
Submodular Function Minimization
with Noisy Evaluation Oracle

Shinji Ito∗
NEC Corporation, The University of Tokyo

i-shinji@nec.com

Abstract

This paper considers submodular function minimization with noisy evaluation ora-
cles that return the function value of a submodular objective with zero-mean addi-
tive noise. For this problem, we provide an algorithm that returns an O(n3/2/

√
T )-

additive approximate solution in expectation, where n and T stand for the size of
the problem and the number of oracle calls, respectively. There is no room for
reducing this error bound by a factor smaller than O(1/

√
n). Indeed, we show that

any algorithm will suffer additive errors of Ω(n/
√
T ) in the worst case. Further,

we consider an extended problem setting with multiple-point feedback in which
we can get the feedback of k function values with each oracle call. Under the
additional assumption that each noisy oracle is submodular and that 2 ≤ k = O(1),
we provide an algorithm with an O(n/

√
T )-additive error bound as well as a

worst-case analysis including a lower bound of Ω(n/
√
T ), which together imply

that the algorithm achieves an optimal error bound up to a constant.

1 Introduction

Submodular function minimization (SFM) is an important problem that appears in a wide range of
research areas, including image segmentation [31; 33], learning with structured regularization [6],
and pricing optimization [26]. The goal in this problem is to find a minimizer of a submodular
function, a function f : 2[n] → R defined on the subsets of a given finite set [n] := {1, 2, . . . , n} and
satisfying the following inequality:

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ). (1)

This condition is equivalent to the diminishing marginal returns property (see, e.g., [17]): for every
X ⊆ Y ⊆ [n] and i ∈ [n] \ Y , f(X ∪ {i})− f(X) ≥ f(Y ∪ {i})− f(Y ).

Existing studies on SFM assume access to an evaluation oracle for f that returns the value f(X)
for any X in the feasible region. Under this assumption, a number of efficient algorithms have been
discovered, in which the number of oracle calls as well as other computational time is bounded by a
polynomial in n. The first polynomial-time algorithm was given by Grötschel, Lovász, and Schri-
jver [19] and was based on the ellipsoid method. Combinatorial strongly polynomial-time algorithms
have been independently proposed by Iwata, Fleischer, and Fujishige [28] and by Schrijver [38]. The
current best computational time is of O(n3 log2 n · EO + n4 logO(1) n) by Lee et al. [34], where
EO denotes the time taken by the evaluation oracle to answer a single query. For approximate
optimization, Chakrabarty et al. [11] have proposed an algorithm that finds an ε-additive approximate
solution in Õ(n5/3 · EO/ε2) time. The time complexity has been improved to Õ(n · EO/ε2) by
Axelrod et al. [4].
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Table 1: Additive error bounds for submodular minimization with noisy evaluation oracle.

Assume f̂t: submodular Do not assume f̂t: submodular
single-point feedback [23]1: O

(
n

T 1/3

)
(if T = Ω(n3))

[This paper]: O
(
n3/2
√
T

)
and Ω′

(
n√
T

)
(Ω′(·) := Ω(min{1, ·})

k-point feedback [This paper]: [This paper]:
(2 ≤ k ≤ n) O

(
n√
kT

)
and Ω′

(
n√
2kT

+
√
n√
T

)
O
(
n3/2
√
kT

)
and Ω′

(
n√
kT

)
(n+ 1)-point feedback [23]: [This paper]:

O
(√

n√
T

)
and Ω′

(√
n√
T

)
O
(

n√
T

)
and Ω′

(√
n√
T

)

In some applications, however, evaluation oracles are not always available, and only noisy function
values are observable. For example, in the pricing optimization problem, let us consider selling n
types of products, where the value of the objective function f(X) corresponds to the expected gross
profit, and the variable X ⊆ [n] corresponds to the set of discounted products. In this scenario,
Ito and Fujimaki [26] have shown that −f(X) is a submodular function under certain assumptions,
which means that the problem of maximizing the gross profit f(X) is an example of SFM. In a
realistic situation, however, we are not given an explicit form of f , and the only thing we can do is to
observe the sales of products while changing prices. The observed gross profit does not coincide with
its expectation f(X), but changes randomly due to the inherent randomness of purchasing behavior
or some temporary events. This means that exact values of f(X) are unavailable, and, consequently,
existing works do not directly apply to this situation.

To deal with such problems, we introduce SFM with noisy evaluation oracles that return a random
value with expectation f(X). In other words, the noisy evaluation oracle f̂ returns f̂(X) = f(X)+ξ,
where ξ is a zero-mean noise that may or may not depend on X . We assume access to T independent
noisy evaluation oracles f̂1, f̂2, . . . , f̂T with bounded ranges. We start with the single-point feedback
setting and then study the more general multiple-point feedback (or k-point feedback) setting: In the
former setting, for each t ∈ [T ], we choose one query Xt to feed f̂t, and get feedback of f̂t(Xt). In
the latter setting, we are given a positive integer k, and for each t, choose k queries to feed f̂t and
observe k real values of feedback. Such a situation with multiple-point feedback can be assumed
in some applications. For example, in the case of pricing optimization for E-commerce, we can get
multiple-point feedback by employing the A/B-testing framework, i.e., by showing different prices to
randomly divided groups of customers. Note that each f̂t is not necessarily submodular even if its
expectation is submodular.

Our contribution is two-fold, positive results (algorithms, Theorem 1) and negative results (worst-case
analyses, Theorem 2): We propose algorithms that return O(1/

√
T )-additive approximate solutions,

and we show that arbitrary algorithms suffer additive errors of Ω(1/
√
T ) in the worst case. The

results are summarized in Table 1 with positive results in O(·) notation and negative ones in Ω′(·)
notation.

As shown in Table 1, for the single-point feedback setting, we propose an algorithm that finds an
O(n3/2/

√
T )-additive approximate solution. Moreover, there is no room for reducing this additive

error bound by a smaller factor than O(1/
√
n). Indeed, our Theorem 2 implies that arbitrary

algorithms, including those requiring exponential time and space, suffer at least Ω(n/
√
T ) additive

errors. For the k-point feedback setting, both the lower and the upper bounds are decreased by
1/
√
k factors, without additional assumptions. Under the assumption that each f̂t is submodular

(Assumption 1), however, the situation changes: Our proposed algorithm achieves O(n/
√
kT )-

additive error, which is O(1/
√
n)-times smaller than without Assumption 1. We also show the lower

bound of Ω(n/
√

2kT +
√
n/
√
kT ), which implies that, if k = O(1) or k = Ω(n), then our algorithm

is optimal up to constant factors, i.e., no algorithms achieve additive errors of a smaller order.

