
Appendices382

A Model-based Policy Optimization with Performance Guarantees383

In this appendix, we provide proofs for bounds presented in the main paper.384

We begin with a standard bound on model-based policy optimization, with bounded policy change ✏⇡385

and model error ✏m.386

Theorem A.1 (MBPO performance bound). Let the expected total variation between two transition387

distributions is bounded at each timestep by maxt Es⇠⇡D,t [DTV (p(s0|s, a)||p̂(s0|s, a))]  ✏m, and388

the policy divergences are bounded as maxs DTV (⇡D(a|s)||⇡(a|s))  ✏⇡. Then the returns are389

bounded as:390

⌘[⇡] � ⌘̂[⇡]� 2�rmax(✏m + 2✏⇡)

(1� �)2
� 4rmax✏⇡

(1� �)

Proof. Let ⇡D denote the data collecting policy. As-is we can use Lemma B.3 to bound the returns,391

but it will require bounded model error under the new policy ⇡. Thus, we need to introduce ⇡D by392

adding and subtracting ⌘[⇡D], to get:393

⌘[⇡]� ⌘̂[⇡] = ⌘[⇡]� ⌘[⇡D]| {z }
L1

+ ⌘[⇡D]� ⌘̂[⇡]| {z }
L2

We can bound L1 and L2 both using Lemma B.3.394

For L1, we apply Lemma B.3 using � = ✏⇡ (no model error because both terms are under the true395

model), and obtain:396

L1 � �2rmax�✏⇡

(1� �)2
� 2rmax✏⇡

1� �

For L1, we apply Lemma B.3 using � = ✏⇡ + ✏m and obtain:397

L2 � �2rmax�(✏m + ✏⇡)

(1� �)2
� 2rmax✏⇡

1� �

Adding these two bounds together yields the desired result.398

Next, we describe bounds for branched rollouts. We define a branched rollout as a rollout which399

begins under some policy and dynamics (either true or learned), and at some point in time switches to400

rolling out under a new policy and dynamics for k steps. The point at which the branch is selected401

is weighted exponentially in time – that is, the probability of a branch point t being selected is402

proportional to �
t.403

We first present the simpler bound where the model error is bounded under the new policy, which we404

label as ✏m0 . This bound is difficult to apply in practice as supervised learning will typically control405

model error under the dataset collected by the previous policy.406

Theorem A.2. Let the expected total variation between two the learned model is bounded at each407

timestep under the expectation of ⇡ by maxt Es⇠⇡t [DTV (p(s0|s, a)||p̂(s0|s, a))]  ✏m0 , and the408

policy divergences are bounded as maxs DTV (⇡D(a|s)||⇡(a|s))  ✏⇡. Then under a branched409

rollouts scheme with a branch length of k, the returns are bounded as:410

⌘[⇡] � ⌘
branch[⇡]� 2rmax


�
k+1

✏⇡

(1� �)2
+

�
k
✏⇡

(1� �)
+

k

1� �
(✏m0)

�

Proof. As in the proof for Theorem A.1, the proof for this theorem requires adding and subtracting411

the correct reference quantity and applying the corresponding returns bound (Lemma B.4).412

The choice of reference quantity is a branched rollout which executes the old policy ⇡D under the413

true dynamics until the branch point, then executes the new policy ⇡ under the true dynamics for k414

steps. We denote the returns under this scheme as ⌘⇡D,⇡ . We can split the returns as follows:415

11

⌘[⇡]� ⌘
branch = ⌘[⇡]� ⌘

⇡D,⇡

| {z }
L1

+ ⌘
⇡D,⇡ � ⌘

branch

| {z }
L2

We can bound both terms L1 and L2 using Lemma B.4.416

L1 accounts for the error from executing the old policy instead of the current policy. This term only417

suffers from error before the branch begins, and we can use Lemma B.4 ✏
pre
⇡  ✏⇡ and all other errors418

set to 0. This implies:419

|⌘[⇡]� ⌘
⇡D,⇡|  2rmax


�
k+1

(1� �)2
✏⇡ +

�
k

1� �
✏⇡

�

L2 incorporates model error under the new policy incurred after the branch. Again we use Lemma B.4,420

setting ✏
post
m  ✏m and all other errors set to 0. This implies:421

|⌘[⇡]� ⌘
⇡D,⇡|  2rmax


k

1� �
✏m0

�

Adding L1 and L2 together completes the proof.422

423

The next bound is an analogue of Theorem A.2 except using model errors under the previous policy424

