𝑟 independent exponential random
variables 𝑋𝑖 ∼ Exp[𝑆𝑖]. 𝑋 has the same distribution as min1≤𝑖≤𝑟 𝑋𝑖. Hence,

Pr[𝑋 > 𝜏 ] = Pr

[︂
min
1≤𝑖≤𝑟

𝑋𝑖 > 𝜏

]︂
=

𝑟∏︁
𝑖=1

Pr [𝑋𝑖 > 𝜏 ]

≤
𝑟∏︁

𝑖=1

(︂
1− E[𝑆𝑖]

𝑇
· (1− 𝑒−𝑇𝜏 )

)︂
≤
(︂
1− E[𝑆]

𝑟𝑇
· (1− 𝑒−𝑇𝜏 )

)︂𝑟

where the last inequality follows from the arithmetic mean-geometric mean inequality. Now, using
the inequality 1 − 𝑥 ≤ 𝑒−𝑥 (for any 𝑥 ∈ R), and the fact that 𝑓(𝑥) = 𝑥𝑟 is non-decreasing for
𝑥, 𝑟 ≥ 0, we get that

Pr[𝑋 > 𝜏 ] ≤ exp

(︂
−E[𝑆]

𝑟𝑇
· (1− 𝑒−𝑇𝜏 ) · 𝑟

)︂
= exp

(︂
−E[𝑆]

𝑇
· (1− 𝑒−𝑇𝜏 )

)︂
.

Consequently,
Pr[𝑋 ≤ 𝜏 ] ≥ 1− exp

(︁
− 𝑣

𝑇
(1− 𝑒−𝑇𝜏 )

)︁
.

Proof of Lemma B.4. Follows from Lemma B.6 using the inequality 1 − 𝑒−𝑥 ≥ 𝑥 − 𝑥2/2 for
𝑥 ≥ 0.

B.2 Variance Bounds for the Inverse-Probability Estimator

Proof of Theorem 3.1. We start bounding the per-key variance as in Claim 2.5:

Var ( ̂︀𝑣𝑥) = E𝜏𝑥

[︂
𝑣2𝑥

(︂
1

Pr[seed(𝑥) < 𝜏𝑥]
− 1

)︂]︂
.

By Lemma B.1, we know that the distribution of 𝜏𝑥 (the 𝑘 − 1 lowest seed of the keys in 𝒳 ∖ {𝑥}) is
dominated by Erlang[𝑉, 𝑘 − 1], hence

Var ( ̂︀𝑣𝑥) ≤ E𝑡∼Erlang[𝑉,𝑘−1]

[︂
𝑣2𝑥

(︂
1

Pr[seed(𝑥) < 𝑡]
− 1

)︂]︂
=

∫︁ ∞

0

𝐵𝑉,𝑘−1(𝑡)𝑣
2
𝑥

(︂
1

Pr[seed(𝑥) < 𝑡]
− 1

)︂
𝑑𝑡

=

∫︁ 1/𝑇

0

𝐵𝑉,𝑘−1(𝑡) · 𝑣2𝑥
(︂

1

Pr[seed(𝑥) < 𝑡]
− 1

)︂
𝑑𝑡

+

∫︁ ∞

1/𝑇

𝐵𝑉,𝑘−1(𝑡) · 𝑣2𝑥
(︂

1

Pr[seed(𝑥) < 𝑡]
− 1

)︂
𝑑𝑡

To bound the first summand, since 𝑡 ≤ 1
𝑇 , we get from Lemma B.4 (applied to seed(𝑥)) that