1 This work applies to more general problem settings than ours, bandit submodular minimization and online
submodular minimization. See Section 2 for details.
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To construct the algorithms, we combine a convex relaxation technique based on the Lovász extension
and stochastic gradient descent (SGD) method. The Lovász extension for a submodular function is a
convex function of which minimizers lead to solutions for SFM. Thanks to this, we can reduce SFM to
a convex optimization problem. In this study, we seek a minimizer of the Lovàsz extension by means
of SGD, in which we need to construct unbiased estimators of subgradients. The performance of the
SGD depends strongly on the variance of subgradient estimators. We present ways for constructing
subgradient estimators, and it turns out that Assumption 1 enables us to obtain estimators with smaller
variances. The combination of Lovász extension and SGD has been already introduced in the work
on bandit submodular minimization by Hazan and Kale [23]. Our work, however, considers different
problem settings, including multiple-point feedback, and presents tighter and more detailed analyses.
Details in the difference are given in Section 2.

A key technique for our lower bounds comes from the proof of regret lower bounds for bandit
problems by Auer et al. [3]. Their proof consists of two steps: they first construct a probabilistic
distribution of inputs for which it is hard to detect a good arm offering a large reward, and then
show that any algorithm actually chooses the good arm only infrequently. We follow a line similar
to these two steps to prove Theorem 2, in which a number of technical issues arise. In the case of
multiple-point feedback, in particular, we need to assess the KL divergence carefully for the observed
signals from evaluation oracles.

2 Related Work

Bandit submodular minimization (BSM) by Hazan and Kale [23] is strongly related to our model.
BSM is described as follows: in each iteration t ∈ [T ], a decision maker chooses Xt ⊆ [n] and
observe ft(Xt), where each ft : 2[n] → [−1, 1] is a submodular function. In contrast to our model,
no stochastic models for ft are assumed, and the performance of the decision maker is measured
by the regret defined as RegretT :=

∑T
t=1 ft(Xt) −minX⊆[n]

∑T
t=1 ft(X). This BSM problem

can be regarded as a generalization of our problem with single-point feedback under Assumption 1.
Indeed, given a BSM algorithm achieving RegretT ≤ b(n, T ) for some function b, one can construct
an SFM algorithm that returns b(n, T )/T -additive approximate solutions (see, e.g., [25]). Since a
BSM algorithm with an O(nT 2/3) regret bound has been proposed in [23], an O(n/T 1/3)-additive
approximate algorithm immediately follows, as in Table 1. In BSM, however, it has been left as an
open problem whether or not one can achieve O(nO(1)

√
T ) regret bounds.

With respect to SFM with an exact evaluation oracle, there is a large body of literature [6; 10; 27; 37;
42; 13], in addition to the works mentioned in Section 1. The Fujishige-Wolfe algorithm [17], based
on Wolfe’s minimum norm point algorithm [42] and the connection between minimum norm points
and the SFM shown in [16], is known to have the best empirical performance in many cases [5; 18].
Chakrabarty et al. [10] have shown that the Fujishige-Wolfe algorithm finds an ε-additive approximate
solution with a running time of O(n2(EO + n)/ε2). The same runtime bound can be achieved by a
gradient descent approach presented by Bach [6].

For submodular function maximization with noisy evaluation oracles, there have been many studies.
Hassani et al. [21] provided a nearly 1/2-approximate algorithm for monotone submodular maximiza-
tion. Singla et al. [41] considered a similar problem with applications to crowdsourcing. Karimi et al.
[32] considered maximizing weighted coverage functions, a special case of submodular functions,
under matroid constraints, and presented an efficient nearly (1− 1/e)-approximate algorithm. Has-
sidim and Singer [22] provided a nearly (1− 1/e)-approximate algorithm for monotone submodular
maximization with cardinality constraints. Mokhtari et al. [36] showed that a stochastic continuous
greedy method works well for monotone submodular function maximization subject to a convex
body constraint. For minimization problems with similar assumptions, in contrast to maximization
problems, only a little literature can be found. Blais et al. [8] considered approximate submodular
minimization with an approximate oracle model, and presented a polynomial-time algorithm with a
high-probability error bound. While their model is more general than ours, their algorithm requires
more the computational cost and oracle calls than ours, to achieve a similar error bound. Halabi
and Jegelka [20] dealt with minimization of weakly DR-submodular functions, which is a class of
approximately submodular functions, and provided algorithms with reasonable approximation ratios.

Zero-order or derivative-free convex optimization [2; 29; 39], optimization problems with evaluation
oracle for convex objectives without access to gradients, is also related to our model because Lovász
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extensions are convex. For general convex objectives, Agarwal et al. [2], Belloni et al. [7] and Bubeck
et al. [9] have proposed algorithms that return Õ(1/

√
T )-additive approximate solutions, ignoring

factors of polynomials in log T and nO(1), where n stands for the dimension of the feasible region.
Though the error bounds in these results include factors larger thanO(n3), it has been reported [5; 24]
that dependence w.r.t. n can be improved under such additional assumptions as the smoothness and
the strong convexity of the objectives. These improved results, however, do not apply to our problems
because Lovász extensions are neither smooth nor strongly convex. Multiple-point feedback has been
considered in zero-order convex optimization, and some algorithms have been reported to achieve
optimal performance in such problem settings [1; 15; 40]. In terms of the lower bound on the additive
error, Jamieson et al. [29] and Shamir [39] have shown lower bounds of Ω(1/

√
T ) or Ω(1/T ) for

various classes of convex objectives, which, however, do not directly apply to our model.

3 Problem Setting

Let n be a positive integer, and let [n] = {1, 2, . . . , n} stand for the finite set consisting of positive
integers at most n. Let L ⊆ 2[n] be a distributive lattice, i.e., we assume that X,Y ∈ L implies
X ∩ Y,X ∪ Y ∈ L. Let f : L → [−1, 1] be a submodular function that we aim to minimize. In
our problem setting, we are not given access to exact values of f , but given noisy evaluation oracles
{f̂t}Tt=1 of f , where f̂t are random functions from L to [−1, 1] that satisfy E[f̂t(X)] = f(X) for all
t = 1, 2, . . . , T and X ∈ L. We also assume that f̂1, f̂2, . . . , f̂T are independent.

