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Abstract

We consider the problem of experimental design for learning causal graphs that
have a tree structure. We propose an adaptive framework that determines the next
intervention based on a Bayesian prior updated with the outcomes of previous
experiments, focusing on the setting where observational data is cheap (assumed
infinite) and interventional data is expensive. While information greedy approaches
are popular in active learning, we show that in this setting they can be exponentially
suboptimal (in the number of interventions required), and instead propose an
algorithm that exploits graph structure in the form of a centrality measure. If each
intervention yields a very large data sample, we show that the algorithm requires
a number of interventions less than or equal to a factor of 2 times the minimum
achievable number. We show that the algorithm and the associated theory can
be adapted to the setting where each performed intervention yields finitely many
samples. Several extensions are also presented, to the case where a specified set of
nodes cannot be intervened on, to the case where K interventions are scheduled at
once, and to the fully adaptive case where each experiment yields only one sample.
In the case of finite interventional data, through simulated experiments we show
that our algorithms outperform different adaptive baseline algorithms.

1 Introduction

Causal discovery from observational and interventional data is a fundamental problem and preva-
lent in multiple areas of science and engineering (Pearl, 2009; Spirtes et al., 2000; Peters et al.,
2017). Learning the underlying causal mechanisms is essential for policy design. Technological
advancements in the recent decades have paved the way for the collection of abundant amounts of
observational data, i.e., data collected without perturbing the underlying causal mechanisms. How-
ever, observational data is generally not sufficient for drawing causal conclusions and interventional
data, i.e., data collected after a perturbation in the system, may be needed. Therefore, many recent
methods propose to exploit both observational and interventional data (Triantafillou & Tsamardinos,
2015; Hyttinen et al., 2014; Peters et al., 2016; Zhang et al., 2017; Magliacane et al., 2016).
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In the literature, there is growing interest in algorithms for intervention (experimental) design to
learn causal graphs (Hyttinen et al., 2013; Shanmugam et al., 2015; Kocaoglu et al., 2017; Lindgren
et al., 2018). These algorithms recommend the next experiment to perform to the practitioner, which
is a perfect do(X) intervention Pearl (2009) on a set of intervention targets X. Moreover, they
provide guarantees that interventional data from these experiments are sufficient to recover the
underlying causal graph in the minimum number of experiments. A non-adaptive intervention design
is determined a priori before any of the interventions are performed. We focus on the adaptive

intervention design setting, which determines the next experiment after collecting and processing the
information collected from all experiments up until that point.

In many real-world settings, the collection of interventional data is much more difficult and costly
than that of its observational counterpart. For example, in many medical settings there is plenty of
observational clinical data, while randomized controlled trials are expensive to organize. Therefore it
is generally desirable in practice to use as few interventional samples as possible. However, most
existing work assumes a perfect conditional independence oracle which is only true when a very
large number of samples are available from each experiment. In this work, we focus on removing this
constraint: we assume that infinitely many observational samples are available, while only finitely
many samples for each intervention can be obtained.

In this paper we assume causal sufficiency, i.e., the absence of latent confounders, and no selection
bias. Causal inference using observational data in this setting has been extensively studied in the
literature. As an example, in the PC algorithm (Spirtes et al., 2000), causal structure is recovered
from conditional independence tests using the rules described by Meek (1995), which are provably
complete, i.e. they recover all causal relations that can be identified from the data. The identifiable
causal directions are represented as directed edges in the essential graph, while the non-identifiable
directions are represented as undirected edges. It can be shown that each undirected component in
the essential graph does not give information about the other undirected components, and therefore
can be learned separately.

Causal Forest Assumption: In this work, we assume that each of the undirected components of the
essential graph are trees (in general, the essential graph has chordal undirected components), i.e. they
form a forest. Under this assumption, the graph can be decomposed into a set of undirected trees
in which there are no unshielded colliders. Our assumption is satisfied when the original graph is
bi-partite, since chordal components of bi-partite graphs are forests. Examples of bi-partite causal
graphs occur in systems biology networks, e.g. gene-protein networks where genes cause protein
expressions and expressed proteins block or activate other genes (Kontou et al. (2016)). Another
motivation for focusing on learning orientations in the undirected tree components is that it would
give insights for the general case when undirected components of the essential graph are chordal as
chordal graphs are trees of cliques. In the remainder of the paper, we design algorithms for orienting
each of these tree components individually, since their orientations are not informative of each other
and must be determined in sequence.