Pr[seed(𝑥) < 𝑡] ≥ 1− 𝑒−𝑣𝑥𝑡(1− 𝑡𝑇
2 ) ≥ 1− 𝑒−𝑣𝑥𝑡/2. It follows that∫︁ 1/𝑇

0

𝐵𝑉,𝑘−1(𝑡) · 𝑣2𝑥
(︂

1

Pr[seed(𝑥) < 𝑡]
− 1

)︂
𝑑𝑡

≤
∫︁ 1/𝑇

0

𝐵𝑉,𝑘−1(𝑡) · 𝑣2𝑥
(︂

1

1− 𝑒−𝑣𝑥𝑡/2
− 1

)︂
𝑑𝑡

≤
∫︁ 1/𝑇

0

𝐵𝑉,𝑘−1(𝑡) ·
𝑣2𝑥

𝑣𝑥𝑡/2
𝑑𝑡 [

𝑒−𝑥

1− 𝑒−𝑥
≤ 1

𝑥
]
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= 2

∫︁ 1/𝑇

0

𝐵𝑉,𝑘−1(𝑡) ·
𝑣𝑥
𝑡
𝑑𝑡

≤ 2

∫︁ ∞

0

𝐵𝑉,𝑘−1(𝑡) ·
𝑣𝑥
𝑡
𝑑𝑡

=
2𝑣𝑥𝑉

𝑘 − 2
[PPSWOR analysis (Section 2.3)]

To bound the second summand, since 𝑡 > 1
𝑇 , Pr[seed(𝑥) < 𝑡] ≥ Pr[seed(𝑥) < 1/𝑇 ] ≥ 1 −

𝑒−𝑣𝑥/2𝑇 . Subsequently,∫︁ ∞

1/𝑇

𝐵𝑉,𝑘−1(𝑡) · 𝑣2𝑥
(︂

1

Pr[seed(𝑥) < 𝑡]
− 1

)︂
𝑑𝑡

≤
∫︁ ∞

1/𝑇

𝐵𝑉,𝑘−1(𝑡) · 𝑣2𝑥
(︂

1

1− 𝑒−𝑣𝑥/2𝑇
− 1

)︂
𝑑𝑡

= 𝑣2𝑥

(︂
1

1− 𝑒−𝑣𝑥/2𝑇
− 1

)︂∫︁ ∞

1/𝑇

𝐵𝑉,𝑘−1(𝑡)𝑑𝑡

≤ 𝑣2𝑥

(︂
1

1− 𝑒−𝑣𝑥/2𝑇
− 1

)︂
[integral of density]

≤ 𝑣2𝑥
𝑣𝑥/2𝑇

[
𝑒−𝑥

1− 𝑒−𝑥
≤ 1

𝑥
]

= 2𝑇𝑣𝑥

≤ 2𝑣𝑥𝑉

𝑘
[𝑉 ≥ 𝑇𝑘]

Combining, we get that

Var ( ̂︀𝑣𝑥) ≤ 2𝑣𝑥𝑉

𝑘 − 2
+

2𝑣𝑥𝑉

𝑘
≤ 4𝑣𝑥𝑉

𝑘 − 2
.

B.3 Inclusion Probability in a Stochastic Sample

Proof of Theorem 3.2. We first separately deal with the case where there is only one key, which we
denote 𝑥. In this case, 𝑉 = 𝑣𝑥, and if 𝑆𝑥 > 0, then 𝑥 is included in the sample. Otherwise, the sample
is empty. In the proof of Lemma B.4, when 𝑆 = 0, we used Pr[𝑋 ≤ 𝜏 ] = 1−𝑒−𝑠𝜏 = 0 and the event
𝑋 ≤ 𝜏 does not happen. Hence, we can use Lemma B.4 to bound Pr[𝑆𝑥 > 0] ≥ Pr[seed(𝑥) ≤ 𝜏 ]
for any 𝜏 > 0. We pick 𝜏 = 2𝜀

𝑇 and get that 𝑥 is included in the sample with probability

Pr[𝑆𝑥 > 0] ≥ 1− 𝑒−𝑣 2𝜀
𝑇 (1−𝜀) ≥ 1− 𝑒−

2𝜀
𝜀 (1−𝜀) ln ( 1

𝜀 ) ≥ 1− 𝜀

using 𝑉 ≥ 1
𝜀 ln

(︀
1
𝜀

)︀
𝑇 and 2(1− 𝜀) ≥ 1.