Our goal is to construct algorithms for solving the following problem: First, the algorithm is given
the decision set L and the number T of available oracle calls. For t = 1, 2, . . . , T , the algorithm
chooses Xt ∈ L and observes f̂t(Xt). The chosen query Xt can depend on previous observations
{f̂j(Xj)}t−1

j=1. After T rounds of observation, the algorithm outputs X̂ ∈ L. We call this problem a
single-point feedback setting. In an alternative problem setting, a multi-point or k-point feedback
setting, we are given a parameter k ≥ 2 in addition to T and L. In the k-point feedback setting,
the algorithm can choose k queries X(1)

t , X
(2)
t , . . . , X

(k)
t ∈ L, and, after that, it observes the

values f̂t(X
(1)
t ), f̂t(X

(2)
t ), . . . , f̂t(X

(k)
t ) from the evaluation oracle in each round t ∈ T . In both

settings, the performance of the algorithm is evaluated in terms of the additive error ET defined as
ET = f(X̂)−minX∈L f(X).

A part of our results relies on the following assumption. Note that the following is assumed only
when it is explicitly mentioned.

Assumption 1. Assume that each f̂t : L→ [−1, 1] is submodular and that k ≥ 2.

4 Our Contribution

Our contribution is two-fold: positive results (Theorem 1) and negative results (Theorem 2).

Theorem 1. Suppose 1 ≤ k ≤ n+ 1. For the problem with k-point feedback, there is an algorithm
that returns X̂ such that

E[ET ] = E[f(X̂)]−minX∈L f(X) = O(n3/2/
√
kT ). (2)

If Assumption 1 holds, there is an algorithm that returns X̂ such that

E[ET ] = E[f(X̂)]−minX∈L f(X) = O(n/
√
kT ). (3)

The expectation is taken w.r.t. the randomness of oracles f̂t and the algorithm’s internal randomness.
In both algorithms, the running time is bounded by O((kEO + n log n)T ) if L = 2[n], where EO
stands for the time taken by an evaluation oracle to answer a single query.

If we can choose the number T of oracle calls arbitrarily, we are then able to compute ε-additive
approximate solution (in expectation) for arbitrary ε > 0, by means of the algorithm with the error
bound (2). The computational time for it is of O(n

3

ε2 (EO + n
k log n)). Indeed, to find an ε-additive

approximate solution, it suffices to set T so that ε = Θ( n
3/2
√
kT

), which is equivalent to T = Θ( n
3

kε2 ).
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The computational time is then bounded asO((kEO+n log n)T ) = O(n
3

ε2 (EO+n
k log n)). Similarly,

if Assumption 1 holds and the algorithm achieving (3) is used, an ε-additive approximate solution
can be found in O(n

2

ε2 (EO + n
k log n)) time.

The following theorem gives an insight regarding how tight the above error bounds in Theorem 1 are.
Theorem 2. There is a probability distribution of instances for which any algorithm suffers errors of

E[ET ] = E[f(X̂)−minX∈L f(X)] = Ω′(n/
√
kT ), (4)

where we denote Ω′(·) := Ω(min{1, ·}). In addition, there is a probability distribution of instances
satisfying Assumption 1 for which any algorithm suffers errors of

E[ET ] = E[f(X̂)−minX∈L f(X)] = Ω′(n/
√

2kT +
√
n/T ). (5)

The expectation is taken w.r.t. the randomness of the instance f and oracles f̂t, and the algorithm’s
internal randomness.

From (4) in this theorem, we can see that at least Ω(n
2

ε2 EO) computational time is required to find an
ε-additive approximate solution. This can be shown by an argument similar to that after Theorem 1.
For the problem with exact evaluation oracles, on the other hand, Chakrabarty et al. [11] have
proposed an algorithm running in Õ(n

5/3

ε2 EO)-time. By comparing these two results, we can see that
SFM with noisy oracle is essentially harder than SFM with exact oracle.

5 Algorithm

5.1 Preliminary

Lovász extension of submodular function For a [0, 1]-valued vector x = (x1, . . . , xn)> ∈ [0, 1]d

and a real value u ∈ [0, 1], define Hx(u) ⊆ [n] to be the set of indices i for which xi ≥ u, i.e.,
Hx(u) = {i ∈ [n] | xi ≥ u}. For a distributive lattice L, define a convex hull L̃ ⊆ [0, 1]n of L as
follows: L̃ = {x ⊆ [0, 1]n | Hx(u) ∈ L for all u ∈ [0, 1]}. Given a function f : L→ R, we define
the Lovász extension f̃ : L̃→ R of f as

f̃(x) =
∫ 1

0
f(Hx(u))du. (6)

From the definition, we have f̃(χX) = f(X) for all X ∈ L, i.e., f̃ is an extension of f .2 The
following theorem provides a connection between submodular functions and convex functions:

Theorem 3 ([35]). A function f : L→ R is submodular if and only if f̃ is convex. For a submodular
function f : L→ R, we have minX∈L f(X) = minx∈L̃ f̃(x)

For a proof of this theorem, see, e.g., [17; 35].

For x ∈ [0, 1]n, let σ : [n]→ [n] be a permutation over [n] such that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n).
For any permutation σ over [n], define Sσ(i) = {σ(j) | j ≤ i}. The Lovász extension defined by (6)
can then be rewritten as

f̃(x) = f([0]) +

n∑
i=1

(f(Sσ(i))− f(Sσ(i− 1)))xσ(i) (7)

= f([0])(1− xσ(1)) +

n−1∑
i=1

f(Sσ(i))(xσ(i) − xσ(i+1)) + f([n])xσ(n). (8)

Similar expression can be found, e.g., Lemma 6.19 in the book [17].

Subgradient of Lovász extension From the above two expressions (7) and (8) of the Lovász
extension, we obtain two alternative ways to express its subgradient. For a permutation σ over [n]
and i ∈ {0, 1, . . . , n}, define ψσ(i) ∈ {−1, 0, 1}n as

ψσ(0) = −χσ(1), ψσ(n) = χσ(n), ψσ(i) = χσ(i) − χσ(i+1) (i = 1, 2, . . . , n− 1). (9)

2 χX ∈ {0, 1}n denotes the indicator vector ofX , i.e., (χX)i = 1 for i ∈ X and (χX)i = 0 for i ∈ [n]\X .
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A subgradient of f̃ at x can then be expressed by g(σx) defined as

g(σ) :=

n∑
i=1

(f(Sσ(i))− f(Sσ(i− 1)))χσ(i) (10)

= −f([0])χσ(1) +

n−1∑
i=1

f(Sσ(i))(χσ(i) − χσ(i+1)) + f([n])χσ(n) =

n∑
i=0

f(Sσ(i))ψσ(i), (11)

where (10) and (11) come from (7) and (8), respectively.