⇡D rather than the new policy ⇡.425

Theorem A.3. Let the expected total variation between two the learned model is bounded at each426

timestep under the expectation of ⇡ by maxt Es⇠⇡D,t [DTV (p(s0|s, a)||p̂(s0|s, a))]  ✏m, and the427

policy divergences are bounded as maxs DTV (⇡D(a|s)||⇡(a|s))  ✏⇡. Then under a branched428

rollouts scheme with a branch length of k, the returns are bounded as:429

⌘[⇡] � ⌘
branch[⇡]� 2rmax


�
k+1

✏⇡

(1� �)2
+

�
k + 2

(1� �)
✏⇡ +

k

1� �
(✏m + 2✏⇡)

�

Proof. This proof is a short extension of the proof for Theorem A.2. The only modification is that430

we need to bound L2 in terms of the model error under the ⇡D rather than ⇡.431

Once again, we design a new reference rollout. We use a rollout that executes the old policy ⇡D432

under the true dynamics until the branch point, then executes the old policy ⇡D under the model for433

k steps. We denote the returns under this scheme as ⌘⇡D,⇡̂D . We can split L2 as follows:434

⌘
⇡D,⇡ � ⌘

branch = ⌘
⇡D,⇡ � ⌘

⇡D,⇡̂D

| {z }
L3

+ ⌘
⇡D,⇡̂D � ⌘

branch

| {z }
L4

Once again, we bound both terms L3 and L4 using Lemma B.4.435

The rollouts in L3 differ in both model and policy after the branch. This can be bound using436

Lemma B.4 by setting ✏
post
⇡ = ✏⇡ and ✏

post
m = ✏m. This results in:437

|⌘⇡D,⇡ � ⌘
⇡D,⇡̂D |  2rmax


k

1� �
(✏m + ✏⇡) +

1

1� �
✏⇡

�

The rollouts in L4 differ only in the policy after the branch (as they both rollout under the model).438

This can be bound using Lemma B.4 by setting ✏
post
⇡ = ✏⇡ and ✏

post
m = 0. This results in:439

|⌘⇡D,⇡̂D � ⌘
branch|  2rmax


k

1� �
(✏⇡) +

1

1� �
✏⇡

�

Adding L1 from Theorem A.2 and L3, L4 above completes the proof.440

441

12

B Useful Lemmas442

In this section, we provide proofs for various lemmas used in our bounds.443

Lemma B.1 (TVD of Joint Distributions). Suppose we have two distributions p1(x, y) =444

p1(x)p1(y|x) and p2(x, y) = p2(x)p2(y|x). We can bound the total variation distance of the445

joint as:446

DTV (p1(x, y)||p2(x, y))  DTV (p1(x)||p2(x)) + max
x

DTV (p1(y|x)||p2(y|x))

Alternatively, we have a tighter bound in terms of the expected TVD of the conditional:447

DTV (p1(x, y)||p2(x, y))  DTV (p1(x)||p2(x)) + Ex⇠p1 [DTV (p1(y|x)||p2(y|x))]

Proof.

DTV (p1(x, y)||p2(x, y)) =
1

2

X

x,y

|p1(x, y)� p2(x, y)|

=
1

2

X

x,y

|p1(x)p1(y|x)� p2(x)p2(y|x)|

=
1

2

X

x,y

|p1(x)p1(y|x)� p1(x)p2(y|x) + (p1(x)� p2(x))p2(y|x)|

 1

2

X

x,y

p1(x)|p1(y|x)� p2(y|x)|+ |p1(x)� p2(x)|p2(y|x)

=
1

2

X

x,y

p1(x)|p1(y|x)� p2(y|x)|+
1

2

X

x

|p1(x)� p2(x)|

= Ex⇠p1 [DTV (p1(y|x)||p2(y|x))] +DTV (p1(x)||p2(x))
 max

x
DTV (p1(y|x)||p2(y|x)) +DTV (p1(x)||p2(x))