If there is more than one key, a key 𝑥 is included in the sample if seed(𝑥) is smaller than the seed
of all other keys. The distribution of min𝑧 ̸=𝑥 seed(𝑧) is Exp

(︁∑︀
𝑧 ̸=𝑥 𝑆𝑧

)︁
, which is dominated by

Exp
(︁∑︀

𝑧 ̸=𝑥 𝑣𝑧

)︁
(Lemma B.2). Then,

Pr[seed(𝑥) < min
𝑧 ̸=𝑥

seed(𝑧)]

≥ E𝑡∼Exp[𝑉−𝑣𝑥] Pr[seed(𝑥) < 𝑡]

=

∫︁ ∞

0

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡 Pr[seed(𝑥) < 𝑡]𝑑𝑡

≥
∫︁ 2𝜀/𝑇

0

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡 Pr[seed(𝑥) < 𝑡]𝑑𝑡

+

∫︁ ∞

2𝜀/𝑇

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡 Pr[seed(𝑥) < 2𝜀/𝑇 ]𝑑𝑡
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≥
∫︁ 2𝜀/𝑇

0

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡

(︁
1− 𝑒−𝑣𝑥𝑡(1−𝑡𝑇/2)

)︁
𝑑𝑡

+

∫︁ ∞

2𝜀/𝑇

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡

(︁
1− 𝑒−𝑣𝑥

2𝜀
𝑇 (1−𝜀)

)︁
𝑑𝑡

≥
∫︁ ∞

0

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡𝑑𝑡−

∫︁ 2𝜀/𝑇

0

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡𝑒−𝑣𝑥𝑡(1−𝜀)𝑑𝑡

−
∫︁ ∞

2𝜀/𝑇

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝑣𝑥)𝑡𝑒−𝑣𝑥

2𝜀
𝑇 (1−𝜀)𝑑𝑡

= 1−
∫︁ 2𝜀/𝑇

0

(𝑉 − 𝑣𝑥)𝑒
−(𝑉−𝜀𝑣𝑥)𝑡𝑑𝑡− 𝑒−(𝑉−𝑣𝑥)

2𝜀
𝑇 𝑒−𝑣𝑥

2𝜀
𝑇 (1−𝜀)

= 1− 𝑉 − 𝑣𝑥
𝑉 − 𝜀𝑣𝑥

∫︁ 2𝜀/𝑇

0

(𝑉 − 𝜀𝑣𝑥)𝑒
−(𝑉−𝜀𝑣𝑥)𝑡𝑑𝑡− 𝑒−(𝑉−𝜀𝑣𝑥)

2𝜀
𝑇

= 1− 𝑉 − 𝑣𝑥
𝑉 − 𝜀𝑣𝑥

(︁
1− 𝑒−(𝑉−𝜀𝑣𝑥)

2𝜀
𝑇

)︁
− 𝑒−(𝑉−𝜀𝑣𝑥)

2𝜀
𝑇

=

(︂
1− 𝑉 − 𝑣𝑥

𝑉 − 𝜀𝑣𝑥

)︂(︁
1− 𝑒−(𝑉−𝜀𝑣𝑥)

2𝜀
𝑇

)︁
=

(1− 𝜀)𝑣𝑥
𝑉 − 𝜀𝑣𝑥

(︁
1− 𝑒−(𝑉−𝜀𝑣𝑥)

2𝜀
𝑇

)︁
≥ (1− 𝜀)𝑣𝑥

𝑉

(︁
1− 𝑒−

2𝜀
𝑇 (1−𝜀)𝑉

)︁
[𝑉 ≥ 𝑣𝑥]

≥ (1− 𝜀)𝑣𝑥
𝑉

(︁
1− 𝑒−

2𝜀(1−𝜀)
𝜖 ln ( 1

𝜀 )
)︁

≥ (1− 𝜀)𝑣𝑥
𝑉

(︁
1− 𝑒− ln ( 1

𝜀 )
)︁

[2(1− 𝜀) ≥ 1]

= (1− 𝜀)2 · 𝑣𝑥
𝑉

≥ (1− 2𝜀)
𝑣𝑥
𝑉

.

C Proofs Deferred from Section 4

Proof of Lemma 4.1. With a slight abuse of notation, for a full key 𝑧 = (𝑧.𝑝, 𝑧.𝑠) we define

seed𝐷(𝑧) := min
𝑒∈𝐷|𝑒.key=𝑧

ElementScore(𝑒) .

Now, since we use the same value ℎ(𝑧) for all elements with key 𝑧, the minimum ElementScore(𝑒)
value generated for an element 𝑒 ∈ 𝐷 with key 𝑒.key = 𝑧 is ℎ(𝑧)/Max𝐷(𝑧):

seed𝐷(𝑧) = min
𝑒∈𝐷|𝑒.key=𝑧

ℎ(𝑧)

𝑒.val
=

ℎ(𝑧)

Max𝐷(𝑧)
.