5.2 Stochastic Gradient Descent Method

Our algorithm is based on the stochastic gradient descent method for f̃ : L̃→ [0, 1]. To start with,
we initialize x1 = 1

2 · 1 ∈ L̃. For t = 1, 2, . . . , T , we update xt by iteratively calling the oracle f̂t to
obtain xt+1. In each update, we construct an unbiased estimator ĝt of a subgradient of f̃ at xt (a
more concrete construction will be given later), and xt+1 is given by

xt+1 = PL̃(xt − ηĝt), (12)

where PL̃ : Rn → L̃ stands for a Euclidean projection to L̃, i.e., PL̃(x) ∈ arg min
y∈L̃

‖y − x‖2,

and η > 0 is a parameter that we can change arbitrarily. We then compute x̄ = 1
T

∑T
t=1 xt

and draw u from a uniform distribution over [0, 1], and output X̂ = Hx̄(u). From (6), we have
E[f(X̂)] = E[f̃(x̄)]. To analyze the performance of our algorithm, we use the following theorem:
Theorem 4. Let D ∈ Rn be a compact convex set containing 0. For a convex function f̃ : D → R,
let x1, . . . , xT be defined by x1 = 0 and xt+1 = PD(xt − ηĝt), where E[ĝt|xt] is a subgradient of f̃
at xt for each t. Then, x̄ := 1

T

∑T
t=1 xt satisfies

E[f̃(x̄)]− min
x∗∈D

f̃(x∗) ≤ 1

T

(
maxx∈D ‖x‖22

2η
+
η

2

T∑
t=1

E[‖ĝt‖22]

)
. (13)

For completeness, we give a proof of this theorem in Appendix A. A similar analysis can be
found in, e.g., Lemma 11 of [23]. When setting D = L̃ − 1

2 · 1, we have maxx∈D ‖x‖22 ≤
n
4 . From this, Theorems 3 and 4, if ĝt is bounded as E[‖ĝt‖22] ≤ G2 for all t, we then have

E[f(X̂)]−minX∗∈L f(X∗) ≤ 1
T

(
n
8η + η

2G
2T
)

. The performance of the algorithm here depends
on G, an upper bound on the expected norm of unbiased estimator ĝt. We evaluate the magnitude of
G for specific examples of ĝt, in the following subsection.

5.3 Unbiased Estimators of Subgradients

In this subsection, we present two different ways to construct unbiased estimators for a subgradient
of f̃ that are based on (11) and (10), respectively. The latter is available for the case of multiple-point
feedback, i.e., k ≥ 2, and produces a smaller error bound under Assumption 1. Without such an
assumption, the former gives a better error bound. Given xt = (xt1, xt2, . . . , xtn)> ∈ [0, 1]n, let
σ : [n]→ [n] be a permutation over [n] for which xtσ(1) ≥ xtσ(2) ≥ · · · ≥ xtσ(n).

An estimator based on the expression (11) Suppose k ∈ [n + 1]. Consider choosing queries
{X(j)

t }kj=1 randomly as follows: Choose a subset It = {i(j)t }kj=1 ⊆ {0, 1, . . . , n} of size k, uniformly
at random, i.e., It follows a uniform distribution over the subset family {I ⊆ {0, 1, . . . , n} | |I| = k}.
Then let X(j)

t = Sσ(i
(j)
t ) = {σ(j) | j ≤ i(j)t } and observe f̂t(X

(j)
t ) for j ∈ [k]. Define ĝt as

ĝt = n+1
k

∑k
j=1 f̂t(X

(j)
t )ψσ(i

(j)
t ) = n+1

k

∑
i∈It f̂t(Sσ(i))ψσ(i), (14)

where ψσ(i) is defined in (9). Note that ĝt relies on xt since σ depends on xt. Then, ĝt is an unbiased
estimator of a subgradient and satisfies E[‖ĝt‖22] = O(n2/k):
Lemma 1. Suppose that ĝt is given by (14). We then have

E[ĝt|xt] ∈ ∂f̃(xt), E[‖ĝt‖22] ≤ 2(n+ 1)(n+ k)/k. (15)

Proofs of all lemmas in this paper are given in Appendix B.
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Algorithm 1 An algorithm for submoudular function minimization with noisy evaluation oracle
Require: The size n ≥ 1 of the problem, the number T ≥ 1 of oracle calls, the number k ∈ [n+ 1]

of feedback values per oracle call, and the learning rate η > 0.
1: Set x1 = 1

2 · 1.
2: for t = 1, 2, . . . , T do
3: Let σ : [n]→ [n] be a permutation corresponding to xt, i.e., xtσ(1) ≥ · · · ≥ xtσ(n).
4: if Assumption 1 holds then
5: Choose a subset Jt ⊆ [n] of size l = bk/2c, uniformly at random.
6: Call the evaluation oracle f̂t to observe f̂t(Sσ(i)) and f̂t(Sσ(i− 1)) for i ∈ Jt.
7: Construct an unbiased estimator ĝt of a subgradient of f̃ at xt, as (16).
8: else
9: Choose a subset It ⊆ {0, 1, . . . , n} of size k, uniformly at random.

10: Call the evaluation oracle f̂t to observe f̂t(Sσ(i)) for i ∈ It.
11: Construct an unbiased estimator ĝt of a subgradient of f̃ at xt, as (14).
12: end if
13: Compute xt+1 from xt and ĝt on the basis of (12).
14: end for
15: Set x̄ = 1

T

∑T
t=1 xt.

16: Draw u from a uniform distribution over [0, 1], and output X̂ = Hx̄(u) = {i ∈ [n] | x̄i ≥ u}.

An estimator based on the expression (10) Suppose 2 ≤ k ≤ n + 1 holds, and let l denote
l = bk/2c ≥ 1. Consider choosing queries {X(j)

t }kj=1 randomly as follows: Choose a subset Jt ⊆
{1, . . . , n} of size l, uniformly at random. Then, set queries {X(j)

t }kj=1 so that
⋃
i∈Jt{Sσ(i), Sσ(i−

1)} ⊆ {X(j)
t }kj=1, and observe f̂t(Sσ(i)) and f̂t(Sσ(i− 1)) for i ∈ Jt. Define ĝt as

ĝt = n
l

∑
i∈Jt(f̂t(Sσ(i))− f̂t(Sσ(i− 1))χσ(i). (16)

Then, ĝt is an unbiased estimator of a subgradient and satisfies E[‖ĝt‖22] = O(n2/k), and if f̂t is a
submodular function, then E[‖ĝt‖22] = O(n/k) holds.
Lemma 2. Suppose that ĝt is given by (16). We then have

E[ĝt|xt] ∈ ∂f̃(xt), E[‖ĝt‖22] ≤ 4n2/l ≤ 12n2/k. (17)

In addition, if f̂t is a submodular function, we then have

E[‖ĝt‖22] ≤ 16n/l ≤ 48n/k. (18)

A key factor in the advantage of the estimator defined by (16) is that the vector (ft(Sσ(i))−ft(Sσ(i−
1)))ni=1 ∈ Rn has a smaller norm than (ft(Sσ(i)))ni=0 ∈ Rn+1, which is implied by Lemma 8 in
[23] or Lemma 1 in [30].

