
A Random Samples373

Real Data Residual Flow

PixelCNN Flow++

Figure 6: Random samples from CIFAR-10 models. PixelCNN (Oord et al., 2016) and Flow++
samples reprinted from Ho et al. (2019), with permission.

11

Real Data Residual Flow

Figure 7: Random samples from MNIST.

Real Data Residual Flow

Figure 8: Random samples from ImageNet 32×32.

12

Real Data Residual Flow

Figure 9: Random samples from ImageNet 64×64.

Real Data Residual Flow

Figure 10: Random samples from 5bit CelebA 64×64.

B Proofs374

We start by formulating a Lemma, which gives the condition when the randomized truncated series is375

an unbiased estimator in a fairly general setting. Afterwards, we study our specific estimator and376

prove that the assumption of the Lemma is satisfied.377

Note, that similar conditions have been stated in previous works, e.g. in McLeish (2011) and Rhee378

and Glynn (2012). However, we use the condition from (Bouchard-Côté, 2018), which only requires379

p(N) to have sufficient support.380

To make the derivations self-contained, we reformulate the conditions from (Bouchard-Côté, 2018)381

in the following way:382

Lemma 3 (Unbiased randomized truncated series). Let Yk be a real random variable with383

limk→∞ E[Yk] = a for some a ∈ R. Further, let ∆0 = Y0 and ∆k = Yk − Yk−1 for k ≥ 1.384

13

Assume385

E

[∞∑
k=0

|∆k|

]
<∞

and let N be a random variable with support over the positive integers and n ∼ p(N). Then for386

Z =

n∑
k=0

∆k

P(N ≥ k)
,

it holds387

a = lim
k→∞

E[Yk] = En∼p(N)[Z] = a.

Proof. First, denote388

ZM =

M∑
k=0

1[N ≥ k]∆k

P(N ≥ k)
and BM =

M∑
k=0

1[N ≥ k]|∆k|
P(N ≥ k)

,

where |ZM | ≤ BM by the triangle inequality. Since BM is non-decreasing, the monotone con-389

vergence theorem allows swapping the expectation and limit as E[B] = E[limM→∞BM] =390

limM→∞ E[BM]. Furthermore, it is391

E[B] = lim
M→∞

E[BM] = lim
M→∞

M∑
k=0

E
[
1[N ≥ k]|∆k|
P(N ≥ k)

]

= lim
M→∞

M∑
k=0

P(N ≥ k)E|∆k|
P(N ≥ k)

= E

[
lim
M→∞

M∑
k=0

|∆k]

]
<∞,

where the assumption is used in the last step. Using the above, the dominated convergence theorem392

can be used to swap the limit and expectation for ZM . Using similar derivations as above, it is393

E[Z] = lim
M→∞

E[ZM] = lim
M→∞

E

[
M∑
k=0

∆k

]
= lim
M→∞

E [Yk] = a,

where we used the definition of YM and limk→∞ E[Yk] = a.394

Proof. (Theorem 1)395

To simplify notation, we denote J := Jg(x). Furthermore, let396

YN = Ev

[
N∑
k=1

(−1)k+1

k
vTJkv

]
denote the real random variable and let ∆0 = Y0 and ∆k = Yk −Yk−1 for k ≥ 1, as in Lemma 3. To397

prove the claim of the theorem, we can use Lemma 3 and we only need to prove that the assumption398

Ev[
∑∞
k=1 |∆k|] <∞ holds for this specific case.399

In order to exchange summation and expectation via Fubini’s theorem, we need to proof that400 ∑∞
k=1 |∆k| <∞ for all v ∼ N (0, I). Using the assumption Lip(g) < 1, it is401

∞∑
k=1

|∆k| =
∞∑
k=1

∣∣∣∣ (−1)k+1

k
vTJkv

∣∣∣∣ =

∞∑
k=1

‖vTJkv‖2
k

≤
∞∑
k=1

‖vT ‖2‖Jk‖2‖v‖2
k

≤ 2‖v‖2
∞∑
k=1

‖J‖k2
k
≤ 2‖v‖2

∞∑
k=1

Lip(g)k2
k

= 2‖v‖2 log
(
1− Lip(g)

)
<∞,

for an arbitrary v. Hence,402

Ev

[∞∑
k=1

|∆k|

]
=

∞∑
k=1

Ev[|∆k|]. (13)

14

Since tr(A) = Ev[vTAv] for v ∼ N (0, I) via the Skilling-Hutchinson trace estimator (Hutchinson,403