Recall that for 𝑋 ∼ Exp[1] and 𝑎 > 0, the distribution of 𝑋/𝑎 is Exp[𝑎], and that ℎ(𝑧) ∼ Exp[1].
Therefore, the algorithm effectively draws seed𝐷(𝑧) ∼ Exp[Max𝐷(𝑧)] for every key 𝑧. Moreover,
from our assumption of independence of ℎ, the variables seed𝐷(𝑧) of different keys 𝑧 are also
independent.

We now notice that for a primary key 𝑥,

seed𝐷(𝑥) = min
𝑧|𝑧.𝑝=𝑥

seed𝐷(𝑧) .

That is, seed𝐷(𝑥) is the minimum, over all keys 𝑧 with primary key 𝑧.𝑝 = 𝑥 that appeared in at least
one element of 𝐷, of seed𝐷(𝑧).
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The random variables seed𝐷(𝑧) for input keys 𝑧 are independent and exponentially distributed with
respective parameters Max𝐷(𝑧). From properties of the exponential distribution, their minimum is
also exponentially distributed with a parameter that is equal to the sum of their parameters Max𝐷(𝑧):

seed𝐷(𝑥) ∼ Exp

⎛⎝ ∑︁
𝑧|𝑧.𝑝=𝑥

Max𝐷(𝑧)

⎞⎠ ,

that is, seed𝐷(𝑥) ∼ Exp[SumMax𝐷(𝑥)]. Moreover, the independence of seed𝐷(𝑥) (for primary
keys 𝑥) follows from the independence of seed𝐷(𝑧) (for input keys 𝑧).

D Proofs Deferred from Section 5

Proof of Lemma 5.5. Consider a fixed time during the processing of 𝐷 by Algorithm 4 (after some
but potentially not all elements have been processed). For each key 𝑥, let 𝑣𝑥 be the sum of values of
elements with key 𝑥 that have been processed so far.

For any 𝑡 > 0, key 𝑥 ∈ 𝒳 , and 𝑖 ∈ [𝑟], we define an indicator random variable 𝐼𝑡𝑥,𝑖 for the event
that an element with key (𝑥, 𝑖) was generated with value less than 𝑡. In particular, the number of
elements in Sideline is

∑︀
𝑥∈𝒳

∑︀𝑟
𝑖=1 𝐼

𝛾
𝑥,𝑖. The event 𝐼𝑡𝑥,𝑖 = 1 is the event that the minimum value of

the elements generated with key (𝑥, 𝑖) is at most 𝑡. The distribution of the minimum value of these
elements is Exp(𝑣𝑥), and it follows that

𝐸[𝐼𝑡𝑥,𝑖] = 1− 𝑒−𝑡𝑣𝑥 ≤ 𝑡𝑣𝑥.

In particular, when 𝑡 = 𝛾 = 2𝜀∑︀
𝑧∈𝒳 𝑣𝑧

and 𝑟 = 𝑘
𝜀 , we get

E

[︃∑︁
𝑥∈𝒳

𝑟∑︁
𝑖=1

𝐼𝛾𝑥,𝑖

]︃
≤
∑︁
𝑥∈𝒳

𝑟 · 2𝜀𝑣𝑥∑︀
𝑧∈𝒳 𝑣𝑧

= 2𝑟𝜀 = 2𝑘.

From Chernoff bounds,

Pr

[︃∑︁
𝑥∈𝒳

𝑟∑︁
𝑖=1

𝐼𝛾𝑥,𝑖 >

(︃
2 +

3 ln𝑚+ 3 ln
(︀
1
𝛿

)︀
2𝑘

)︃
2𝑘

]︃
≤ 𝑒−

2
3𝑘−ln𝑚−ln ( 1

𝛿 ) ≤ 𝛿

𝑚
.

Applying this each time an element is processed and taking union bound, we get that the size of
Sideline increases beyond 4𝑘 + 3 ln𝑚+ 3 ln

(︀
1
𝛿

)︀
at any time with probability at most 𝛿.