5.4 Proof of Theorem 1

By combining SGD described in Section 5.2 and unbiased estimators defined by (14) or (16), we
obtain Algorithm 1. Let us evaluate the additive errors for this algorithm. Note that we have
E[f̃(x̄)]−minx∗∈L̃ f̃(x∗) = E[f(X̂)]−minX∗∈L f(X∗) from (6) and Theorem 3.

Suppose X̂ is produced by Algorithm 1 in which Steps 9–11 are chosen. From Theorem 4 and
Lemma 1, we have E[f(X̂)]−minX∗∈L f(X∗) ≤ 1

T

(
n
8η + ηT (n+1)(n+k)

k

)
. The right-hand side is

minimized when η is chosen as η =
√

kn
8T (n+1)(n+k) . We then have E[f(X̂)]−minX∗∈L f(X∗) ≤√

n(n+1)(n+k)
2kT = O(n

3/2

kT ), which proves (2).

Suppose that Assumption 1 holds and that X̂ is produced by Algorithm 1, where Steps 5–7 are
chosen. From Theorem 4 and Lemma 1, we have E[f(X̂)]−minX∗∈L f(X∗) ≤ 1

T

(
n
8η + 24ηTn

k

)
.
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The right-hand side is minimized when η is chosen as η =
√

k
192T . We then have E[f(X̂)] −

minX∗∈L f(X∗) ≤
√

12n√
kT

= O( n√
kT

), which proves (3).

The computational time of Algorithm 1 can be evaluated as follows: Step 3 can be conducted
by a sorting algorithm, which takes O(n log n) time. Step 5 can be done by generating uniform
random numbers over [m] for m = n, n − 1, . . . , n − k + 1, which takes O(k log n) times. Step
6 requires O(kEO) time computation. Step 7 can be computed with O(n) arithmetic operations.
Steps 9–11 are similar to Steps 5–7. Step 13 takes O(n) time since xt − ηĝt can be computed
with O(n) arithmetic operations and since PL̃(x) has an explicit form. Hence, Steps 2–14 require
O((n log n+ k log n+ kEO + n+ n) · T ) = O((kEO + n log n)T ) time. The other steps do not
require time greater than this. Therefore, the overall time complexity is of O((kEO + n log n)T ).

6 Lower Bound

6.1 Construction of Hard Instance

Define hi : 2[n] → {−1, 1} as hi(X) :=

{
−1 (i ∈ X)
1 (i /∈ X)

. for i ∈ [n]. Fix a subset S∗ ⊆ [n] and

a positive real value ε ∈ [0, 1]. Consider the following procedure that produces a function f̂ : 2[n] →
{−1, 1}: (1) Choose i ∈ [n] uniformly at random, and set s = 1 with probability 1−ε

2 , s = −1 with
probability 1+ε

2 . (2) Define f̂ : 2[n] → {−1, 1} by f̂(X) = s ·hi(S∗4X) = s ·hi(S∗)hi(X), where
S∗4X stands for the symmetric difference between S∗ and X , i.e., S∗4X = (S∗ \X) ∪ (X \ S∗).
Let F (S∗, ε) denote the distribution of functions generated by the above procedure. A similar
construction can be found in [14], which is for a lower bound of bandit linear optimization.

In addition, define F ′(S∗, ε) similarly, so that all function values of f ∼ F ′(S∗, ε) are stochastically
independent: Choose iX ∈ [n] and sX with the probability defined as the above, independently for all
X ⊆ [n], and define f̂(X) = sX · hiX (S∗)hi(X). Let F ′(S∗, ε) denote the distribution of functions
generated by this procedure. Note that each f̂ generated from F (S∗, ε) is a modular function and that
this does not always hold for F ′(S∗, ε). If DS∗ = F (S∗, ε) or if DS∗ = F ′(S∗, ε), the expectation
of f̂ ∼ DS∗ is a submodular function expressed as

fS∗,ε(X) := E
f̂∼DS∗

[f̂(X)] = − ε
n

∑n
i=1 hi(S

∗)hi(X) = ε
n (2|S∗4X| − n), (19)

where the second equality comes from E[s] = E[sX ] = 1−ε
2 −

1+ε
2 = −ε.

6.2 Proof of Theorem 2

To prove Theorem 2, we start with bounding the additive error from below by means of KL
divergences. Fix X(1), X(2), . . . , X(k) ⊆ [n] arbitrarily. For a class {DS∗ | S∗ ⊆ [n]}
of distributions over {f̂ : 2[n] → {−1, 1}}, let PS∗ denote the distribution of y(f̂) =

(f̂(X(1)), f̂(X(2)) . . . , f̂(X(k)))> ∈ Rk for f̂ ∼ DS∗ . We then have the following:
Lemma 3. Suppose that a class of distributions {DS∗ | S∗ ⊆ [d]} satisfies (19) for all S∗ ⊆ [d]. In
addition, suppose that the following holds for arbitrary S∗, X(1), X(2), . . . , X(k) ⊆ [n]:∑n

i=1DKL(PS∗ ||PS∗4{i}) ≤ n
2T . (20)

If S∗ is chosen uniformly at random from 2[n], and f̂t follows DS∗ i.i.d. for t = 1, 2, . . . , T , then any
algorithm suffers an additive error of E[ET ] = E

[
fS∗,ε(X̂)−minS∈2[n] fS∗,ε(S)

]
≥ ε

2 , where the

expectation is taken w.r.t. S∗, f̂t, and the internal randomness of algorithms.

Intuitively, the condition (20) means that the distribution of the observed values y does not change
much even if the optimal solution S∗ is perturbed. Consequently, under the condition (20), it is hard
for any algorithm to detect S∗. Sufficient conditions for (20) are given in the following two lemmas:
Lemma 4. Suppose that {PS∗} is defined by DS∗ = F ′(S∗, ε) for 0 ≤ ε ≤ min{ 1

6 ,
n√
8kT
}. Then

(20) holds for arbitrary S∗, X(1), . . . , X(k) ⊆ [n].

8



Lemma 5. Suppose that {PS∗} is defined by DS∗ = F (S∗, ε) for 0 ≤ ε ≤
min{ 1

6 , n
√

5
24T min{2k,2n}}. Then (20) holds for arbitrary S∗, X(1), . . . , X(k) ⊆ [n].