We consider a Bayesian approach where we assume a prior distribution on the set of all possible causal
graphs on a given undirected tree. The problem can be described as follows: given an undirected tree
that does not contain any unshielded colliders, design experiments adaptively to learn the underlying
causal graph with the minimum expected number of interventions. In this context, expectation is
with respect to a given prior distribution over all causal graphs with the given tree as their essential
graph. We propose an efficient algorithm for discovering the underlying causal structure that does
not require a perfect conditional independence oracle to process interventional data. To illustrate
the soundness of our approach, we first assume that infinite observational and interventional data
are available and show that the average number of experiments required by our algorithm is within
a multiplicative factor of 2 of the optimal algorithm. Extensions are then given to the case where
some nodes cannot be intervened on, and to the case where K nodes at a time are requested by the
experimenter. We consider two adaptations of this theoretical result to the finite sample case, both
based on obtaining a specified number of samples per intervention: (1) a simple union-bound based
approach that samples each intervention until the confidence is sufficiently high to apply the noiseless
algorithm, and (2) an approach inspired by the results of Emamjomeh-Zadeh et al. (2016) that obtains
a small number of samples per intervention and maintains a Bayesian posterior of the root location.
This last result requires O(log(n/�)/✏2) total interventional samples in expectation, in contrast to
the result of Emamjomeh-Zadeh et al. (2016) for the structured noisy search problem, which has a
O(log(d)) dependence for degree d.
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1.1 Related Work

Experimental Design Hyttinen et al. (2013); Eberhardt (2007); Eberhardt et al. (2005) show that
in the worst-case scenario O log(n) experiments are necessary and sufficient to recover the causal
graph, even when the algorithm is adaptive (Shanmugam et al., 2015). Hu et al. (2014) show
that O(log log(n)) randomized experiments are sufficient to learn the graph with high probability.
Shanmugam et al. (2015) also propose an adaptive algorithm for the setting where at most k nodes
can be randomized. Kocaoglu et al. (2017) consider the problem of minimum-cost intervention
design when each node is associated with an intervention cost and proposed a greedy algorithm,
which gives a (2 + ✏)-approximation (Lindgren et al., 2018). Ghassami et al. (2017b) studied the
problem of learning the maximum number of edges for a given number of size 1 interventions. Except
Shanmugam et al. (2015), all of these works operate in the non-adaptive (offline) setting where
experiments are designed before collecting interventional data. Moreover, all assume the existence
of a perfect CI oracle after every intervention, which in general requires infinite experimental data.
Recently Agrawal et al. (2019) introduced an experimental selection algorithm for learning a specific
target function of the causal graph with a budget on the number of samples, i.e., in the fixed budget
regime, whereas we work in the fixed confidence regime (Jamieson et al., 2014). Also recently,
Ghassami et al. (2017a) proposed a non-adaptive intervention design to learn as much as possible
about the underlying causal graph using at most M experiments. A routine in their algorithm chooses
a central node to intervene on. While we also use the concept of a central node, our learning algorithm
and analysis is fully adaptive.

Search on Structured Data When the essential graph is a tree, learning the causal graph becomes
equivalent to a structured search problem, since it is reduced to identifying the root node. Onak
& Parys (2006) consider searching on trees where a query on a node outputs whether the queried
node is the marked node and if not outputs the branch on which the marked node lies, which under
infinite interventional data would be exactly our setup. However, they focus on minimizing the worst
case performance while we focus on the average case. Jacobs et al. (2010) consider the edge query
model on trees: An edge after being queried yields the direction in which the marked node lies.
Their objective is to minimize the average case number of queries relative to an arbitrary prior which
is known. Although several other variants of the search problem exist (Dereniowski et al., 2017;
Emamjomeh-Zadeh et al., 2016; Dereniowski et al., 2018; Cicalese et al., 2010, 2014), even with
extensions to the noisy case (Dereniowski et al., 2018), as far as we are aware searching with vertex
queries to minimize average case performance has not been studied before. See (Dereniowski et al.,
2017) for an overview of the literature.

