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Abstract

We study the effect of the stochastic gradient noise on the training of generative ad-
versarial networks (GANs) and show that it can prevent the convergence of standard
game optimization methods, while the batch version converges. We address this
issue with a novel stochastic variance-reduced extragradient (SVRE) optimization
algorithm, which for a large class of games improves upon the previous conver-
gence rates proposed in the literature. We observe empirically that SVRE performs
similarly to a batch method on MNIST while being computationally cheaper, and
that SVRE yields more stable GAN training on standard datasets.

1 Introduction

Many empirical risk minimization algorithms rely on gradient-based optimization methods. These
iterative methods handle large-scale training datasets by computing gradient estimates on a subset of
it, a mini-batch, instead of using all the samples at each step, the full batch, resulting in a method
called stochastic gradient descent (SGD, Robbins and Monro (1951); Bottou (2010)).

SGD methods are known to efficiently minimize single objective loss functions, such as cross-entropy
for classification or squared loss for regression. Some algorithms go beyond such training objective
and define multiple agents with different or competing objectives. The associated optimization
paradigm requires a multi-objective joint minimization. An example of such a class of algorithms are
the generative adversarial networks (GANs, Goodfellow et al., 2014), which aim at finding a Nash
equilibrium of a two-player minimax game, where the players are deep neural networks (DNNs).

As of their success on supervised tasks, SGD based algorithms have been adopted for GAN training
as well. Recently, Gidel et al. (2019a) proposed to use an optimization technique coming from the
variational inequality literature called extragradient (Korpelevich, 1976) with provable convergence
guarantees to optimize games (see § 2). However, convergence failures, poor performance (sometimes
referred to as “mode collapse”), or hyperparameter susceptibility are more commonly reported
compared to classical supervised DNN optimization.

We question naive adoption of such methods for game optimization so as to address the reported
training instabilities. We argue that as of the two player setting, noise impedes drastically more the
training compared to single objective one. More precisely, we point out that the noise due to the
stochasticity may break the convergence of the extragradient method, by considering a simplistic
stochastic bilinear game for which it provably does not converge.
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Method Complexity µ-adaptivity

SVRG ln( 1
ε )×(n+ L̄2

µ2 ) no
Acc. SVRG ln( 1

ε )×(n+
√
n L̄µ ) no

SVRE §3.2 ln( 1
ε )×(n+

¯̀

µ ) if ¯̀= O(L̄)

Table 1: Comparison of variance reduced methods
for games for a µ-strongly monotone operator with
Li-Lipschitz stochastic operators. Our result makes
the assumption that the operators are `i-cocoercive.
Note that `i ∈ [Li, L

2
i /µ], more details and a tighter

rate are provided in §3.2. The SVRG variants are pro-
posed by Palaniappan and Bach (2016). µ-adaptivity
indicates if the hyper-parameters that guarantee con-
vergence (step size & epoch length) depend on the
strong monotonicity parameter µ: if not, the algo-
rithm is adaptive to local strong monotonicity. Note
that in some cases the constant ` may depend on µ
but SVRE is adaptive to strong convexity when ¯̀

remains close to L̄ (see for instance Proposition 2).

Algorithm 1 Pseudocode for SVRE.
1: Input: Stopping time T , learning rates ηθ, ηϕ, ini-

tial weights θ0, ϕ0. t = 0
2: while t ≤ T do
3: ϕS = ϕt and µSϕ = 1

n

∑n
i=1∇ϕLDi (θS ,ϕS)

4: θS = θt and µSθ = 1
n

∑n
i=1∇θLGi (θS ,ϕS)

5: N ∼ Geom
(
1/n

)
(Sample epoch length)

6: for i = 0 to N−1 do {Beginning of the epoch}
7: Sample iθ, iϕ ∼ πθ, πϕ, do extrapolation:
8: ϕ̃t = ϕt − ηϕdDiϕ(θt,ϕt,θ

S ,ϕS) . (5)
9: θ̃t = θt − ηθdGiθ (θt,ϕt,θ

S ,ϕS) . (5)
10: Sample iθ, iϕ ∼ πθ, πϕ and do update:
11: ϕt+1 = ϕt − ηϕdDiϕ(θ̃t, ϕ̃t,θ

S ,ϕS) . (5)
12: θt+1 = θt − ηθdGiθ (θ̃t, ϕ̃t,θ

S ,ϕS) . (5)
13: t← t+ 1
14: Output: θT , ϕT

The theoretical aspect we present in this paper is further supported empirically, since using larger
mini-batch sizes for GAN training has been shown to considerably improve the quality of the samples
produced by the resulting generative model: Brock et al. (2019) report a relative improvement of
46% of the Inception Score metric (see § 4) on ImageNet if the batch size is increased 8–fold. This
notable improvement raises the question if noise reduction optimization methods can be extended to
game settings. In turn, this would allow for a principled training method with the practical benefit of
omitting to empirically establish this multiplicative factor for the batch size.

In this paper, we investigate the interplay between noise and multi-objective problems in the context
of GAN training. Our contributions can be summarized as follows: (i) we show in a motivating
example how the noise can make stochastic extragradient fail (see § 2.2). (ii) we propose a new
method “stochastic variance reduced extragradient” (SVRE) that combines variance reduction and
extrapolation (see Alg. 1 and § 3.2) and show experimentally that it effectively reduces the noise.
(iii) we prove the convergence of SVRE under local strong convexity assumptions, improving over
the known rates of competitive methods for a large class of games (see § 3.2 for our convergence
result and Table 1 for comparison with standard methods). (iv) we test SVRE empirically to train
GANs on several standard datasets, and observe that it can improve SOTA deep models in the late
stage of their optimization (see § 4).

2 GANs as a Game and Noise in Games

2.1 Game theory formulation of GANs

The models in a GAN are a generator G, that maps an embedding space to the signal space, and
should eventually map a fixed noise distribution to the training data distribution, and a discriminator
D whose purpose is to allow the training of the generator by classifying genuine samples against
generated ones. At each iteration of the algorithm, the discriminator D is updated to improve its “real
vs. generated” classification performance, and the generator G to degrade it.

From a game theory point of view, GAN training is a differentiable two-player game where the
generator Gθ and the discriminator Dϕ aim at minimizing their own cost function LG and LD, resp.:

θ∗ ∈ arg min
θ∈Θ

LG(θ,ϕ∗) and ϕ∗ ∈ arg min
ϕ∈Φ

LD(θ∗,ϕ) . (2P-G)

When LD = −LG =: L this game is called a zero-sum game and (2P-G) is a minimax problem:

min
θ∈Θ

max
ϕ∈Φ

L(θ,ϕ) (SP)
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Figure 1: Illustration of the discrepancy between
games and minimization on simple examples:

min: min
θ,φ∈R

θ2 + φ2 , game: min
θ∈R

max
φ∈R

θ · φ .

Left: Minimization. Up to a neighborhood,
the noisy gradient always points to a direction
that make the iterate closer to the minimum (?).
Right: Game. The noisy gradient may point to
a direction (red arrow) that push the iterate away
from the Nash Equilibrium (?).

The gradient method does not converge for some convex-concave examples (Mescheder et al., 2017;
Gidel et al., 2019a). To address this, Korpelevich (1976) proposed to use the extragradient method3

which performs a lookahead step in order to get signal from an extrapolated point:

Extrapolation:

{
θ̃t = θt − η∇θLG(θt,ϕt)

ϕ̃t = ϕt − η∇ϕLD(θt,ϕt)
Update:

{
θt+1 = θt − η∇θLG(θ̃t, ϕ̃t)

ϕt+1 = ϕt − η∇ϕLD(θ̃t, ϕ̃t)
(EG)

Note how θt and ϕt are updated with a gradient from a different point, the extrapolated one. In the
context of a zero-sum game, for any convex-concave function L and any closed convex sets Θ and Φ,
the extragradient method converges (Harker and Pang, 1990, Thm. 12.1.11).

2.2 Stochasticity Breaks Extragradient

As the (EG) converges for some examples for which gradient methods do not, it is reasonable to
expect that so does its stochastic counterpart (at least to a neighborhood). However, the resulting noise
in the gradient estimate may interact in a problematic way with the oscillations due to the adversarial
component of the game4. We depict this phenomenon in Fig. 1, where we show the direction of the
noisy gradient on single objective minimization example and contrast it with a multi-objective one.