Theorem 2 can be proven by combining Lemmas 3, 4, and 5. From Lemmas 3 and 4, if S∗ is chosen
uniformly at random from 2[n] and if f̂t follows F ′(S∗, ε) with ε = min{ 1

6 ,
n√
8kT
}, i.i.d. for t ∈ [T ],

we then have E[ET ] ≥ ε
2 = min{ 1

12 ,
n√

32kT
} = Ω′( n√

kT
), which proves (4). If k ≥ 2 and if S∗ is

chosen uniformly at random from 2[n], and f̂t followsF (S∗, ε) with ε = min{ 1
6 , n
√

5
24T min{2k,2n}},

i.i.d. for t ∈ [T ], then Assumption 1 is satisfied since f̂t ∼ F (S∗, ε) is a submodular. Further, from
Lemmas 3 and 5, we have E[ET ] ≥ ε

2 = min{ 1
12 , n

√
5

96T min{2k,2n}} = Ω′(max{ n√
T2k

,
√

n
T }) =

Ω′( n√
T2k

+
√

n
T ), which proves (5).

7 Conclusion and Open Questions

We have introduced submodular function minimization with noisy evaluation oracle, and have
provided algorithms and lower bounds, which together implies that the proposed algorithms achieve
nearly optimal additive errors, modulo O(

√
n) factors. For the special cases of k-point feedback

settings, in which 2 ≤ k = O(1) and each noisy evaluation oracle itself is a submodular function, we
have provided a tight error bound. For the other cases, we leave it as an open question to find tight
bounds.
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A Proof of Theorem 4

Since f̃ is convex, from Jensen’s inequality, we have

f̃(x̄) = f̃

(
1

T

T∑
t=1

xt

)
≤ 1

T

T∑
t=1

f̃(xt). (21)

Denote gt = E[ĝt|xt]. since gt is a subgradient of the convex function f̃ at xt, we have

f̃(xt)− f̃(x∗) ≤ g>t (xt − x∗), (22)

for all t ∈ [T ] and x∗ ∈ D. By combining (21) and (22), we obtain

E[f̃(x̄)]− f̃(x∗) ≤ 1

T
E

[
T∑
t=1

g>t (xt − x∗)

]
≤ 1

T
E

[
T∑
t=1

ĝ>t (xt − x∗)

]
. (23)

Since we have ‖xt−ηĝt−x∗‖22 = ‖xt−x∗‖22−2ηĝ>t (xt−x∗)+η2‖ĝt‖22, the value of ĝ>t (xt−x∗)
can be bounded as follows:

ĝ>t (xt − x∗) =
1

2η
(‖xt − x∗‖22 − ‖xt − ηĝt − x∗‖22) +

η

2
‖ĝt‖22. (24)

From the Pythagorean theorem (see, e.g., Theorem 2.1 in [25]), since x∗ ∈ D, we have ‖xt − ηĝt −
x∗‖2 ≥ ‖PD(xt − ηĝt)− x∗‖2 = ‖xt+1 − x∗‖2. From this and (24), we have

ĝ>t (xt − x∗) ≤
1

2η
(‖xt − x∗‖22 − ‖xt+1 − x∗‖22) +

η

2
‖ĝt‖22.

By taking summation of this for t = 1, 2, . . . , T , we obtain
T∑
t=1

ĝ>t (xt − x∗) ≤
1

2η

T∑
t=1

(‖xt − x∗‖22 − ‖xt+1 − x∗‖22) +
η

2

T∑
t=1

‖ĝt‖22

=
1

2η
(‖x1 − x∗‖22 − ‖xT+1 − x∗‖22) +

η

2

T∑
t=1

‖ĝt‖22

≤ 1

2η
max
x∈D
‖x‖22 +

η

2

T∑
t=1

‖ĝt‖22,

where the last inequality follows from x1 = 0, x∗ ∈ D and ‖xT+1 − x∗‖22 ≥ 0. From this and (23),
we have

E[f̃(x̄)]− f̃(x∗) ≤ 1

T

(
1

2η
max
x∈D
‖x‖22 +

η

2

T∑
t=1

E[‖ĝt‖22]

)
.

Since this holds for arbitrary x∗ ∈ D, we have (13).

B Proof of Lemmas

B.1 Proof of Lemma 1

Proof. From the definition (14) of ĝt, its expectation may be expressed as

E[ĝt|xt] =
n+ 1

k
E

[∑
i∈It

f̂t(Sσ(i))ψσ(i)

]
=
n+ 1

k

n∑
i=0

Prob[i ∈ It]E
[
f̂t(Sσ(i))

]
ψσ(i)

=
n+ 1

k

n∑
i=0

Prob[i ∈ It]ft(Sσ(i))ψσ(i), (25)

where the last equality comes from the assumption of E[f̂t(X)] = f(X). Since It is chosen
uniformly at random from all subsets of {0, 1, . . . , n} having size k, for each i ∈ {0, 1, . . . , n}, the
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probability that i ∈ It is
(
n
k−1

)
/
(
n+1
k

)
= k

n+1 . Substituting this into (25), we obtain E[ĝt|xt] =∑n
i=0 ft(Sσ(i))ψσ(i). This vector is equal to g(σ) given in (11), which is a subgradient of f̃ at xt.

We next evaluate the expectation of ‖ĝt‖22. From the definition (14) of ĝt, we have

E[‖ĝt‖22] =
(n+ 1)2

k2 E

∑
i∈It

∑
j∈It

f̂t(Sσ(i))f̂t(Sσ(j))ψσ(i)>ψσ(j)


=

(n+ 1)2

k2

n∑
i=0

n∑
j=0

Prob[i, j ∈ It]E
[
f̂t(Sσ(i))f̂t(Sσ(j))

]
ψσ(i)>ψσ(j)

≤ (n+ 1)2

k2

n∑
i=0

n∑
j=0

|Prob[i, j ∈ It]ψσ(i)>ψσ(j)|, (26)

where the last inequality follows from the assumption that f̂t(X) ∈ [−1, 1]. From the definition of
It, we have

Prob[i, j ∈ It] =

{ (
n
k−1

)
/
(
n+1
k

)
= k

n+1 (i = j)(
n−1
k−2

)
/
(
n+1
k

)
= k(k−1)

n(n+1) (i 6= j)
. (27)

Further, from the definition (9) of ψσ(i), we have

ψσ(i)>ψσ(j) =

{
2 (i = j)
−1 (|i− j| = 1)
0 (|i− j| ≥ 2)

. (28)

Combining (26), (27) and (28), we have

E[‖ĝt‖22] ≤ (n+ 1)2

k2

(
n∑
i=0

Prob[i ∈ It] · 2 +

n−1∑
i=0

Prob[i, i+ 1 ∈ It] +

n∑
i=1

Prob[i, i− 1 ∈ It]

)

=
(n+ 1)2

k2

(
n∑
i=0

2k

n+ 1
+

n−1∑
i=0

k(k − 1)

n(n+ 1)
+

n∑
i=1

k(k − 1)

n(n+ 1)

)

=
(n+ 1)2

k2

(
2k +

2k(k − 1)

n+ 1

)
=

2(n+ 1)(n+ k)

k
,

which proves (15).