We now improve the bound to use log log
(︁

Sum𝐷

Min(𝐷)

)︁
instead of log𝑚. Let 𝑡 > 0. Consider all the

times where the value of 𝛾 is in the interval
[︀
1
2 𝑡, 𝑡

]︀
, and for every 𝛾′ in that interval, let 𝑣𝑥(𝛾′) denote

the frequency of key 𝑥 at the time where 𝛾 = 𝛾′. Since 𝛾 decreases over time as elements are
processed, any generated element stored in Sideline when 𝛾 ∈

[︀
1
2 𝑡, 𝑡

]︀
must have value at most 𝑡.

Since only more elements are generated as 𝛾 decreases, we can look all the elements that have been
generated until 𝛾 reached 1

2 𝑡.
10

We bound the number of elements with value at most 𝑡 that have been generated until the time where
𝛾 = 1

2 𝑡. From the way we set 𝛾 in Algorithm 4, we get as long as 𝛾 ≥ 1
2 𝑡,
∑︀

𝑥∈𝒳 𝑣𝑥(𝛾)𝑡 ≤ 4𝜀. Now,
consider the indicator 𝐼𝑡𝑥,𝑖 as defined above for the time where 𝛾 = 1

2 𝑡. The number of elements
stored in Sideline at any time when 𝛾 ∈

[︀
1
2 𝑡, 𝑡

]︀
is at most

∑︀
𝑥∈𝒳

∑︀𝑟
𝑖=1 𝐼

𝑡
𝑥,𝑖. We get that

E

[︃∑︁
𝑥∈𝒳

𝑟∑︁
𝑖=1

𝐼𝑡𝑥,𝑖

]︃
≤ 𝑟

∑︁
𝑥∈𝒳

𝑡 · 𝑣𝑥(𝑡/2) ≤ 4𝑟𝜀 = 4𝑘

and using Chernoff bounds,

Pr

⎡⎣∑︁
𝑥∈𝒳

𝑟∑︁
𝑖=1

𝐼𝑡𝑥,𝑖 >

⎛⎝2 +
3 ln ⌈log

(︁
Sum𝐷

Min(𝐷)

)︁
⌉+ 3 ln

(︀
1
𝛿

)︀
4𝑘

⎞⎠ 4𝑘

⎤⎦ ≤ 𝑒
− 4

3𝑘−ln ⌈log
(︁

Sum𝐷
Min(𝐷)

)︁
⌉−ln ( 1

𝛿 )

10It may be the case that 𝛾 is never 1
2
𝑡, but in that case we consider the minimum value of 𝛾 that is at least 1

2
𝑡.
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≤ 𝛿

⌈log
(︁

Sum𝐷

Min(𝐷)

)︁
⌉
. (10)

Finally, the minimum value 𝛾 can get is 2𝜀
Min(𝐷) , and the maximum value is 2𝜀

Sum𝐷
. Hence, we can

divide the interval of possible values for 𝛾 into ⌈log
(︁

Sum𝐷

Min(𝐷)

)︁
⌉ intervals of the form

[︀
1
2 𝑡, 𝑡

]︀
, and apply

the bound in Equation (10) to each one of them. By the union bound, we get that the probability that
the size of Sideline exceeds 8𝑘 + 3 ln ⌈log

(︁
Sum𝐷

Min(𝐷)

)︁
⌉+ 3 ln

(︀
1
𝛿

)︀
at any time during the processing

of 𝐷 is at most 𝛿.

Proof of Lemma 5.8. Using Lemma 5.9, for every key 𝑥,

E[𝑉𝑥] ≥ E
[︂
1

𝑟
SumMax𝐸(𝑥)

]︂
=

1

𝑟

𝑟∑︁
𝑖=1

E[Max𝐸((𝑥, 𝑖))]

=
1

𝑟

𝑟∑︁
𝑖=1

∫︁ ∞

𝛾

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡 [By Lemma 5.9]

=

∫︁ ∞

𝛾

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝑡)𝑑𝑡

≥
∫︁ ∞

𝛾

𝑎(𝑡)(1− 𝑒−𝜈𝑥𝛾)𝑑𝑡

= 𝐴(𝛾)(1− 𝑒−𝜈𝑥𝛾).