We present a simplistic example where the extragradient method converges linearly (Gidel et al.,
2019a, Corollary 1) using the full gradient but diverges geometrically when using stochastic estimates
of it. Note that standard gradient methods, both batch and stochastic, diverge on this example.

In particular, we show that: (i) if we use standard stochastic estimates of the gradients of L with a sim-
ple finite sum formulation, then the iterates ωt := (θt,ϕt) produced by the stochastic extragradient
method (SEG) diverge geometrically, and on the other hand (ii) the full-batch extragradient method
does converge to the Nash equilibrium ω∗ of this game (Harker and Pang, 1990, Thm. 12.1.11).
Theorem 1 (Noise may induce divergence). For any ε ≥ 0 There exists a zero-sum ε

2 -strongly
monotone stochastic game such that if ω0 6= ω∗, then for any step-size η > ε, the iterates (ωt)
computed by the stochastic extragradient method diverge geometrically, i.e., there exists ρ > 0, such
that E[‖ωt − ω∗‖2] > ‖ω0 − ω∗‖2(1 + ρ)t.

Proof sketch. All detailed proofs can be found in § C of the appendix. We consider the following
stochastic optimization problem (with d = n):

1

n

n∑
i=1

ε

2
θ2
i + θ>Aiϕ−

ε

2
ϕ2
i where [Ai]kl = 1 if k = l = i and 0 otherwise. (1)

Note that this problem is a simple dot product between θ and ϕ with an (ε/n)-`2 norm penalization,
thus we can compute the batch gradient and notice that the Nash equilibrium of this problem is
(θ∗,ϕ∗) = (0,0). However, as we shall see, this simple problem breaks with standard stochastic
optimization methods.

3For simplicity, we focus on unconstrained setting where Θ = Rd. For the constrained case, a Euclidean
projection on the constraints set should be added at every update of the method.

4Gidel et al. (2019b) formalize the notion of “adversarial component” of a game, which yields a rotational
dynamics in gradients methods (oscillations in parameters), as illustrated by the gradient field of Fig. 1 (right).
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Sampling a mini-batch without replacement I ⊂ {1, . . . , n}, we denote AI :=
∑
i∈I Ai. The

extragradient update rule can be written as:{
θt+1 = (1− ηAIε)θt − ηAI((1− ηAJε)ϕt + ηAJθt)

ϕt+1 = (1− ηAIε)ϕt + ηAI((1− ηAJε)θt − ηAJϕt) ,
(2)

where I and J are the mini-batches sampled for the update and the extrapolation step, respectively.
Let us write Nt := ‖θt‖2 + ‖ϕt‖2. Noticing that [AIθ]i = [θ]i if i ∈ I and 0 otherwise, we have,

E[Nt+1] =
(

1− |I|n (2ηε− η2(1 + ε2))− |I|
2

n2 (2η2 − η4(1 + ε2))
)
E[Nt] . (3)

Consequently, if the mini-batch size is smaller than half of the dataset size, i.e. 2|I| ≤ n, we have that
∀η > ε , ∃ρ > 0 , s.t. , E[Nt] > N0(1 + ρ)t. For the theorem statement, we set n = 2 and |I| = 1.

This result may seem contradictory with the standard result on SEG (Juditsky et al., 2011) saying
that the average of the iterates computed by SEG does converge to the Nash equilibrium of the game.
However, an important assumption made by Juditsky et al. is that the iterates are projected onto a
compact set and that estimator of the gradient has finite variance. These assumptions break in this
example since the variance of the estimator is proportional to the norm of the (unbounded) parameters.
Note that constraining the optimization problem (23) to bounded domains Θ and Φ, would make
the finite variance assumption from Juditsky et al. (2011) holds. Consequently, the averaged iterate
ω̄t := 1

t

∑t−1
s=0 ωs would converge to ω∗. In § A.1, we explain why in a non-convex setting, the

convergence of the last iterate is preferable.

3 Reducing Noise in Games with Variance Reduced Extragradient

One way to reduce the noise in the estimation of the gradient is to use mini-batches of samples
instead of one sample. However, mini-batch stochastic extragradient fails to converge on (23) if the
mini-batch size is smaller than half of the dataset size (see § C.1). In order to get an estimator of
the gradient with a vanishing variance, the optimization literature proposed to take advantage of the
finite-sum formulation that often appears in machine learning (Schmidt et al., 2017, and references
therein).

3.1 Variance Reduced Gradient Methods

Let us assume that the objective in (2P-G) can be decomposed as a finite sum such that5

LG(ω) =
1

n

n∑
i=1

LGi (ω) and LD(ω) =
1

n

n∑
i=1

LDi (ω) where ω := (θ,ϕ) . (4)

Johnson and Zhang (2013) propose the “stochastic variance reduced gradient” (SVRG) as an unbiased
estimator of the gradient with a smaller variance than the vanilla mini-batch estimate. The idea is to
occasionally take a snapshot ωS of the current model’s parameters, and store the full batch gradient
µS at this point. Computing the full batch gradient µS at ωS is an expensive operation but not
prohibitive if done infrequently (for instance once every dataset pass).

Assuming that we have stored ωS and µS := (µSθ ,µ
S
ϕ), the SVRG estimates of the gradients are:

dGi (ω) :=
∇LG

i (ω)−∇LG
i (ωS)

nπi
+ µSθ , dDi (ω) :=

∇LD
i (ω)−∇LD

i (ωS)
nπi

+ µSϕ. (5)

These estimates are unbiased: E[dGi (ω)] = 1
n

∑n
i=1∇LGi (ω) = ∇LG(ω), where the expectation

is taken over i, picked with probability πi. The non-uniform sampling probabilities πi are used to
bias the sampling according to the Lipschitz constant of the stochastic gradient in order to sample
more often gradients that change quickly. This strategy has been first introduced for variance reduced
methods by Xiao and Zhang (2014) for SVRG and has been discussed for saddle point optimization
by Palaniappan and Bach (2016).

Originally, SVRG was introduced as an epoch based algorithm with a fixed epoch size: in Alg. 1,
one epoch is an inner loop of size N (Line 6). However, Hofmann et al. (2015) proposed instead to

5The “noise dataset” in a GAN is not finite though; see § D.1 for details on how to cope with this in practice.
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sample the size of each epoch from a geometric distribution, enabling them to analyze SVRG the
same way as SAGA under a unified framework called q-memorization algorithm. We generalize
their framework to handle the extrapolation step (EG) and provide a convergence proof for such
q-memorization algorithms for games in § C.2.

One advantage of Hofmann et al. (2015)’s framework is also that the sampling of the epoch size does
not depend on the condition number of the problem, whereas the original proof for SVRG had to
consider an epoch size larger than the condition number (see Leblond et al. (2018, Corollary 16) for
a detailed discussion on the convergence rate for SVRG). Thus, this new version of SVRG with a
random epoch size becomes adaptive to the local strong convexity since none of its hyper-parameters
depend on the strong convexity constant.

However, because of some new technical aspects when working with monotone operators, Palaniappan
and Bach (2016)’s proofs (both for SAGA and SVRG) require a step-size (and epoch length for
SVRG) that depends on the strong monotonicity constant making these algorithms not adaptive to
local strong monotonicity. This motivates the proposed SVRE algorithm, which may be adaptive to
local strong monotonicity, and is thus more appropriate for non-convex optimization.

3.2 SVRE: Stochastic Variance Reduced Extragradient

We describe our proposed algorithm called stochastic variance reduced extragradient (SVRE) in Alg. 1.
In an analogous manner to how Palaniappan and Bach (2016) combined SVRG with the gradient
method, SVRE combines SVRG estimates of the gradient (5) with the extragradient method (EG).

With SVRE we are able to improve the convergence rates for variance reduction for a large class of
stochastic games (see Table 1 and Thm. 2), and we show in § 3.3 that it is the only method which
empirically converges on the simple example of § 2.2.