B.2 Proof of Lemma 2

Proof. From the definition (16) of ĝt, its expectation may be expressed as

E[ĝt|xt] =
n

l
E

[∑
i∈Jt

(f̂t(Sσ(i))− f̂t(Sσ(i− 1))χσ(i)

]

=
n

l

n∑
i=1

Prob[i ∈ Jt]E
[
f̂t(Sσ(i))− f̂t(Sσ(i− 1)

]
χσ(i)

=

n∑
i=1

(ft(Sσ(i))− ft(Sσ(i− 1))χσ(i),

where the last equality follows from the fact that Prob[i ∈ Jt] =
(
n−1
l−1

)
/
(
n
l

)
= l

n holds for all i ∈ [n]

and the assumption of E[f̂t(X)] = f(X). This vector is equal to the g(σ) given in (10), which is a
subgradient of f̃ at xt. We next evaluate the expectation of ‖ĝt‖22. From the definition (16) of ĝt, we
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have

E[‖ĝt‖22] =
n2

l2
E

∑
i∈Jt

∑
j∈Jt

(f̂t(Sσ(i))− f̂t(Sσ(i− 1)))(f̂t(Sσ(j))− f̂t(Sσ(j − 1)))χ>σ(i)χσ(j)


=
n2

l2

n∑
i=1

Prob[i ∈ Jt]E
[
(f̂t(Sσ(i))− f̂t(Sσ(i− 1)))2

]
=
n

l

n∑
i=1

E
[
(f̂t(Sσ(i))− f̂t(Sσ(i− 1)))2

]
≤ 4n2

l
, (29)

where the second equality comes from that χ>i χj =

{
1 (i = j)
0 (i 6= j)

, the third equality comes from that

Prob[i ∈ Jt] = l
n , and the inequality follows from the assumption that f̂t(X) ∈ [−1, 1]. From this

and the fact that l = bk/2c ≥ k/3, (17) follows. If f̂t is a submodular function, from Lemma 8 in
[23], or Lemma 1 in [30], we have

∑n
i=1(f̂t(Sσ(i))− f̂t(Sσ(i− 1)))2 ≤ 16. From this and (29), we

obtain (18).

B.3 Proof of Lemma 3

Proof. Since any randomized algorithms can be regarded as a convex combination of deter-
ministic algorithms, it suffices to consider only deterministic algorithms. Fix a determinis-
tic algorithm and let {(X(1)

t , . . . , X
(k)
t )}Tt=1 denote the queries generated by it. Denote yt =

(f̂t(X
(1)
t ), . . . , f̂t(X

(k)
t ))> ∈ {−1, 1}k, the input to the algorithm. From (19), we have

fS∗,ε(X̂) = − ε
n

n∑
i=1

hi(S
∗4X̂). (30)

To evaluate the above value, we fix i ∈ [n], and focus on E
S∗

[
E

ft∼DS∗
[hi(S

∗4X̂)]

]
. Since S∗4{i}

follows a uniform distribution over 2[n], the same distribution as of S∗, we have

E
S∗

[
E

ft∼DS∗
[hi(S

∗4X̂)]

]
= E
S∗

[
E

ft∼DS∗4{i}

[hi((S
∗4{i})4X̂)]

]
= − E

S∗

[
E

ft∼DS∗4{i}

[hi(S
∗4X̂)]

]

where the second equality comes from the definition of hi. Hence, we have

E
S∗

[
E

ft∼DS∗
[hi(S

∗4X̂)]

]
=

1

2
E
S∗

[
E

ft∼DS∗
[hi(S

∗4X̂)]− E
ft∼DS∗4{i}

[hi(S
∗4X̂)]

]

=
1

2
E
S∗

[
hi(S

∗)

(
E

ft∼DS∗
[hi(X̂)]− E

ft∼DS∗4{i}

[hi(X̂)]

)]
, (31)

where the second equality comes from hi(S4S′) = hi(S)hi(S
′). Since X̂ is determined by

Y T = (y1, . . . , yT ) ∈ {−1, 1}k×T , there is a function φi : {−1, 1}k×T → {−1, 1} such that
hi(X̂) = φi(Y

T ). Let Q and Q′i denote the probability distributions of Y T for ft ∼ F (S∗, ε) and
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ft ∼ D(S∗4{i}, ε), respectively. We then have∣∣∣∣∣ E
ft∼DS∗

[hi(X̂)]− E
ft∼DS∗4{i}

[hi(X̂)]

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈{−1,1}T
Q(y)φi(y)−

∑
y∈{−1,1}T

Q′i(y)φi(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈{−1,1}T
(Q(y)−Q′i(y))φi(y)

∣∣∣∣∣∣
≤

∑
y∈{−1,1}T

|Q(y)−Q′i(y)| = ‖Q−Q′i‖1 (32)

where ‖Q−Q′i‖1 stands for the total variation distance between Q and Q′i. From Pinsker’s inequality
(see, e.g., Theorem 12.6.1 in [12]), the total variation distance can be bounded by means of the KL
divergence as

‖Q−Q′i‖1 ≤
√

2DKL(Q||Q′i). (33)

Combining equations (30) – (33) and |hi(S∗)| = 1, we have

− E
S∗,ft∼DS∗

[fS∗,ε(X̂)] ≤ ε

2n
E
S∗

[
n∑
i=1

√
2DKL(Q||Q′i)

]
≤ ε

2
E
S∗

√√√√ 2

n

n∑
i=1

DKL(Q||Q′i)

 , (34)

where the second inequality follows from the Jensen’s inequality and the concavity of
√
x. Denote

Y t = (y1, . . . , yt). From the chain rule of KL divergence (see, e.g., Theorem 2.5.3 in [12]), we have
n∑
i=1

DKL(Q||Q′i) =

T∑
t=1

E
Y t−1∼Q

[
n∑
i=1

DKL
yt∼Q|Y t−1 , y′t∼Q′i|Y t−1

(yt||y′t)

]
. (35)

When Y t−1 is fixed, X(1)
t , . . . , X

(k)
t are also fixed since we have fixed a deterministic algorithm.

Hence, from the assumption of (20), we have
n∑
i=1

DKL
yt∼Q|Y t−1 , y′t∼Q′i|Y t−1

(yt||y′t) ≤
n

2T
.

By combining this, (34), and (35), we have

− E
S∗,ft∼DS∗

[fS∗,ε(X̂)] ≤ ε

2
.