448

Lemma B.2 (Markov chain TVD bound, time-varying). Suppose the expected KL-divergence between449

two transition distributions is bounded as maxt Es⇠pt
1(s)

DKL(p1(s0|s)||p2(s0|s))  �, and the450

initial state distributions are the same – p
t=0
1 (s) = p

t=0
2 (s). Then the distance in the state marginal451

is bounded as:452

DTV (p
t
1(s)||pt2(s))  t�

Proof. We begin by bounding the TVD in state-visitation at time t, which is denoted as ✏t =453

DTV (pt1(s)||pt2(s)).454

|pt1(s)� p
t
2(s)| = |

X

s0

p1(st = s|s0)pt�1
1 (s0)� p2(st = s|s0)pt�1

2 (s0)|


X

s0

|p1(st = s|s0)pt�1
1 (s0)� p2(st = s|s0)pt�1

2 (s0)|

=
X

s0

|p1(s|s0)pt�1
1 (s0)� p2(s|s0)pt�1

1 (s0) + p2(s|s0)pt�1
1 (s0)� p2(s|s0)pt�1

2 (s0)|


X

s0

p
t�1
1 (s0)|p1(s|s0)� p2(s|s0)|+ p2(s|s0)|pt�1

1 (s0)� p
t�1
2 (s0)|

= Es0⇠pt�1
1

[|p1(s|s0)� p2(s|s0)|] +
X

s0

p(s|s0)|pt�1
1 (s0)� p

t�1
2 (s0)|

13

455

✏t = DTV (p
t
1(s)||pt2(s)) =

1

2

X

s

|pt1(s)� p
t
2(s)|

=
1

2

X

s

Es0⇠pt�1

1
[|p1(s|s0)� p2(s|s0)|] +

X

s0

p(s|s0)|pt�1
1 (s0)� p

t�1
2 (s0)|

!

=
1

2
Es0⇠pt�1

1
[
X

s

|p1(s|s0)� p2(s|s0)|] +DTV (p
t�1
1 (s0)||pt�1

2 (s0))

= �t + ✏t�1

= ✏0 +
tX

i=0

�t

=
tX

i=0

�t = t�

Where we have defined �t =
1
2Es0⇠pt�1

1
[
P

s |p1(s|s0)�p2(s|s0)], which we assume is upper bounded456

by �. Assuming we are not modeling the initial state distribution, we can set ✏0 = 0.457

Lemma B.3 (Branched Returns bound). Suppose the expected KL-divergence between two458

dynamics distributions is bounded as maxt Es⇠pt
1(s)

DKL(p1(s0, a|s)||p2(s0, a|s))  ✏m, and459

maxs DTV (⇡1(a|s)||⇡2(a|s))  ✏⇡ . Then the returns are bounded as:460

|⌘1 � ⌘2| 
2R�(✏⇡ + ✏m)

(1� �)2
+

2R✏⇡

1� �

Proof. Here, ⌘1 denotes returns of ⇡1 under dynamics p1(s0|s, a), and ⌘2 denotes returns of ⇡2 under461

dynamics p2(s0|s, a).462

|⌘1 � ⌘2| = |
X

s,a

(p1(s, a)� p2(s, a))r(s, a)|

= |
X

s,a

(
X

t

�
t
p
t
1(s, a)� p

t
2(s, a))r(s, a)|

= |
X

t

X

s,a

�
t(pt1(s, a)� p

t
2(s, a))r(s, a)|


X

t

X

s,a

�
t|pt1(s, a)� p

t
2(s, a)|r(s, a)

 rmax

X

t

X

s,a

�
t|pt1(s, a)� p

t
2(s, a)|

We now apply Lemma B.2, using � = ✏m + ✏⇡ (via Lemma B.1) to get:463

DTV (p
t
1(s)||pt2(s))  t(✏m + ✏⇡)