We now describe the theoretical setup for the convergence result. A standard assumption in convex
optimization is the assumption of strong convexity of the function. However, in a game, the operator,

v : ω 7→
[
∇θLG(ω) , ∇ϕLD(ω)

]>
, (6)

associated with the updates is no longer the gradient of a single function. To make an analogous
assumption for games the optimization literature considers the notion of strong monotonicity.

Definition 1. An operator F : ω 7→ (Fθ(ω), Fϕ(ω)) ∈ Rd+p is said to be (µθ, µϕ)-strongly
monotone if for all ω,ω′ ∈ Rp+d we have

Ω((θ,ϕ), (θ′,ϕ′)) := µθ‖θ − θ′‖2 + µϕ‖ϕ−ϕ′‖2 ≤ (F (ω)− F (ω′))>(ω − ω′) ,

where we write ω := (θ,ϕ) ∈ Rd+p. A monotone operator is a (0, 0)-strongly monotone operator.

This definition is a generalization of strong convexity for operators: if f is µ-strongly convex, then
∇f is a µ-monotone operator. Another assumption is the γ regularity assumption,

Definition 2. An operator F : ω 7→ (Fθ(ω), Fϕ(ω)) ∈ Rd+p is said to be (γθ, γφ)-regular if,

γ2
θ‖θ − θ′‖2 + γ2

ϕ‖ϕ−ϕ′‖2 ≤ ‖F (ω)− F (ω′)‖2 , ∀ω,ω′ ∈ Rp+d . (7)

Note that an operator is always (0, 0)-regular. This assumption originally introduced by Tseng (1995)
has been recently used (Azizian et al., 2019) to improve the convergence rate of extragradient. For
instance for a full rank bilinear matrix problem γ is its smallest singular value. More generally, in the
case γθ = γϕ, the regularity constant is a lower bound on the minimal singular value of the Jacobian
of F (Azizian et al., 2019).

One of our main assumptions is the cocoercivity assumption, which implies the Lipchitzness of the
operator in the unconstrained case. We use the cocoercivity constant because it provides a tighter
bound for general strongly monotone and Lipschitz games (see discussion following Theorem 2).

Definition 3. An operator F : ω 7→ (Fθ(ω), Fϕ(ω)) ∈ Rd+p is said to be (`θ, `ϕ)-cocoercive, if
for all ω,ω′ ∈ Ω we have

‖F (ω)− F (ω′)‖2 ≤ `θ(Fθ(ω)− Fθ(ω′))>(θ − θ′) + `ϕ(Fϕ(ω)− Fϕ(ω′))>(ϕ−ϕ′) . (8)
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Note that for a L-Lipschitz and µ-strongly monotone operator, we have ` ∈ [L,L2/µ] (Facchinei
and Pang, 2003). For instance, when F is the gradient of a convex function, we have ` = L.
More generally, when F (ω) = (∇f(θ) + Mϕ,∇g(ϕ) −M>θ), where f and g are µ-strongly
convex and L smooth we have that γ = σmin(M) and ‖M‖2 = O(µL) is a sufficient condition for
` = O(L) (see §B). Under this assumption on each cost function of the game operator, we can define
a cocoercivity constant adapted to the non-uniform sampling scheme of our stochastic algorithm:

¯̀(π)2 :=
1

n

n∑
i=1

1

nπi
`2i . (9)

The standard uniform sampling scheme corresponds to πi := 1
n and the optimal non-uniform sampling

scheme corresponds to π̃i := `i∑n
i=1 `i

. By Jensen’s inequality, we have: ¯̀(π̃) ≤ ¯̀(π) ≤ maxi `i.

For our main result, we make strong convexity, cocoercivity and regularity assumptions.
Assumption 1. For 1 ≤ i ≤ n, the gradients ∇θLGi and ∇ϕLDi are respectively `θi and `ϕi -
cocoercive and (γθi , γ

ϕ
i )-regular. The operator (6) is (µθ, µϕ)-strongly monotone.

We now present our convergence result for SVRE with non-uniform sampling (to make our constants
comparable to those of Palaniappan and Bach (2016)), but note that we have used uniform sampling
in all our experiments (for simplicity).
Theorem 2. Under Assumption 1, after t iterations, the iterate ωt := (θt,ϕt) computed by SVRE
(Alg. 1) with step-size ηθ ≤ (40¯̀

θ)−1 and ηϕ ≤ (40¯̀
ϕ)−1 and sampling scheme (π̃θ, π̃ϕ) verifies:

E[‖ωt − ω∗‖22] ≤

(
1− 1

2
min

{
ηθµθ +

9η2
θγ̄

2
θ

10
, ηϕµϕ +

9η2
ϕγ̄

2
ϕ

10
,

4

5n

})t
E[‖ω0 − ω∗‖22] ,

where ¯̀
θ(πθ) and ¯̀

ϕ(πϕ) are defined in (9). Particularly, for ηθ = 1
40¯̀

θ
and ηϕ = 1

40¯̀
ϕ

we get

E[‖ωt − ω∗‖22] ≤

(
1− 1

2
min

{
1
40

(µθ
¯̀
θ

+
γ̄2
θ

45¯̀2
θ

)
, 1

40

(µϕ
¯̀
ϕ

+
γ̄2
ϕ

45¯̀2
ϕ

)
,

4

5n

})t
E[‖ω0 − ω∗‖22] .

We prove this theorem in § C.2. We can notice that the respective condition numbers of LG and LD

defined as κθ := µθ
¯̀
θ

+
γ̄2
θ

¯̀2
θ

and κϕ :=
µϕ
¯̀
ϕ

+
γ̄2
ϕ

¯̀2
ϕ

appear in our convergence rate. The cocoercivity

constant ` belongs to [L,L2/µ], thus our rate may be significantly faster6 than the convergence rate
of the (non-accelerated) algorithm of Palaniappan and Bach (2016) that depends on the product
µθ
L̄θ

µϕ
L̄ϕ

. They avoid a dependence on the maximum of the condition numbers squared, max{κ2
ϕ, κ

2
θ},

by using the weighted Euclidean norm Ω(θ,ϕ) defined in (14) and rescaling the functions LG and
LD with their strong-monotonicity constant. However, this rescaling trick suffers from two issues:
(i) we do not know in practice a good estimate of the strong monotonicity constant, which was not
the case in Palaniappan and Bach (2016)’s application; and (ii) the algorithm does not adapt to
local strong-monotonicity. This property is important in non-convex optimization since we want the
algorithm to exploit the (potential) local stability properties of a stationary point.

3.3 Motivating example

The example (23) for ε = 0 seems to be challenging in the stochastic setting since all the
standard methods and even the stochastic extragradient method fails to find its Nash equilib-
rium (note that this example is not strongly monotone). We set n = d = 100, and draw
[Ai]kl = δkli and [bi]k, [ci]k ∼ N (0, 1/d) , 1 ≤ k, l ≤ d, where δkli = 1 if k = l = i and 0
otherwise. Our optimization problem is:

min
θ∈Rd

max
ϕ∈Rd

1

n

n∑
i=1

(θ>bi + θ>Aiϕ+ c>i ϕ). (10)

6Particularly, when F is the gradient of a convex function (or close to it) we have ` ≈ L and thus our rate
recovers the standard ln(1/ε)L/µ, improving over the accelerated algorithm of Palaniappan and Bach (2016).
More generally, under the assumptions of Proposition 2, we also recover ln(1/ε)L/µ.
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We compare variants of the following algorithms (with uniform sampling and average our results over
5 different seeds): (i) AltSGD: the standard method to train GANs–stochastic gradient with alternating
updates of each player. (ii) SVRE: Alg. 1. The AVG prefix correspond to the uniform average of
the iterates, ω̄ := 1

t

∑t−1
s=0 ωs. We observe in Fig. 4 that AVG-SVRE converges sublinearly (whereas

AVG-AltSGD fails to converge).

This motivates a new variant of SVRE based on the idea that even if the averaged iterate converges,
we do not compute the gradient at that point and thus we do not benefit from the fact that this iterate
is closer to the optimums (see § A.1). Thus the idea is to occasionally restart the algorithm, i.e.,
consider the averaged iterate as the new starting point of our algorithm and compute the gradient at
that point. Restart goes well with SVRE as we already occasionally stop the inner loop to recompute
µS , at which point we decide (with a probability p to be fixed) whether or not to restart the algorithm
by taking the snapshot at point ω̄t instead of ωt. This variant of SVRE is described in Alg. 3 in § E
and the variant combining VRAd in § D.1.