We also here have

min
S∈2[n]

fS∗,ε(S) = fS∗,ε(S
∗) = −ε.

From the above two inequalities, the expected additive error is bounded as

E

[
fS∗,ε(X̂)− min

S∈2[n]
fS∗,ε(S)

]
≥ −ε

2
+ ε =

ε

2
,

which accomplishes the proof.

B.4 Proof of Lemma 4

Proof. Suppose that X(1), . . . , X(k) are distinct. Then, since f̂(X(j)) with f̂ ∼ F ′(S∗, ε) are
stochastically independent for j = 1, . . . , k, we have

DKL(PS∗ ||PS∗4{i}) =

k∑
j=1

DKL
f̂∼F ′(S∗,ε),f̂ ′∼F ′(S∗4{i},ε)

(f̂(X(j))||f̂ ′(X(j))). (36)
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From the definition of F ′(S∗, ε), f̂(X(j)) follows Bernoulli distributions of parameters θ :=
1
2 + ε

2n (2|S∗4Xt| − n) and θ′ := 1
2 + ε

2n (2|(S∗4{i})4Xt| − n) for f̂ ∼ F (S∗, ε) and
f̂ ∼ F (S∗4{i}, ε), respectively. Since θ, θ′ ∈ [ 1

3 ,
2
3 ] and |θ − θ′| = ε

n ≤
1
6 , we have

DKL
f̂∼F ′(S∗,ε),f̂ ′∼F ′(S∗4{i},ε)

(f̂(X(j))||f̂ ′(X(j))) = −θ log
θ′

θ
− (1− θ) log

1− θ′

1− θ

≤ −θ

(
θ′ − θ
θ
− 4

5

(
θ′ − θ
θ

)2
)
− (1− θ)

(
θ − θ′

1− θ
− 4

5

(
θ − θ′

1− θ

)2
)

=
4

5
(θ′ − θ)2

(
1

θ
+

1

1− θ

)
≤ 4ε2

n2
≤ 1

2kT
, (37)

where the first inequality follows from − log(1 + x) ≤ −x + 4
5x

2 for |x| ≤ 1
2 and the last in-

equality follows from the assumption of ε ≤ n√
8kT

. By combining (36) and (37), we obtain
DKL(PS∗ ||PS∗4{i}) ≤ 1

2T for all i ∈ [n], which implies that (20) holds. For the case that
X(1), . . . , X(k) are not distinct, i.e., when {X(1), . . . , X(k)} consists of k′ < k elements, we
can show DKL(PS∗ ||PS∗4{i}) ≤ k′

2kT in the same way, from which (20) follows.

B.5 Proof of Lemma 5

Proof. From the definition of F (S∗, ε), f̂ ∼ F (S∗, ε) can be expressed as f̂(X) = V · hI(S∗4X),
where I and V follows distributions over [n] and {−1, 1}, respectively. Hence, if S∗ and
X(1), . . . , X(k) are fixed, y(f̂) := (f̂(X(1)), . . . , f̂(X(k))) ∈ {−1, 1}k changes depending only on
I and V . Therefore, there exists a function λ : [n]× {−1, 1} → {−1, 1}k such that y(f̂) = λ(I, V ).
Denote Z = range(λ) = {λ(i, s) ∈ {−1, 1}k | i ∈ [n], s ∈ {−1, 1}}. Then we have

|Z| ≤ min{|{−1, 1}k|, |[n]× {−1, 1}|} = min{2k, 2n}. (38)

From the definition of F ′(S∗, ε), for any fixed z ∈ Z and i ∈ [n], we have

∣∣∣∣∣ Prob
f̂∼F (S∗,ε)

[y(f̂) = z]− Prob
f̂∼F (S∗4{i},ε)

[y(f̂) = z]

∣∣∣∣∣ =

{
ε
n (z ∈ {λ(i,−1), λ(i, 1)})
0 (z /∈ {λ(i,−1), λ(i, 1)}) . (39)

From this and the definition of the KL divergence, we have

DKL(PS∗ ||PS∗4{i}) = −
∑
z∈Z

Prob
f̂∼F (S∗,ε)

[y(f̂) = z] log

Prob
f̂∼F (S∗4{i},ε)

[y(f̂) = z]

Prob
f̂∼F (S∗,ε)

[y(f̂) = z]

≤ 4

5

∑
z∈Z

(
Prob

f̂∼F (S∗,ε)
[yt = y]− Prob

f̂∼F (S∗4{i},ε)
[y(f̂) = z]

)2

Prob
f̂∼F (S∗,ε)

[y(f̂) = z]

=
4ε2

5n2

 1

Prob
f̂∼F (S∗,ε)

[y(f̂) = λ(i,−1)]
+

1

Prob
f̂∼F (S∗,ε)

[y(f̂) = λ(i, 1)]

 ,
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where the inequality follows from a calculation used in (37), and the last equality follows from (39).
By taking a sum of the above for i ∈ [n], we obtain the following:

n∑
i=1

DKL(PS∗ ||PS∗4{i}) ≤
4ε2

5n2

n∑
i=1

 1

Prob
f̂∼F (S∗,ε)

[y(f̂) = λ(i,−1)]
+

1

Prob
f̂∼F (S∗,ε)

[y(f̂) = λ(i, 1)]


=

4ε2

5n2

∑
z∈Z

 |{i ∈ [n] | λ(i, 1) = z}|
Prob

f̂∼F (S∗,ε)
[y(f̂) = z]

+
|{i ∈ [n] | λ(i,−1) = z}|

Prob
f̂∼F (S∗,ε)

[y(f̂) = z]


=

4ε2

5n2

∑
z∈Z

|{(i, s) ∈ [n]× {−1, 1} | λ(i, s) = z}|
Prob

f̂∼F (S∗,ε)
[y(f̂) = z]

.

Since I follows a uniform distribution over [n] and V follows a Bernoulli distribution with the
parameter 1−ε

2 , we have Prob[I = i, V = s] ≥ 1−ε
2n ≥

1
3n for all i ∈ [n] and s ∈ {−1, 1}. Hence,

we have

Prob
f̂∼F (S∗,ε)

[y(f̂) = z] = Prob
f̂∼F (S∗,ε)

[λ(I, V ) = z] ≥ |{(i, s) ∈ [n]× {−1, 1} | λ(i, s) = z}|
3n

.

Combining the above two equations, (38), and the assumption of ε ≤ n
√

5
24T min{2k,2n} , we obtain

n∑
i=1

DKL
yt∼P |Y t−1 , y′t∼P ′i |Y t−1

(yt||y′t) ≤
4ε2

5n2

∑
y∈Z

3n =
12ε2|Z|

5n
≤ n

2T
.
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