And since we assume maxs DTV (⇡1(a|s)||⇡2(a|s))  ✏⇡ , we get464

DTV (p
t
1(s, a)||pt2(s, a))  t(✏m + ✏⇡) + ✏⇡

Thus, plugging this back in we get:465

|⌘1 � ⌘2|  rmax

X

t

X

s,a

�
t|pt1(s, a)� p

t
2(s, a)|

 2rmax

X

t

�
t
t(✏m + ✏⇡) + ✏⇡

 2rmax(
�(✏⇡ + ✏m)

(1� �)2
+

✏⇡

1� �
)

466

14

Lemma B.4 (Returns bound, branched rollout). Assume we run a branched rollout of length467

k. Before the branch (“pre” branch), we assume that the dynamics distributions are468

bounded as maxt Es⇠pt
1(s)

DKL(p
pre
1 (s0, a|s)||ppre2 (s0, a|s))  ✏

pre
m and after the branch as469

maxt Es⇠pt
1(s)

DKL(p
post
1 (s0, a|s)||ppost2 (s0, a|s))  ✏

post
m . Likewise, the policy divergence is470

bounded pre- and post- branch by ✏
pre
⇡ and ✏

post
⇡ , repsectively. Then the K-step returns are bounded471

as:472

|⌘1 � ⌘2|  2rmax


�
k+1

(1� �)2
(✏prem + ✏

pre
⇡) +

k

1� �
(✏postm + ✏

post
⇡) +

�
k

1� �
✏
pre
⇡ +

1

1� �
✏
post
⇡

�

Proof. We begin by bounding state marginals at each timestep, similar to Lemma B.3. Recall that473

Lemma B.2 implies that state marginal error at each timestep can be bounded by the state marginal474

error at the previous timestep, plus the divergence at the current timestep.475

Thus, letting d1(s, a) and d2(s, a) denote the state-action marginals, we can write:476

For t  k:477

TV d
t
1(s, a)d

t
2(s, a)  t(✏postm + ✏

post
⇡) + ✏

post
⇡  k(✏postm + ✏

post
⇡) + ✏

post
⇡

and for t � k:478

TV d
t
1(s, a)d

t
2(s, a)  (t� k)(✏prem + ✏

pre
⇡) + k(✏postm + ✏

post
⇡) + ✏

pre
⇡ + ✏

post
⇡

We can now bound the difference in occupancy measures by averaging the state marginal error over479

time, weighted by the discount:480

DTV (d1(s, a)||d2(s, a))  (1� �)
1X

t=0

�
t
tDTV (d

t
1(s, a)||dt2(s, a))

 (1� �)
kX

t=0

�
t(k(✏postm + ✏

post
⇡) + ✏

post
⇡)

+ (1� �)
1X

t=k

�
t(t� k)(✏prem + ✏

pre
⇡) + k(✏postm + ✏

post
⇡) + ✏

pre
⇡ + ✏

post
⇡

= k(✏postm + ✏
post
⇡ + ✏

post
⇡) +

�
k+1

1� �
(✏prem + ✏

pre
⇡) + �

k
✏
pre
⇡

Multiplying this bound by 2rmax
1�� to convert the state-marginal bound into a returns bound completes481

the proof.482

15

C Hyperparameter Settings483

HalfCheetah Walker2d Ant Hopper

N epochs 400 300 125

E
environment steps 1000per epoch

M
model rollouts 20per policy update

B ensemble size 7

network architecture MLP with four hidden layers of size 200

G
policy updates 40000 20000per epoch

k model horizon 1 1 ! 25 over 1 ! 15 over
epochs 20 ! 100 epochs 20 ! 100

Table 1: Hyperparameter settings for MBPO results shown in Figure 2. x ! y over epochs a ! b

denotes a thresholded linear function, i.e. at epoch e, f(e) = min(max(x+ e�a
b�a · (x� y), x), y)

16

	Introduction
	Related Work
	Background
	Monotonic Improvement with Model Bias
	Monotonic Model-based Improvement
	Interpolating Model-Based and Model-Free Updates
	Model Generalization in Practice

	Model-Based Policy Optimization with Deep Reinforcement Learning
	Experiments
	Comparative Evaluation
	Design Evaluation

	Discussion
	Model-based Policy Optimization with Performance Guarantees
	Useful Lemmas
	Hyperparameter Settings