In Fig. 4 we observe that the only method that converges is SVRE and its variants. We do not provide
convergence guarantees for Alg. 3 and leave its analysis for future work. However, it is interesting
that, to our knowledge, this algorithm is the only stochastic algorithm (excluding batch extragradient
as it is not stochastic) that converge for (23). Note that we tried all the algorithms presented in Fig. 3
from Gidel et al. (2019a) on this unconstrained problem and that all of them diverge.

4 GAN Experiments

In this section, we investigate the empirical performance of SVRE for GAN training. Note, however,
that our theoretical analysis does not hold for games with non-convex objectives such as GANs.

Datasets. We used the following datasets: (i) MNIST (Lecun and Cortes), (ii) CIFAR-10
(Krizhevsky, 2009, §3), (iii) SVHN (Netzer et al., 2011), and (iv) ImageNet ILSVRC 2012 (Rus-
sakovsky et al., 2015), using 28×28, 3×32×32, 3×32×32, and 3×64×64 resolution, respectively.

Metrics. We used the Inception score (IS, Salimans et al., 2016) and the Fréchet Inception
distance (FID, Heusel et al., 2017) as performance metrics for image synthesis. To gain insights if
SVRE indeed reduces the variance of the gradient estimates, we used the second moment estimate–
SME (uncentered variance), computed with an exponentially moving average. See § F.1 for details.

DNN architectures. For experiments on MNIST, we used the DCGAN architectures (Radford
et al., 2016), described in § F.2.1. For real-world datasets, we used two architectures (see § F.2 for
details and § F.2.2 for motivation): (i) SAGAN (Zhang et al., 2018), and (ii) ResNet, replicating the
setup of Miyato et al. (2018), described in detail in § F.2.3 and F.2.4, respectively. For clarity, we
refer the former as shallow, and the latter as deep architectures.

Optimization methods. We conduct experiments using the following optimization methods for
GANs: (i) BatchE: full–batch extragradient, (ii) SG: stochastic gradient (alternating GAN), and
(iii) SE: stochastic extragradient, and (iv) SVRE: stochastic variance reduced extragradient. These
can be combined with adaptive learning rate methods such as Adam or with parameter averaging,
hereafter denoted as –A and AVG–, respectively. In § D.1, we present a variant of Adam adapted
to variance reduced algorithms, that is referred to as –VRAd. When using the SE–A baseline and
deep architectures, the convergence rapidly fails at some point of training (cf. § G.3). This motivates
experiments where we start from a stored checkpoint taken before the baseline diverged, and continue
training with SVRE. We denote these experiments with WS–SVRE (warm-start SVRE).

4.1 Results

Comparison on MNIST. The MNIST common benchmark allowed for comparison with full-batch
extragradient, as it is feasible to compute. Fig. 3 depicts the IS metric while using either a stochastic,
full-batch or variance reduced version of extragradient (see details of SVRE-GAN in § D.2). We
always combine the stochastic baseline (SE) with Adam, as proposed by Gidel et al. (2019a). In terms
of number of parameter updates, SVRE performs similarly to BatchE–A (see Fig. 5a, § G). Note that
the latter requires significantly more computation: Fig. 3a depicts the IS metric using the number of
mini-batch computations as x-axis (a surrogate for the wall-clock time, see below). We observe that,
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Figure 3: Figures a & b. Stochastic, full-batch and variance reduced extragradient optimization on
MNIST. We used η = 10−2 for SVRE. SE–A with η = 10−3 achieves similar IS performances as
η = 10−2 and η = 10−4, omitted from Fig. a for clarity. Figure c. FID on SVHN, using shallow
architectures. See § 4 and § F for naming of methods and details on the implementation, respectively.
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§ 3.3 for the experimental setup.

SG-A SE-A SVRE WS-SVRE

CIFAR-10 21.70 18.65 23.56 16.77
SVHN 5.66 5.14 4.81 4.88

Table 2: Best obtained FID scores for the dif-
ferent optimization methods using the deep ar-
chitectures (see Table 8, § F.2.4). WS–SVRE
starts from the best obtained scores of SE–A.
See § F and § G for implementation details and
additional results, respectively.

as SE–A has slower per-iteration convergence rate, SVRE converges faster on this dataset. At the end
of training, all methods reach similar performances (IS is above 8.5, see Table 9, § G).

Computational cost. The relative cost of one pass over the dataset for SVRE versus vanilla SGD is
a factor of 5: the full batch gradient is computed (on average) after one pass over the dataset, giving
a slowdown of 2; the factor 5 takes into account the extra stochastic gradient computations for the
variance reduction, as well as the extrapolation step overhead. However, as SVRE provides less noisy
gradient, it may converge faster per iteration, compensating the extra per-update cost. Note that many
computations can be done in parallel. In Fig. 3a, the x-axis uses an implementation-independent
surrogate for wall-clock time that counts the number of mini-batch gradient computations. Note that
some training methods for GANs require multiple discriminator updates per generator update, and
we observed that to stabilize our baseline when using the deep architectures it was required to use 1:5
update ratio of G:D (cf. § G.3), whereas for SVRE we used ratio of 1:1 (Tab. 2 lists the results).

Second moment estimate and Adam. Fig. 3b depicts the averaged second-moment estimate for
parameters of the Generator, where we observe that SVRE effectively reduces it over the iterations.
The reduction of these values may be the reason why Adam combined with SVRE performs poorly (as
these values appear in the denominator, see § D.1). To our knowledge, SVRE is the first optimization
method with a constant step size that has worked empirically for GANs on non-trivial datasets.

Comparison on real-world datasets. In Fig. 3c, we compare SVRE with the SE–A baseline on
SVHN, using shallow architectures. We observe that although SE–A in some experiments obtains
better performances in the early iterations, SVRE allows for obtaining improved final performances.
Tab. 2 summarizes the results on CIFAR-10 and SVHN with deep architectures. We observe that,
with deeper architectures, SE–A is notably more unstable, as training collapsed in 100% of the
experiments. To obtain satisfying results for SE–A, we used various techniques such as a schedule of
the learning rate and different update ratios (see § G.3). On the other hand, SVRE did not collapse in
any of the experiments but took longer time to converge compared to SE–A. Interestingly, although
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WS–SVRE starts from an iterate point after which the baseline diverges, it continues to improve the
obtained FID score and does not diverge. See § G for additional experiments.

5 Related work

Surprisingly, there exist only a few works on variance reduction methods for monotone operators,
namely from Palaniappan and Bach (2016) and Davis (2016). The latter requires a co-coercivity
assumption on the operator and thus only convex optimization is considered. Our work provides a new
way to use variance reduction for monotone operators, using the extragradient method (Korpelevich,
1976). Recently, Iusem et al. (2017) proposed an extragradient method with variance reduction for
an infinite sum of operators. The authors use mini-batches of growing size in order to reduce the
variance of their algorithm and to converge with a constant step-size. However, this approach is
prohibitively expensive in our application. Moreover, Iusem et al. are not using the SAGA/SVRG
style of updates exploiting the finite sum formulation, leading to sublinear convergence rate, while
our method benefits from a linear convergence rate exploiting the finite sum assumption.

Daskalakis et al. (2018) proposed a method called Optimistic-Adam inspired by game theory. This
method is closely related to extragradient, with slightly different update scheme. More recently, Gidel
et al. (2019a) proposed to use extragradient to train GANs, introducing a method called ExtraAdam.
This method outperformed Optimistic-Adam when trained on CIFAR-10. Our work is also an attempt
to find principled ways to train GANs. Considering that the game aspect is better handled by the
extragradient method, we focus on the optimization issues arising from the noise in the training
procedure, a disregarded potential issue in GAN training.

In the context of deep learning, despite some very interesting theoretical results on non-convex
minimization (Reddi et al., 2016; Allen-Zhu and Hazan, 2016), the effectiveness of variance reduced
methods is still an open question, and a recent technical report by Defazio and Bottou (2018) provides
negative empirical results on the variance reduction aspect. In addition, two recent large scale studies
showed that increased batch size has: (i) only marginal impact on single objective training (Shallue
et al., 2018) and (ii) a surprisingly large performance improvement on GAN training (Brock et al.,
2019). In our work, we are able to show positive results for variance reduction in a real-world
deep learning setting. This unexpected difference seems to confirm the remarkable discrepancy, that
remains poorly understood, between multi-objective optimization and standard minimization.