1990; Skilling, 1989), it is404

Ev[|∆k|] =

∣∣∣∣ tr(Jk)

k

∣∣∣∣ .
To show that (13) is bounded, we derive the bound405

1

k
| tr(Jk)| ≤ 1

k

∣∣∣∣∣
d∑
i=d

λi(J
k)

∣∣∣∣∣ ≤ 1

k

d∑
i=d

|λi(Jk)| ≤ d

k
ρ(Jk) ≤ d

k
‖Jk‖2 ≤

d

k
Lip(g)k,

where λ(Jk) denote the eigenvalues and ρ(Jk) the spectral radius. Inserting this bound into (13) and406

using Lip(g) < 1 yields407

Ev[|∆k|] ≤ d
∞∑
k=1

Lip(g)k

k
= −d log

(
1− Lip(g)

)
<∞.

Hence, the assumption of Lemma 3 is verified.408

Proof. (Theorem 2)409

The result can be proven in an analogous fashion to the proof of Theorem 1, which is why we only410

present a short version without all steps.411

By obtaining the bound412

∞∑
k=0

∣∣∣∣(−1)kvT
(
J(x, θ)k

∂(Jg(x, θ))

∂θ

)
v

∣∣∣∣ ≤ 2‖v‖2
∥∥∥∥∂(Jg(x, θ))

∂θ

∥∥∥∥ ∞∑
k=0

Lip(g)k

= 2‖v‖2
∥∥∥∥∂(Jg(x, θ))

∂θ

∥∥∥∥ 1

1− Lip(g)
<∞,

Fubini’s theorem can be applied to swap the expection and summation. Furthermore, by using the413

trace estimation and similar bounds as in the proof of Theorem 1, the assumption E [
∑∞
k=0 |∆k|] <∞414

from Lemma 3 can be proven.415

416

C Memory-Efficient Gradient Estimation of Log-Determinant417

Derivation of gradient estimator via differentiating power series:418

∂

∂θi
log det

(
I + Jg(x, θ)

)
=

∂

∂θi

(∞∑
k=1

(−1)k+1 tr(Jg(x, θ)
k)

k

)

= tr

(∞∑
k=1

(−1)k+1

k

∂(Jg(x, θ)
k)

∂θi

)

15

Depth
1.5

2.0

2.5

Le
ar

ne
d

O
rd

er

Figure 11: Learned norm orders on CIFAR-10. Each residual block is visualized as a single line.
The input and two hidden states for each block use different normed spaces. We observe multiple
trends: (i) the norms for the first hidden states are consistently higher than the input, and lower for
the second. (ii) The orders for the hidden states drift farther away from 2 as depth increases. (iii) The
ending order of one block and the starting order of the next are generally consistent and close to 2.

Derivation of memory-efficient gradient estimator:419

∂

∂θi
log det

(
I + Jg(x, θ)

)
=

1

det(I + Jg(x, θ))

[
∂

∂θi
det
(
I + Jg(x, θ)

)]
(14)

=
1

det(I + Jg(x, θ))

[
det(I + Jg(x, θ)) tr

(
(I + J(x, θ))−1

∂(I + Jg(x, θ))

∂θi

)]
(15)

= tr

(
(I + J(x, θ))−1

∂(I + Jg(x, θ))

∂θi

)
= tr

(
(I + J(x, θ))−1

∂(Jg(x, θ))

∂θi

)
= tr

([∞∑
k=0

(−1)kJ(x, θ)k

]
∂(Jg(x, θ))

∂θi

)
(16)

Note, that (14) follows from the chain rule of differentiation, for the derivative of the determinant in420

(15), see (Petersen and Pedersen, 2012) (eq. 46). Furthermore, (16) follows from the properties of a421

Neumann-Series which converges due to ‖Jg(x, θ)‖ < 1.422

Hence, if we are able to compute the trace exactly, both approaches will return the same values for423

a given truncation n. However, when estimating the trace via the Hutchinson trace estimator the424

estimation is not equal in general:425

vT

(∞∑
k=1

(−1)k+1

k

∂(Jg(x, θ)
k)

∂θi

)
v 6= vT

([∞∑
k=0

(−1)kJkg (x, θ)

]
∂(Jg(x, θ))

∂θi

)
v.

Another difference between both approaches is their memory consumption of the corresponding426

computational graph. The summation
∑∞
k=0(−1)kJkg (x, θ) is not being tracked for the gradient,427

which allows to compute the gradient with constant memory (constant with respect to the truncation428

n).429

D Generalized Spectral Norm430

Data p = 2 (5.13 bits) p =∞ (5.09 bits)

Figure 12: Learned densities on Checkerboard 2D.