2 Problem Statement

We assume that we have a collection of real-valued (possibly discrete) variables X =
{X1, X2, . . . , Xn}, and have access to enough observational data to have determined the joint
distribution p(X1, X2, . . . , Xn) over the n variables. We further assume that the Causal Markov and
faithfulness assumptions (Spirtes et al., 2000) hold, implying a one-to-one correspondence between
d-separations and conditional independences. Combined with the assumption that the underlying
graph is a tree, this implies that we have access to the correct undirected version of the causal graph.

Our goal is to learn a causal model over X1, X2, . . . , Xn, where with a slight abuse of notation, we
use Xi to refer both to the random variable and to the associated node in the causal graph. Assume
that there are no v-structures in the causal graph (otherwise the graph can be decomposed into smaller
subgraphs which are non-informative about each other). The possible edge orientations following
this constraint correspond to directed graphs Gr with root node R = r and all edges oriented away
from r. Let G = {Gr : r 2 [n]}. In other words, the causal model can be specified completely by the
identity of the root node r.

In what follows, we use the following graph-related notation. For any node Xi, let NG(i) be the set
of neighbors of Xi in the tree G, e.g., in Figure 1, NG(2) = {X1, X4, X5}. For a node Xi and its
neighbor Y 2 NG(i), we write BXi:Y

G to denote the set of nodes that can be reached from Y when the
edge between Xi and Y is cut from the graph. Note that node Y is included in BXi:Y

G . We also define
BXi:Xi

G = {Xi}. As an example, in Figure 1 the branches connected to X2 are BX2:X1
G = {X1, X3},

BX2:X4
G = {X4}, and BX2:X5

G = {X5, X6}. We write the cardinality of a graph G as |G|.
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X1

X2X3

X4 X5
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Figure 1: Graph notation example.

Our focus in this paper is to apply active learning approaches to adaptively and sequentially choose a
series of interventions to best determine the causal graph (from among the set G). For this paper, we
assume interventions are single target perfect interventions, i.e., they take the form of the experimenter
setting the value of some chosen node Xi. At each time t the algorithm chooses to intervene at node
it. It observes a sample X(t)

⇠ P(·|do(Xit = xit)) for some xit . The algorithm runtime until the
root r (and the corresponding causal model Gr) is identified with some desired confidence 1 � �
could be random or deterministic.

Given an interventional sample at node Xi, the posterior update contained therein can be computed
via the following lemma, which is proved in Appendix B. The time index is omitted for simplicity.
Lemma 1. Given an interventional sample x from P(X|do(Xi = 1)), collected after we intervened

on Xi by setting it to x = 11
, the posterior update for the probability that the root is in the branch

BXi:Y
G , for all Y 2 NG(i) [Xi, is given by

8Xa 2 BXi:Y
G ,P(R = Xa|X = x, do(Xi = 1)) /

⇢
P(R = Xa)

P(Y=y)
P(Y=y|Xi=1) Y 2 NG(i)

P(R = Xa) Y = Xi,

where the proportionality constant does not depend on Y and y is the observed value of Y .

This result implies that the only relevant interventional values are those of the neighbors NG(i) of
the intervened node Xi. This is a critical observation that informs the development of our approach.

We will also consider the simpler setting where given the choice of a node Xi on which to intervene,
the experimenter returns a large number of interventional experiments on that node (assumed to be
infinite). In this case, based on Lemma 1, an intervention acts to collapse the posterior distribution
onto either Xi (if it is the true root) or one of the adjacent branches BXi:Y

G for some Y 2 NG(i)
a neighbor of Xi. We call this setting the “noiseless” setting, and use it as a starting point for the
development of approaches for the more general setting.