6 Discussion

Motivated by a simple bilinear game optimization problem where stochasticity provably breaks the
convergence of previous stochastic methods, we proposed the novel SVRE algorithm that combines
SVRG with the extragradient method for optimizing games. On the theory side, SVRE improves
upon the previous best results for strongly-convex games, whereas empirically, it is the only method
that converges for our stochastic bilinear game counter-example.

We empirically observed that SVRE for GAN training obtained convergence speed similar to Batch-
Extragradient on MNIST, while the latter is computationally infeasible for large datasets. For shallow
architectures, SVRE matched or improved over baselines on all four datasets. Our experiments with
deeper architectures show that SVRE is notably more stable with respect to hyperparameter choice.
Moreover, while its stochastic counterpart diverged in all our experiments, SVRE did not. However,
we observed that SVRE took more iterations to converge when using deeper architectures, though
notably, we were using constant step-sizes, unlike the baselines which required Adam. As adaptive
step-sizes often provide significant improvements, developing such an appropriate version for SVRE
is a promising direction for future work. In the meantime, the stability of SVRE suggests a practical
use case for GANs as warm-starting it just before the baseline diverges, and running it for further
improvements, as demonstrated with the WS–SVRE method in our experiments.
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A Noise in games

A.1 Why is convergence of the last iterate preferable?

In light of Theorem 1, the behavior of the iterates on the unconstrained version of (23) (ε = 0):

min
θ∈Θ

max
ϕ∈Φ

1

n

n∑
i=1

θ>Aiϕ where [Ai]kl = 1 if k = l = i and 0 otherwise. (11)

where Θ and Φ are compact and convex sets, is the following: they will diverge until they reach the boundary
of Θ and Φ and then they will start to turn around the Nash equilibrium of (11) lying on these boundaries.
Using convexity properties, we can then show that the averaged iterates will converge to the Nash equilibrium
of the problem. However, with an arbitrary large domain, this convergence rate may be arbitrary slow (since
it depends on the diameter of the domain).

Moreover, this behavior might be even more problematic in a non-convex framework because even if by
chance we initialize close to the Nash equilibrium, we would get away from it and we cannot rely on convexity
to expect the average of the iterates to converge.

Consequently, we would like optimization algorithms generating iterates that stay close to the Nash equilib-
rium.

B Definitions and Lemmas

B.1 Smoothness and Monotonicity of the operator

Another important property used is the Lipschitzness of an operator.
Definition 4. A mapping F : Rp → Rd is said to be L-Lipschitz if,

‖F (ω)− F (ω′)‖2 ≤ L‖ω − ω′‖2 , ∀ω,ω′ ∈ Ω . (12)

Definition 5. A differentiable function f : Ω→ R is said to be µ-strongly convex if

f(ω) ≥ f(ω′) +∇f(ω′)>(ω − ω′) +
µ

2
‖ω − ω′‖22 ∀ω,ω′ ∈ Ω . (13)

Definition 6. A function (θ,ϕ) 7→ L(θ,ϕ) is said convex-concave if L(·,ϕ) is convex for all
ϕ ∈ Φ and L(θ, ·) is concave for all θ ∈ Θ. An L is said to be µ-strongly convex concave if
(θ,ϕ) 7→ L(θ,ϕ)− µ

2 ‖θ‖
2
2 + µ

2 ‖ϕ‖
2
2 is convex concave.

Definition 7. For µθ, µϕ > 0, an operator F : ω 7→ (Fθ(ω), Fϕ(ω)) ∈ Rd+p is said to be (µθ, µϕ)-
strongly monotone if ∀ω,ω′ ∈ Ω ⊂ Rp+d,

(F (ω)− F (ω′))>(ω − ω′) ≥ µθ‖θ − θ′‖2 + µϕ‖ϕ−ϕ′‖2 .

where we noted ω := (θ,ϕ) ∈ Rd+p.

Definition 8. An operator F : (ω),∈ Rd is said to be `-cocoercive, if for all ω,ω′ ∈ Ω we have

‖F (ω)− F (ω′)‖2 ≤ `(F (ω)− F (ω′))>(ω − ω′) . (14)

Proposition 1 (Folklore). A L-Lipschitz and µ-strongly monotone operator is L2/µ-cocoercive

Proof. By applying lipschitzness and strong monotonicity,

‖F (ω)− F (ω′)‖2 ≤ L2‖ω − ω′‖2 ≤ L2/µ(F (ω)− F (ω′))>(ω − ω′) (15)

12



Proposition 2. If F (ω) = (∇f(θ) + Mϕ,∇g(ϕ) −M>θ), where f and g are µ-strongly convex and L
smooth, then ‖M‖2 = O(µL) is a sufficient condition for F to be `-cocoercive with ` = O(L)

Proof. We rewrite F as the sum of the gradient of convex Lipschitz function Fgrad and a L-Lipschitz and
µ-strongly monotone operator Fmon:

Fgrad(ω) := (∇f(θ)− µθ,∇g(ϕ)− µϕ) and Fmon : (Mϕ+ µθ,−M>θ + µϕ) (16)

Then

‖F (ω)− F (ω′)‖2 ≤ 2‖Fgrad(ω)− Fgrad(ω′)‖2 + 2‖Fmon(ω)− Fmon(ω′)‖2 (17)

≤ 2(L+ µ)(Fgrad(ω)− Fgrad(ω′))>(ω − ω′) (18)

+ 2(‖M‖+ µ)2/µ(Fmon(ω)− Fmon(ω′))>(ω − ω′) (19)

= O(L)(Fgrad(ω)− Fgrad(ω′))>(ω − ω′) (20)

+O(L)(Fmon(ω)− Fmon(ω′))>(ω − ω′) (21)

= O(L)(F (ω)− F (ω′))>(ω − ω′) (22)

where for the second inequality we used that a (L+ µ)-Lipschitz convex function is (L+ µ)-cocoercive and
Proposition 2.

C Proof of Theorems

C.1 Proof of Theorem 1

Proof. We consider the following stochastic optimization problem,

1

n

n∑
i=1

ε

2
θ2
i + θ>Aiϕ−

ε

2
ϕ2
i =

1

n

n∑
i=1

ε

2
‖Aiθ‖2 + θ>Aiϕ−

ε

2
‖Aiϕ‖2 (23)

where [Ai]kl = 1 if k = l = i and 0 otherwise. Note that (Ai)
> = Ai for 1 ≤ i ≤ n. Let us consider

the extragradient method where to compute an unbiased estimator of the gradients at (θ,ϕ) we sample
i ∈ {1, . . . , n} and use [Aiθ, Aiϕ] as estimator of the vector flow.

In this proof we note,AI :=
∑
i∈I Ai and θ(I) the vector such that [θ(I)]i = [θ]i if i ∈ I and 0 otherwise.

Note thatAIθ = θ(I) and thatAIAJ = AI∩J .

Thus the extragradient update rule can be noted as{
θt+1 = (1− ηAIε)θt − ηAI((1− ηAJε)ϕt + ηAJθt)

ϕt+1 = (1− ηAIε)ϕt + ηAI((1− ηAJε)θt − ηAJϕt)
(24)

where I is the mini-batch sampled (without replacement) for the update and J the mini-batch sampled
(without replacement) for the extrapolation.

We can thus notice that, when I ∩ J = ∅, we have{
θt+1 = θt − ηεθ(I)

t − ηϕ
(I)
t

ϕt+1 = ϕt − ηεϕ(I)
t + ηθ

(I)
t ,

(25)

and otherwise, {
θt+1 = θt − ηεθ(I)

t − ηϕ
(I)
t − η2(θ

(I∩J)
t − εϕ(I∩J)

t )

ϕt+1 = ϕt − ηεϕ(I)
t + ηθ

(I)
t − η2(ϕ

(I∩J)
t + εθ

(I∩J)
t ) .