16

Using different induced p-norms on Checkerboard 2D. We experimented with the checkerboard431

2D dataset, which is a rather difficult two-dimensional data to fit a flow-based model on due to the432

discontinuous nature of the true distribution. We used brute-force computation of the log-determinant433

for change of variables (which, in the 2D case, is faster than the unbiased estimator). In the 2D case,434

we found that∞-norm always outperforms or at least matches the p = 2 norm (ie. spectral norm).435

Figure 12 shows the learned densities with 200 residual blocks. The color represents the magnitude of436

pθ(x), with brighter values indicating larger values. The∞-norm model produces density estimates437

that are more evenly spread out across the space, whereas the spectral norm model focused its density438

to model between-density regions.439

0 20 40 60 80 100
Epoch

0

30

60

90

Im
pr

ov
em

en
t (

bi
ts

)
p = 2
Learned mixed norms
Learned p-norms

Figure 13: Improvement from using generalized spectral norm on CIFAR-10.

Learning norm orders on CIFAR-10. We used 1 + tanh(s)/2 where s is a learned weight. This440

bounds the norm orders to (1.5, 2.5). We tried two different setups. One where all norm orders are441

free to change (conditioned on them satisfying the constraints (11)), and another setting where each442

states within each residual block share the same order. Figure 13 shows the improvement in bits from443

using learned norms. The gain in performance is marginal, and the final models only outperformed444

spectral norm by around 0.003 bits/dim. Interestingly, we found that the learned norms stayed around445

p = 2, shown in Figure 11, especially for the input and output spaces of g, ie. between blocks. This446

may suggest that spectral norm, or a norm with p = 2 is already optimal in this setting.447

E Experiment Setup448

We use the standard setup of passing the data through a “unsquashing” layer (we used the logit449

transform (Dinh et al., 2017)), followed by alternating multiple blocks and squeeze layers (Dinh et al.,450

2017). We use activation normalization (Kingma and Dhariwal, 2018) before and after every residual451

block. Each residual connection consists of452

LipSwish→ 3×3 Conv→ LipSwish→ 1×1 Conv→ LipSwish→ 3×3 Conv453

with hidden dimensions of 512. Below are the architectures for each dataset.454

MNIST. With α =1e-5.455

Image→ LogitTransform(α)→ 16×ResBlock→
[

Squeeze→ 16×ResBlock
]
×2456

CIFAR-10. With α = 0.05.457

Image→ LogitTransform(α)→ 16×ResBlock→
[

Squeeze→ 16×ResBlock
]
×2458

ImageNet 32×32. With α = 0.05.459

Image→ LogitTransform(α)→ 32×ResBlock→
[

Squeeze→ 32×ResBlock
]
×2460

ImageNet 64×64. With α = 0.05.461

Image→ Squeeze→ LogitTransform(α)→ 32×ResBlock→
[

Squeeze→ 32×ResBlock
]
×2462

17

CelebA 64×64. With α = 0.05.463

Image→ Squeeze→ LogitTransform(α)→ 16×ResBlock→
[

Squeeze→ 16×ResBlock
]
×3464

For hybrid modeling on CIFAR-10, we replaced the logit transform with normalization by the465

standard preprocessing of subtracting the mean and dividing by the standard deviation across the466

training data. The MNIST and SVHN architectures for hybrid modeling were the same as those for467

density modeling.468

For augmenting our flow-based model with a classifier in the hybrid modeling experiments, we added469

an additional branch after every squeeze layer and at the end of the network. Each branch consisted470

of471

3×3 Conv→ ActNorm→ ReLU→ AdaptiveAveragePooling((1, 1))472

where the adaptive average pooling averages across all spatial dimensions and resulted in a vector of473

dimension 256. The outputs at every scale were concatenated together and fed into a linear softmax474

classifier.475

Adaptive number of power iterations. To account for variable weight updates during training,476

we used an adaptive version of spectral normalization for convolutional layers (Gouk et al., 2018)477

where we performed as many iterations as needed until the relative change in the estimated spectral478

norm was sufficiently small. As this also reduced the number of iterations when no weight changes479

occur, it resulted in speed comparable to always performing 5 iterations of power method.480

Optimization. For stochastic gradient descent, we used Adam (Kingma and Ba, 2014) with a481

learning rate of 0.001 with otherwise default hyperparameters. We used Polyak averaging (Polyak482

and Juditsky, 1992) for evaluation with a momentum of 0.999.483

Preprocessing. For density estimation experiments, we used random horizontal flipping for CIFAR-484

10 and CelebA.485

For hybrid modeling and classification experiments, we used random cropping after reflection padding486

with 4 pixels for SVHN and CIFAR-10. CIFAR-10 also included random horizontal flipping.487

18