Recall that 𝛾 = 2𝜀
Sum𝐷

. Then, using 1− 𝑒−𝑥 ≥ 𝑥
2 for 0 ≤ 𝑥 ≤ 1,

E[𝑉 ] = E

[︃∑︁
𝑥∈𝒳

𝑉𝑥

]︃
≥
∑︁
𝑥∈𝒳

𝐴(𝛾)(1− 𝑒−𝜈𝑥𝛾)

=
∑︁
𝑥∈𝒳

𝐴(𝛾)
(︁
1− 𝑒

−𝜈𝑥· 2𝜀
Sum𝐷

)︁
≥
∑︁
𝑥∈𝒳

𝐴(𝛾)𝜈𝑥 ·
𝜀

Sum𝐷

=
𝐴(𝛾)𝜀

Sum𝐷

∑︁
𝑥∈𝒳

𝜈𝑥

= 𝐴(𝛾)𝜀.

Since 𝑟 ≥ 𝑘
𝜀 , we conclude that

E[𝑉 ] ≥ 𝐴(𝛾)

𝑟
· 𝑘.

Proof of Lemma 5.12. Consider a key 𝑥. The seed seed(𝐹 )(𝑥) in the output sample is the minimum
of seed(1)(𝑥) and seed(2), which are the seed values obtained by the scaled PPSWOR and the
SumMax samples, respectively.

The scaled PPSWOR sample is computed with respect to the weights 𝜈𝑥𝐵(𝛾), and thus seed(1)(𝑥) ∼
Exp[𝜈𝑥𝐵(𝛾)]. Therefore using the density function of Exp[𝜈𝑥𝐵(𝛾)], we get that for all 𝑡 > 0,

𝑝1 = Pr[seed(1)(𝑥) > 𝑡] = exp(−𝜈𝑥𝐵(𝛾)𝑡) .
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The scaled SumMax sample is a PPSWOR sample with respect to weights 1
𝑟 SumMax𝐸(𝑥).

Therefore, seed(2)(𝑥) ∼ Exp[ 1𝑟 SumMax𝐸(𝑥)]. Note however that 1
𝑟 SumMax𝐸(𝑥) is itself a

random variable and in particular, the value SumMax𝐸(𝑥) is not available to us with the sam-
ple. We recall that SumMax𝐸(𝑥) =

∑︀𝑟
𝑖=1 Max𝐸((𝑥, 𝑖)) where Max𝐸((𝑥, 𝑖)) are i.i.d. random

variables. Using properties of the exponential distribution, we know that Exp[ 1𝑟 SumMax𝐸(𝑥)]
is the same distribution as the minimum of 𝑟 independent random variables drawn from
Exp[ 1𝑟 Max𝐸((𝑥, 1))], . . . ,Exp[ 1𝑟 Max𝐸((𝑥, 𝑟))]. Therefore, for 𝑡 > 0,

Pr[seed(2)(𝑥) > 𝑡] =
∏︁
𝑖

Pr

[︂
Exp

[︂
1

𝑟
Max𝐸((𝑥, 𝑖))

]︂
> 𝑡

]︂
.

We now express Pr[Exp[ 1𝑟 Max𝐸((𝑥, 𝑖))] > 𝑡] using the fact that Max𝐸((𝑥, 𝑖)) = 𝐴(max{𝑦, 𝛾})
for 𝑦 ∼ Exp[𝜈𝑥]:

𝑝2 = Pr

[︂
Exp

[︂
1

𝑟
Max𝐸((𝑥, 𝑖))

]︂
> 𝑡

]︂
=

∫︁ ∞

0

𝜈𝑥 exp(−𝜈𝑥𝑦) Pr
[︂
Exp

[︂
1

𝑟
𝐴(max{𝑦, 𝛾})

]︂
> 𝑡

]︂
𝑑𝑦

=

∫︁ ∞

0

𝜈𝑥 exp(−𝜈𝑥𝑦) exp(−𝐴(max{𝑦, 𝛾})𝑡/𝑟)𝑑𝑦 .

Since Pr[seed(2)(𝑥) > 𝑡] = 𝑝𝑟2 and using the fact that seed(1)(𝑥) and seed(2)(𝑥) are independent,
we conclude that

Pr[seed(𝐹 )(𝑥) < 𝑡] = 1− Pr[min{seed(1)(𝑥), seed(2)(𝑥)} > 𝑡]

= 1− Pr[seed(1)(𝑥) > 𝑡] Pr[seed(2)(𝑥) > 𝑡]

= 1− 𝑝1𝑝
𝑟
2 .
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