(26)
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The intuition is that, on one hand, when I ∩ J = ∅ (which happens with high probability when |I| << n,
e.g., when |I| = 1, P(I ∩ J = ∅) = 1− 1/n), the algorithm performs an update that get away from the Nash
equilibrium when 2ε ≥ η:

(25) ⇒ Nt+1 = Nt + (η2ε2 + η2 − 2ηε)N
(I)
t , (27)

where Nt := ‖θt‖2 + ‖ϕt‖2 and N (I)
t := ‖θ(I)

t ‖2 + ‖ϕ(I)
t ‖2. On the other hand, The updates that provide

improvement only happen when I ∩ J is large (which happen with low probability, e.g., when |I| = 1,
P(I ∩ J 6= ∅) = 1/n):

(26) ⇒ Nt+1 = Nt −N (I)
t (2ηε− η2(1 + ε2))−N (I∩J)

t (2η2 − η4(1 + ε2) (28)

Conditioning on θt and ϕt, we get that

E[N
(I∩J)
t |θt,ϕt] =

n∑
i=1

P(i ∈ I ∩ J)([θt]
2
i + [ϕt]

2
i ) and P(i ∈ I ∩ J) = P(i ∈ I)P(i ∈ J) =

|I|2

n2
.

(29)
Leading to,

E[N
(I∩J)
t |θt,ϕt] =

|I|2

n2

n∑
i=1

([θt]
2
i + [ϕt]

2
i ) =

|I|2

n2
Nt and E[N

(I)
t |θt,ϕt] =

|I|
n
Nt . (30)

Plugging these expectations in (28), we get that,

E[Nt+1] =
(

1− |I|n (2ηε− η2(1 + ε2))− |I|
2

n2 (2η2 − η4(1 + ε2))
)
E[Nt] . (31)

Consequently for η < ε we get,

E[Nt+1] ≥
(

1− 2η2 |I|2

n2
+ η2 |I|

n

)
E[Nt] . (32)

To sum-up, if |I| is not large enough (more precisely if 2|I| ≤ n), we have the geometric divergence of the
quantity E[Nt] := E[‖θt‖2 + ‖ϕt‖2] for any η ≥ ε.

C.2 Proof of Theorem 2

Setting of the Proof. We will prove a slightly more general result than Theorem 2. We will work in the
context of monotone operator. Let us consider the general extrapolation update rule,{

Extrapolation: ωt+ 1
2

= ωt − ηtgt
Update: ωt+1 = ωt − ηtgt+1/2 ,

(33)

where gt depends on ωt and gt+1/2 depends on ωt+1/2. For instance, gt can either be F (ωt), Fit(ωt) or the
SVRG estimate defined in (45).

This update rule generalizes (EG) for 2-player games (2P-G) and ExtraSVRG (Alg. 2).

Let us first state a lemma standard in convex analysis (see for instance (Boyd and Vandenberghe, 2004)),

Lemma 1. Let ω ∈ Ω and ω+ := PΩ(ω + u) then for all ω′ ∈ Ω we have,

‖ω+ − ω′‖22 ≤ ‖ω − ω′‖22 + 2u>(ω+ − ω′)− ‖ω+ − ω‖22 . (34)
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Proof of Lemma 1. We start by simply developing,

‖ω+ − ω′‖22 = ‖(ω+ − ω) + (ω − ω′)‖22 = ‖ω − ω′‖22 + 2(ω+ − ω)>(ω − ω′) + ‖ω+ − ω‖22
= ‖ω − ω′‖22 + 2(ω+ − ω)>(ω+ − ω′)− ‖ω+ − ω‖22 .

Then since ω+ is the projection onto the convex set Ω of ω + u we have that
(ω+ − (ω + u))>(ω+ − ω′) ≤ 0 , ∀ω′ ∈ Ω, leading to the result of the Lemma.

Lemma 2. If F is (µθ, µϕ)-strongly monotone for any ω,ω′,ω′′ ∈ Ω we have,

µθ
(
‖θ − θ′′‖22 − 2‖θ′ − θ‖22

)
+µϕ

(
‖ϕ−ϕ′′‖22 − 2‖ϕ′ −ϕ‖22

)
≤ 2(F (ω′)−F (ω′′))>(ω′−ω′′) , (35)

where we noted ω := (θ,ϕ).

Proof. By (µθ, µϕ)-strong monotonicity,

2µθ‖θ′ − θ′′‖22 + 2µϕ‖ϕ′ −ϕ′′‖22 ≤ 2(F (ω′′)− F (ω′′))>(ω′ − ω′′) (36)

and then we use the inequality 2‖a′ − a′′‖22 ≥ ‖a− a′′‖22 − 2‖a′ − a‖22 to get the result claimed.

Using this update rule we can thus deduce the following lemma, the derivation of this lemma is very similar
from the derivation of Harker and Pang (1990, Lemma 12.1.10).

Lemma 3. Considering the update rule (33), we have for any ω ∈ Ω and any t ≥ 0,

2ηtg
>
t+1/2(ωt+1/2 − ω) ≤ ‖ωt − ω‖22 − ‖ωt+1 − ω‖22 − ‖ωt+1/2 − ωt‖22 + η2

t ‖gt − gt+1/2‖22 . (37)

Proof. By applying Lem. 1 for (ω,u,ω+,ω′) = (ωt,−ηtgt+1/2,ωt+1,ω) and
(ω,u,ω+,ω′) = (ωt,−ηtgt,ωt+1/2,ωt+1), we get,

‖ωt+1 − ω‖22 ≤ ‖ωt − ω‖22 − 2ηtg
>
t+1/2(ωt+1 − ω)− ‖ωt+1 − ωt‖22 , (38)

and
‖ωt+1/2 − ωt+1‖22 ≤ ‖ωt − ωt+1‖22 − 2ηtg

>
t (ωt+1/2 − ωt+1)− ‖ωt+1/2 − ωt‖22 . (39)

Summing (38) and (39) we get,

‖ωt+1 − ω‖22 ≤ ‖ωt − ω‖22 − 2ηtg
>
t+1/2(ωt+1 − ω) (40)

− 2ηtg
>
t (ωt+1/2 − ωt+1)− ‖ωt+1/2 − ωt‖22 − ‖ωt+1/2 − ωt+1‖22 (41)

= ‖ωt − ω‖22 − 2ηtg
>
t+1/2(ωt+1/2 − ω)− ‖ωt+1/2 − ωt‖22 − ‖ωt+1/2 − ωt+1‖22

− 2ηt(gt − gt+1/2)>(ωt+1/2 − ωt+1) . (42)

Then, we can use Young’s inequality −2a>b ≤ ‖a‖22 + ‖b‖22 to get,

‖ωt+1 − ω‖22 ≤ ‖ωt − ω‖22 − 2ηtg
>
t+1/2(ωt+1/2 − ω) + η2

t ‖gt − gt+1/2‖22
+ ‖ωt+1/2 − ωt+1‖22 − ‖ωt+1/2 − ωt‖22 − ‖ωt+1/2 − ωt+1‖22 (43)

= ‖ωt − ω‖22 − 2ηtg
>
t+1/2(ωt+1/2 − ω) + η2

t ‖gt − gt+1/2‖22 − ‖ωt+1/2 − ωt‖22 . (44)
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Note that if we would have set gt = 0 and gt+1/2 any estimate of the gradient at ωt we recover the standard
lemma for gradient method.

Let us consider unbiased estimates of the gradient,

gi(ω) :=
1

nπi
(Fi(ω)−αi) + ᾱ , (45)

where ᾱ := 1
n

∑n
j=1αj , the index i are (potentially) non-uniformly sampled from {1, . . . , n} with replace-

ment according to π and F (ω) := 1
n

∑n
j=1 Fi(ω). Hence we have that E[gi(ω)] = F (ω), where the

expectation is taken with respect to the index i sampled from π.