2.1 Suboptimality of naı̈ve algorithms

Nonadaptive (without active learning feedback). In a non-iterative setting where the outcome
of the interventions are not observed until all experiments are complete, any algorithm that wishes
to find the root node must take at least O(n/(d+ 1)) interventions in expectation (under a uniform
prior), where d is the largest degree in the graph. This follows since each intervention only provides
information about the d+ 1 possible directions of the root from the intervened node. For bounded d,
this is exponentially (in the number of interventions) worse than our bound for our adaptive central
node algorithm.

Information greedy algorithm is exponentially suboptimal. An information greedy algorithm is
one that intervenes at the node Xi that in expectation reduces the entropy of the posterior on R the
most. Several works have proposed this approach, including Ness et al. (2017) who applied it to the
intervention design setting. While attractive from an intuitive standpoint, this counterexample shows
it can be exponentially suboptimal. Consider the graph in Figure 2 for parameter K = 3. Construct a
3-ary tree (each non-leaf node has degree 3) of minimimum depth with K leaf nodes `i, i = 1, . . . ,K.
At each of these leaf nodes, draw edges to de4Ke new nodes (where d·e denotes rounding up to the
nearest integer), which become the new leaf nodes of the finished graph. Suppose that the true causal
graph corresponds to this skeleton, with the directions of the edges emanating away from a root node.

1do(X = 1) is chosen for notational simplicity, as long as there is any value a for which do(X = a) affects
the effect variables, we can find it from the observational data and the theory will still hold.
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`1 `2 `3

. . .

de4Ke nodes

. . .

de4Ke nodes

. . .

de4Ke nodes

Figure 2: Counterexample for information greedy algorithm, shown for K = 3. The optimal algo-
rithm can find the root in dlog2 Ke+ 1 interventions by a top-down approach, while the information
greedy algorithm intervenes on the `k (k = 1, . . . ,K) nodes, taking at least K/2 steps in expectation.

Suppose further that the unknown root note has a uniform prior distribution over all nodes in the
graph. Let n be the number of nodes in this example, observe that n  (K + 1)de4Ke.

Considering the “noiseless” setting where each intervention is performed infinitely many times, it is
clear that the optimal algorithm can identify this root node in at most dlog2 Ke+ 1 interventions. To
see this, observe that one can first intervene at the center node of the graph. This gives the direction
of the root from this node, so intervene at the adjacent node in that direction. Repeat this process until
the root node is identified. Since the depth of the tree is dlog2 Ke+ 2, this algorithm is guaranteed to
find the root node by dlog2 Ke+ 1 interventions.

For the information greedy algorithm, we have the following bound proved in Appendix D:
Proposition 1. For the above counterexample, the information greedy algorithm will choose the

nodes `i before any others, hence it takes a number of interventions with expected value at least K/2.

This implies that the information greedy algorithm is exponentially suboptimal in this scenario with
respect to the number of interventions required. Note that information greedy will also be at least
nearly exponentially suboptimal in the noisy setting since the above noiseless-optimal algorithm can
be extended to the noisy case via repeating interventions at each node a number of times logarithmic
in the size of the graph to recover the graph with high probability.

3 Central node algorithm and variants

Consider the following algorithm. At time t, there is a prior distribution pt(R = r) over the nodes of
the tree which is the posterior probability each node is the root given the intervention history up to but
not including time t. The posterior distribution at time t is formed by updating the prior pt(R = r)
with the observed data X = x to form qt(R = r) = P(R = r|X = x). Note that the posterior at
time t becomes the prior at time t+ 1, i.e. pt+1(R = r) = qt(R = r). We call a node vc a central

node if it divides the tree into a set of undirected trees, each with total posterior probability less than
1
2 . Specifically, we have the following definition:
Definition 1. A central node vc of a tree G with respect to a distribution q over the nodes is one for

which maxj2N(vc)q(B
vc:Xj

G )  1/2. At least one such vc is guaranteed to exist (Jordan, 1869).

Algorithm 4 in Appendix A gives a simple algorithm for finding such a central node with runtime
linear in n.

We next propose the following central node algorithm for discovering the root node, given in
Algorithm 1. At each time t, it intervenes on a central node with respect to the current prior and
updates the prior using data from this intervention in accordance with the update in Lemma 1.