We will consider a class of algorithm called uniform memorization algorithms first introduced by (Hofmann
et al., 2015). This class of algorithms describes a large subset of variance reduced algorithms taking advantage
of the finite sum formulation such as SAGA (Defazio et al., 2014), SVRG (Johnson and Zhang, 2013) or
q-SAGA andN -SAGA (Hofmann et al., 2015). In this work, we will use a slightly more general definition of
such algorithm in order to be able to handle extrapolation steps:

Definition 9 (Extension of (Hofmann et al., 2015)). A uniform q-memorization algorithm evolves iterates
(ωt) according to (33), with gt defined in (45) and selecting in each iteration t a random index set Jt of
memory locations to update according to,

α
(0)
k := Fk(ω0) , α

(t+1/2)
k := α

(t)
k , ∀k ∈ {1, . . . , n} and α

(t+1)
k :=

{
Fk(ωt) if k ∈ Jt
α

(t)
k otherwise.

(46)

such that any k has the same probability q/n to be updated, i.e., P{k} =
∑
Jt,k∈Jt P (Jt) = q/n,

∀k ∈ {1, . . . , n}.

In the case of SVRG, either Jt = ∅ or Jt = {1, . . . , n} (when we update the snapshot).

We have the following lemmas,

Lemma 4. For any t ≥ 0, if we consider a q-memorization algorithm we have

E[‖gt−gt+1/2‖2] ≤ 10E[‖ 1
nπi

(Fi(ω
∗)−α(t)

i )‖2]+10E[‖ 1
nπi

(Fi(ω
∗)−Fi(ωt))‖2]+5L̄2E[‖ωt−ωt+1/2‖2] .

Proof. We use an extended version of Young’s inequality: ‖
∑k
i=1 ai‖2 ≤ k

∑k
i=1 ‖ai‖2,

‖
k∑
i=1

ai‖2 =

k∑
i,j=1

a>i aj

≤ 1

2

k∑
i,j=1

‖ai‖2 + ‖aj‖2

= k

k∑
i=1

‖ai‖2 ,

where we used that 2a>b ≤ +‖a‖2 + ‖b‖2. We combine Young’s inequality with the definition of q-
memorization algorithm: gt = 1

nπi
(Fi(ωt)− ᾱ(t)

i ) and gt+1/2 = 1
nπj

(Fj(ωt+1/2)− ᾱ(t)
j ) to get (we omit
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the t subscript for i and j and we note ᾱ(t)
i := α

(t)
i − nπiᾱ(t)),

‖gt − gt+1/2‖2 = ‖ 1
nπi

(Fi(ωt)− ᾱ(t)
i )− 1

nπj
(Fj(ωt+1/2)− ᾱ(t)

j )‖2

= ‖ 1
nπi

(Fi(ωt)− ᾱ(t)
i ) + 1

nπj
(Fj(ωt)− Fj(ωt+1/2)) + 1

nπj
(ᾱ

(t)
j − Fj(ωt))‖

2

≤ 5E[‖ 1
nπi

(Fi(ω
∗)− ᾱ(t)

i ))‖2] + 5E[‖ 1
nπj

(ᾱ
(t)
j − Fj(ω

∗))‖2]

+ 5E[‖ 1
nπi

(Fi(ω
∗)− Fi(ωt))‖2] + 5E[‖ 1

nπj
(Fj(ω

∗)− Fj(ωt))‖2]

+ 5E[‖ 1
nπj

(Fj(ωt)− Fj(ωt+1/2))‖2]

Notice that since it and jt are independently sampled from the same distribution we have

E[ 1
n2π2

jt

‖Fjt(ω∗)−α
(t)
jt
‖2] = E[ 1

n2π2
it

‖Fit(ω∗)−α
(t)
it
‖2] . (47)

Note that we have (using that E[Fi(ω
∗)] = 0 and E[α

(t)
i ] = ᾱ(t)),

E[‖ 1
nπi

(Fi(ω
∗)− ᾱ(t)

i )‖2] = E[‖ 1
nπi

(Fi(ω
∗)−α(t)

i )‖2]− ‖ᾱ(t)‖2 ≤ E[‖ 1
nπi

(Fi(ω
∗)−α(t)

i )‖2] (48)

By assuming that each Fi is Li-Lipschitz we get,

E[ 1
n2π2

jt

‖Fj(ωt)− Fj(ωt+1/2)‖2] =
1

n2

n∑
j=1

1

πj
E[‖Fj(ωt)− Fj(ωt+1/2)‖2] (49)

≤ 1

n2

n∑
j=1

L2
j

πj
E[‖ωt − ωt+1/2‖2] (50)

= L̄2E[‖ωt − ωt+1/2‖2 , (51)

where L̄2 := 1
n2

∑n
i=1

L2
i

πj
. Note that ωt and ωt+1/2 do not depend on jt (which is the index sampled for the

update step), that is not the case for i (the index for the extrapolation step) since ωt+1/2 is the result of the
extrapolation.

This lemma make appear the quantity E[‖ 1
nπi

(Fi(ω
∗)− ᾱ(t)

i )‖2] that we need to bound. In order to do that
we prove the following lemma,

Lemma 5. Let (α
(t)
j ) be updated according to the rules of a q-uniform memorization algorithm (Def. 9).

Let us note Ht := 1
n

∑n
i=1

1
nπi
‖Fi(ω∗)−α(t)

i ‖2. For any t ∈ N,

E[Ht+1] =
q

n
E[‖ 1

nπit
(Fit(ωt)− Fit(ω∗))‖2] +

n− q
n

E[Ht] . (52)
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Proof. We will use the definition of q-uniform memorization algorithms (saying that αi is updated at time
t+ 1 with probability q/n). We call this event "i updated",

E[Ht+1] := E[
1

n

n∑
i=1

1
nπi
‖α(t+1)

i − Fi(ω∗)‖2]

=
1

n
E[
∑

i updated

1
nπi
‖α(t+1)

i − Fi(ω∗)‖2 +
∑

i not updated

1
nπi
‖α(t+1)

i − Fi(ω∗)‖2]

=
1

n
E[
∑

i updated

1
nπi
‖Fi(ωt)− Fi(ω∗)‖2 +

∑
i not updated

1
nπi
‖α(t)

i − Fi(ω
∗)‖2]

=
1

n

n∑
i=1

P(i updated) 1
nπi

E[‖Fi(ωt)− Fi(ω∗)‖2 +
1

n

n∑
i=1

P(i not updated) 1
nπi

E[‖α(t)
i − Fi(ω

∗)‖2]

=
q

n
E[‖ 1

nπit
(Fit(ωt)− Fit(ω∗))‖2] +

n− q
n

E[Ht]

Using all these lemmas we can prove our theorem.

Theorem’ 2. Under Assumption 1, after t iterations, the iterate ωt computed by a q-memorization algorithm
with step-sizes (ηθ, ηφ) ≤

(
(40¯̀

θ)−1, (40¯̀
ϕ)−1

)
verifies:

E[‖ωt − ω∗‖22] ≤
(

1−min

{
ηµ

2
+

9η2γ2

10

)
,

2q

5n

})t
E[‖ω0 − ω∗‖22] . (53)

Proof. In this proof we will consider a constant step-size ηt = (ηθ, ηφ). For simplicity of notations we will
consider the notation,

L̄2‖ω‖2 := L̄2
θ‖θ‖2 + L̄2

ϕ‖ϕ‖2 , η2‖ω‖2 := η2
θ‖θ‖2 + η2

ϕ‖ϕ‖2 , µ‖ω‖2 := µ2
θ‖θ‖2 + µ2

ϕ‖ϕ‖2

ηµ = (ηθµθ, ηϕµϕ) , σL̄2 = (σθL̄
2
θ, σϕL̄

2
ϕ) and η2L̄2 = (η2

θL̄
2
θ, η

2
ϕL̄

2
ϕ) .

We start by recalling Lemma 3,

‖ωt+1−ω∗‖22 ≤ ‖ωt−ω∗‖22−2ηg>t+1/2(ωt+1/2−ω∗)−(1−2ηµ)‖ωt+1/2−ωt‖22+η2‖gt−gt+1/2‖22 . (54)

We can then take the expectation and plug-in the expression of E[‖gt − gt+1/2‖22] from Lemma 4,

E[‖ωt+1 − ω∗‖22] ≤ E[‖ωt − ω∗‖22]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 2ηµ− 5η2L̄2)]E[‖ωt+1/2 − ωt‖22]

+ η2(10E[‖ 1
nπi

(Fi(ω
∗)−α(t)

i )‖2] + 10E[‖ 1
nπi

(Fi(ω
∗)− Fi(ωt))‖2]) .