While itself a deterministic procedure, Algorithm 1 is adaptive to the outputs of the interventions
and hence produces a stochastic sequence of interventions. Note that intervening on a leaf (e.g. if
q(i) > 1/2 for some leaf node i) is never optimal, if the high-probability node is a leaf, one can
simply intervene at its (unique by definition) neighbor and strictly improve the algorithm. We omit
this special case from the algorithm and analysis for simplicity.

3.1 Noiseless setting: Adaptive search on a tree

We first consider the simplest case, for which we show that the central node algorithm is within a
factor of 2 from the optimal. In this setting, we define the optimal algorithm to be the one that requires
the smallest number of interventions, in expectation, to identify the true root. Recalling the “noiseless”
setting, we start with a tree G0, such that an intervention on any node Xi provides the direction
u 2 {Xi} [NG0(i) in which the root node lies, in other words the true root r0 2 BXi:u(G0).
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Algorithm 1 Central Node Algorithm
input Observational tree G0. Confidence parameter �.

1: t 0.
2: q0(i) 

1
n , 8i = 1, . . . , n.

3: while maxi qt(i)  1� � do

4: t t+ 1.
5: Identify central node index vc(t) of G with respect to qt�1 (Algorithm 4).
6: Intervene on node vc(t) and observe x1, . . . , xn.
7: Update posterior distribution qt as given in Lemma 1.
8: end while

output argmaxi qt(i) as the estimated root node of G0.

Considering this noiseless setting allows us to examine the problem in its most basic “search on a
tree” form. In subsequent sections we will reintroduce various sources of uncertainty and provide
strategies for handling them. Note that in this setting, having a uniform prior p0(i) = 1/n yields
a uniform posterior over G(t) at time t, hence we can compute the central nodes under a uniform
distribution (e.g. q(i) = 1/|G(t)|). The extension to non-uniform priors is straightforward but
omitted for readability. The resulting central node algorithm is shown in Algorithm 2.

Algorithm 2 Central Node Algorithm (noiseless)
input Observational tree skeleton G0.

1: t 0, G(0) G0.
2: while G(t) contains more than one node do

3: t t+ 1.
4: Find a central node vc(t) of G(t� 1) under the current posterior distribution (Algorithm 4).
5: Intervene on vc(t) and observe direction of root node ut 2 {vc(t)} [NG(t�1)(vc(t)).
6: Set G(t) Bvc(t):ut

G(t�1) .
7: end while

output Node remaining in G(t) as the root node r0 of G0.

By the definition of a central node, we can show that Algorithm 2 converges exponentially. The
question remains as to how close this rate is to that of the optimal algorithm. We prove the following
theorem in Appendix E.
Theorem 1. Let G0 be an undirected tree for the causal discovery problem. Consider a sequence of

interventions determined by Algorithm 2. Define the running time (total number of interventions) of

this Algorithm to be TCN interventions. Let the running time of an optimal (in terms of number of

interventions) algorithm that finds r0 be Topt. Then

TCN  dlog2 |G0|e, and moreover, ETCN  2ETopt,

where the expectation is with respect to the prior distribution p0(i) = 1/n over i = 1, . . . , n.

Remark 1 (Finite sample extension). While Algorithm 2 is written assuming that the interventions

provide noiseless information (infinite sample case), it is simple to extend to the finite sample case.

Specifically, if it is desired to find the correct root node with probability 1 � � for some �, by the

union bound over all n nodes it is sufficient to repeat the intervention on vc(t) enough times such

that the probability that the returned ut is correct exceeds 1� �
n . It can be shown that the number

of repeated interventions required to achieve this threshold is O(log(n/�)). The simplicity of this

finite-sample extension stands in contrast to CI testing based methods.

This algorithm also enjoys the practical advantage of doing batches of interventions on a single node

before moving onto the next one. This will limit the number of distinct nodes for which interventions

need to be run, and opens the door to running multiple interventions in parallel.

3.2 Designing K adaptive interventions per cycle

Consider the case where it is ideal for the experimenter to perform K interventions in sequence
before returning to the active learning algorithm for another set of K interventions to run. In this
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setting, we extend the concept of a central node to a set of K-central nodes that divide the graph into
pieces with mass no more than 1

K+1 each:

Definition 2 (K-central nodes). A set of up to K nodes vkc of a tree G with respect to a distribution

q over the nodes is a set of nodes for which max{jk2N(vk
c )}K

k=1
q

✓
\
K
k=1B

vk
c :Xjk

G

◆


1
K+1 .

Similar to the central node, this set of nodes is guaranteed to exist and can be constructed in a
similar fashion. Using this concept, we propose Algorithm 3, where at each step we intervene on the
K-central nodes and update as in Algorithm 2.

Algorithm 3 K-Central Node Algorithm (noiseless)
input Observational tree skeleton G0.

1: t 0, G(0) G0.
2: while G(t) contains more than one node do

3: t t+ 1.
4: Find a set of K-central nodes {vkc (t)} of G(t� 1) under the uniform distribution.
5: Intervene on each of the vkc (t) in sequence and for each observe the direction of root node

uk
t 2 vkc (t) [NG(t�1)(v

k
c (t)).

6: Set G(t) \Kk=1B
vk
c (t):u

k
t

G(t�1) .
7: end while

output Node remaining in G(t) as the root node r0 of G0.

By the definition of K-central nodes, as before we immediately have that under the uniform prior
Algorithm 3 converges exponentially. We also have the following theorem, proven in Appendix F.
Theorem 2. Let G0 be the tree skeleton for the causal discovery problem. Consider a sequence of

interventions determined by Algorithm 3. Define the running time (total number of interventions)

of this Algorithm as TCN interventions. Let the running time of an optimal algorithm (that also

performs K interventions at each time) that finds r0 be Topt. Then

TCN  dlogK+1 |G0|e and moreover, ETCN 
18

7
ETopt.

where the expectation is with respect to a uniform prior distribution p0(i) = 1/n over i = 1, . . . , n.

3.3 Central node algorithm under node intervention restrictions

In many real-world applications, some subset P of the nodes in G0 cannot be intervened on (e.g.
due to experimental limitations or cost). In Algorithm 5 (Appendix G), we extend the central node
algorithm to this setting, modifying it to choose the best unrestricted node whenever the central node
is restricted. We have the following theorem, proved in Appendix G.
Theorem 3. Let G0 be an undirected tree for the causal discovery problem. Let P ⇢ G0 be a subset

of nodes that are restricted from intervention. Assume that the probability that the root node is in

G0 \ P (where \ denotes set difference) is uniformly distributed. Define the running time (total

number of interventions) of Algorithm 5 to be TCN interventions. Let the running time of an optimal

(in terms of number of interventions) algorithm that finds r0 be Topt. Then

ETCN  3ETopt,

where the expectation is with respect to a uniform prior distribution p0(i) = 1/n over i = 1, . . . , n.

3.4 Central node algorithm for noisy observations

We now analyze the case in which an intervention on Xi no longer gives noiseless information. This
is a setting that arises in many applications. For simplicity, we restrict our discussion to the case in
which the Xi are binary variables, although our techniques may be applied to more general settings
as well. Note that if an edge from one node to another is too weak, then no learning can occur. Hence
we require the following condition on the noise:
Condition 1 (Bounded edge strength). We say that the edge strength of a tree G is lower bounded by

✏ > 0 if the following holds: for any nodes i, j adjacent in the graph such that i causes j, we have

|P(Xj = 1 | do(Xi = 1))� P(Xj = 1)| > ✏.

7



Under the bounded edge strength condition, we have the following proposition indicating that
repeating an intervention do(Xi = 1) a constant number of times is sufficient to good estimators of
whether each branch around Xi contains the root:
Proposition 2. Under Condition 1, let �0 > 0 be a desired soundness. Suppose Xi has neighbors

u1, . . . , ud 2 NG(Xi). Then with d2 log(1/�0)/✏2e = O(log(1/�0)/✏2) samples from do(Xi = 1),
we may output estimators âXi:u1 , . . . , âXi:ud 2 {0, 1} such that for each j 2 [d],

P(âXi:uj = 1 | R 2 B
Xi:uj

G ) � 1� �0, P(âXi:uj = 0 | R 62 B
Xi:uj

G ) � 1� �0,

in other words the estimators âXi:uj successfully identify whether the root R is in branch B
Xi:uj

G or

not with the desired soundness.

Using this fact, we propose Algorithm 8 (in Appendix H) that slightly modifies the central node
algorithm. For each intervention, we collect d2 log(1/�0)/✏2e samples and update the posterior.
We then add the following step: if the posterior probability of a node is close to 1, we flag it for
inspection and temporarily remove it from consideration. Intuitively, this last step ensures that the
current central node will never have too large a weight, so that for each intervention it is possible
to lower-bound the total probability mass that is not contained in the branch containing the root,
implying that each intervention always prunes away enough of the remaining probability mass. We
then have the following theorem, proved in Appendix H.
Theorem 4. Under Condition 1, Algorithm 8 takes O(log(n/�)/✏2) steps in expectation, and returns

the true root node with probability at least 1� �.

Note that if we were to directly apply the existing noisy graph search algorithms of Emamjomeh-
Zadeh et al. (2016) to our model, then when applying Proposition 2 we would have to take our
soundness parameter to be �0  1/�, where � is the maximum degree of the tree, and therefore our
run-time guarantee would scale as log(�) log(n/�)/✏2. Instead, our runtime does not depend on the
degree of the tree. Furthermore, the rate is directly comparable to that found for the noiseless case
(Theorem 1), up to the incorporation of the ✏ and � parameters that control the uncertainty.

4 Empirical results

We consider several experimental settings and for each setting we simulate 200 random trees of n
nodes. Here we present a subset of the results, more are described in Appendix I. We generate an
undirected tree with three different strategies: a) sampling uniformly from the space of undirected
trees, b) generating power-law trees, and c) generating high degree d = n/2 random graphs and then
creating an undirected version of the BFS tree. In this section we show only results for strategy a),
but similar conclusions apply to the other strategies, given in Appendix I. Once we have a tree, we
pick the root node uniformly at random. In this section we focus on binary random variables, where
each variable is a function of its parent: if XPai = 0, then Xi ⇠ Bern (✏), else Xi ⇠ Bern (1� ✏),
where for each variable we sample ✏ uniformly from [�, 0.5 � �]. The root node is distributed as
Xr ⇠ Bern (0.5). We show similar results with discrete variables in Appendix I.

Figure 3 shows the average number of interventions required to find the root node for three finite
sample algorithms, all using our posterior update (Appendix B): a baseline algorithm that intervenes
on a node randomly selected using the probability of being root in the current prior, the information
greedy algorithm, implemented following the sampling strategy presented in Appendix C.2 with
N = 50, and our central node algorithm presented in Algorithm 1. In the n = 1000 case, the
information greedy algorithm was too computationally intensive and therefore omitted. Figure 4
shows the performance of the K-central node algorithm for varying K. Figure 5 shows the behavior
of the finite sample extension of Algorithm 2 for n = 50 and different values of �, when we vary
the number of interventional samples collected for each intervention from 1 (Algorithm 1) to 50.
As expected, the behavior of the central node algorithm improves smoothly with the number of
interventional samples, quickly converging to the performance of the noiseless Algorithm 2.

5 Conclusion

In this paper we proposed an active learning framework designed to reduce the number of interventions
required to identify the directed tree specifying the causal model for a given set of variables. We
presented algorithms for active learning when the observational data admits a tree model and proved
that they can identify the causal graph with a number of interventions within a constant factor of the
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Figure 3: Average number of interventions for finite sample algorithms for varying ranges of ✏,
n = 30 (left) and n = 1000 (right).
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Figure 4: Average number of interventions for
the K-central node algorithm for K = 1, 2, 3, 5
for n = 50 and varying ranges of ✏.
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Figure 5: Finite sample extension of central
node, varying number of interventional samples,
n = 50, the curves represent different ✏ ranges.

(unknown) optimal procedure. As future work, we plan to extend our active learning approach and
algorithms to more complex graph structures, such as chordal graphs. We also plan to extend our
approach to the case where it is desirable to optimize the accuracy of regressions and/or predictions
computed according to the model, instead of simply the correctness of the learned structure.
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