Let us define Lt := E[‖ωt − ω∗‖22] + σE[Ht], where Ht := 1
n

∑n
i=1

1
nπi
‖Fi(ω∗) − α(t)

i ‖2. We can
combine (54) with Lemma 5 multiplied by a constant σ > 0 that we will set later to get

Lt+1 = E[‖ωt+1 − ω∗‖22] + σE[Ht+1]

≤ E[‖ωt − ω∗‖22]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 2ηµ− 5η2L̄2)‖ωt+1/2 − ωt‖22
+ (σqn + 10η2)E[‖ 1

nπi
(Fi(ω

∗)− Fi(ωt))‖2 + ( 10η2

σ + n−q
n )σE[Ht] .

18



Since it and jt are independently drawn from the same distribution, we have,
E[‖ 1

nπi
(Fi(ω

∗)− Fi(ωt))‖2] = E[‖ 1
nπj

(Fj(ω
∗)− Fj(ωt))‖2 and thus,

Lt+1 ≤ E[‖ωt − ω∗‖22]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 2ηµ− 5η2L̄2)‖ωt+1/2 − ωt‖22
+ (σqn + 10η2)E[‖ 1

nπj
(Fj(ω

∗)− Fj(ωt))‖2 + ( 10η2

σ + n−q
n )σE[Ht]

≤ E[‖ωt − ω∗‖22]− (1− 2ηµ− 5η2L̄2 − 2(σqn + 10η2)L̄2)‖ωt+1/2 − ωt‖22
− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)] + 2(σqn + 10η2)E[‖ 1

nπj
(Fj(ω

∗)− Fj(ωt+1/2))‖2

+ ( 10η2

σ + n−q
n )σE[Ht]

≤ E[‖ωt − ω∗‖22]− (1− 2ηµ− 5η2L̄2 − 2(σqn + 10η2)L̄2)‖ωt+1/2 − ωt‖22
− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)] + ( 10η2

σ + n−q
n )σE[Ht]

+ 2(σqn + 10η2)E[
`j

n2π2
j
(Fj(ω

∗)− Fj(ωt+1/2))>(ω∗ − ωt+1/2)]

where for the second inequality we used Young’s inequality and the Lipchitzness of Fj and for the last one
we used the co-coercivity of Fj :

‖Fj(ω)− Fj(ω′)‖2 ≤ `i(Fj(ω′)− Fj(ω))>(ω′ − ω) . (55)

Thus using πj =
`j∑
j `j

, we get

Lt+1 ≤ E[‖ωt − ω∗‖22]− (1− 2ηµ− 5η2L̄2 − 2(σqn + 10η2)L̄2)‖ωt+1/2 − ωt‖22
− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)] + 2( 10η2

σ + n−q
n )σE[Ht]

+ 2¯̀(σqn + 10η2)E[ 1
nπj

(Fj(ω
∗)− Fj(ωt+1/2))>(ω∗ − ωt+1/2)]

= E[‖ωt − ω∗‖22]− (1− 2ηµ− 5η2L̄2 − 2(σqn + 10η2)L̄2)‖ωt+1/2 − ωt‖22
− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)] + 2¯̀(σqn + 10η2)E[F (ωt+1/2)>(ωt+1/2 − ω∗)]

+ ( 10η2

σ + n−q
n )σE[Ht]

where ¯̀ := 1
n

∑
i `i. Now we can set 20η2

σ = q
n to get

Lt+1 ≤ E[‖ωt − ω∗‖22]− (1− 2ηµ− 65η2L̄2)‖ωt+1/2 − ωt‖22
− η(2− 60¯̀η)E[F (ωt+1/2)>(ωt+1/2 − ω∗)] + (1− q

2n )σE[Ht] .

Finally with η ≤ 1
40¯̀ (note that we always have ¯̀≥ L̄ because `i ≥ Li) we get

Lt+1 ≤ E[‖ωt − ω∗‖22]− η 1

2
E[F (ωt+1/2)>(ωt+1/2 − ω∗)]−

9

10
E[‖ωt+1/2 − ωt‖22] + (1− q

2n )σE[Ht] .

We finaly use the projection-type error bound ‖Fi(ωt)−Fi(ω∗)‖2 ≥ γ2
i ‖ωt−ω∗‖2 the same way as (Azizian

et al., 2019) to get,

‖ωt+1/2 − ωt‖22 = η2‖ 1

nπi
(Fi(ωt)− ᾱ(t)

i )‖2

≥ η2

2
‖ 1

nπi
(Fi(ωt)− Fi(ω∗))‖2 − η2‖ 1

nπi
(Fi(ω

∗)− ᾱ(t)
i )‖2

≥ γ2
i η

2

2
‖ 1

nπi
(ωt − ω∗)‖2 − η2‖ 1

nπi
(Fi(ω

∗)− ᾱ(t)
i )‖2 .
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Thus we have that,

Lt+1 ≤ E[‖ωt − ω∗‖22]− η 1

2
E[F (ωt+1/2)>(ωt+1/2 − ω∗)]−

γ̄2η2

2
E[‖ωt − ω∗‖22] + (1− q

2n +
9q

100n
)σE[Ht] ,

where γ̄2 := 1
n

∑n
k=1

γ2
i

nπi
. We can thus conclude the proof using the strong convexity of F ,

Lt+1 ≤
(

1−min

{(ηµ
2

+
9η2γ̄2

20

)
,

2q

5n

})
Lt .

D Details on the SVRE–GAN Algorithm

D.1 Practical Aspect

Noise dataset. Variance reduction is usually performed on finite sum dataset. However, the noise dataset in
GANs (sampling from the noise variable z for the generator G) is in practice considered as an infinite dataset.
We considered several ways to cope with this:

• Infinitely taking new samples from a predefined latent distribution pg . In this case, from a theoretical
point of view, in terms of using finite sum formulation, there is no convergence guarantee for SVRE
even in the strongly convex case. Moreover, the estimators (63) and (64) are biased estimator of the
gradient (as µD and µG do not estimate the full expectation but a finite sum).

• Sampling a different noise dataset at each epoch, i.e. considering a different finite sum at each epoch.
In that case, we are performing a variance reduction of this finite sum over the epoch.

• Fix a finite sum noise dataset for the entire training.

In practice, we did not notice any notable difference between the three alternatives.

Adaptive methods. Particular choices such as the optimization method (e.g. Adam (Kingma and Ba, 2015)),
learning rates, and normalization, have been established in practice as almost prerequisite for convergence7,
in contrast to supervised classification problems where they have been shown to only provide a marginal
value (Wilson et al., 2017). To our knowledge, SVRE is the only method that works with a constant step size
for GANs on non-trivial datasets. This combined with the fact that recent works empirically tune the first
moment controlling hyperparameter to 0 (β1, see below) and the variance reduction (VR) one (β2, see below)
to a non-zero value, sheds light on the reason behind the success of Adam on GANs.

However, combining SVRE with adaptive step size scheme on GANs remains an open problem. We first
briefly describe the update rule of Adam, and then we propose a new adaptation of it that is more suitable for
VR methods, which we refer to as variance reduced Adam (VRAd).

Adam. Adam stores an exponentially decaying average of both past gradients mt and squared gradients vt,
for each parameter of the model:

mt = β1mt−1 + (1− β1)gt (56)

vt = β2vt−1 + (1− β2)g2
t , (57)

7For instance, Daskalakis et al. (2018); Gidel et al. (2019a) plugged Adam into their principled method to get better
results.
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Algorithm 2 Pseudocode for SVRE-GAN.
1: Input: datasetD, noise datasetZ (|Z| = |D| = n), stopping iteration T , learning rates ηD, ηG, generator

loss LG, discriminator loss LD, mini-batch size B.
2: Initialize: D, G
3: for e = 0 to T−1 do
4: DS = D and µD = 1

n

∑n
i=1

∑n
j=1∇DLD(GS , DS ,Dj ,Zi)

5: GS = G and µG = 1
n

∑n
i=1∇GLG(GS , DS ,Zi)

6: N ∼ Geom
(
B/n

)
(length of the epoch)

7: for i = 0 to N−1 do
8: Sample mini-batches (nd, nz); do extrapolation:
9: D̃ = D − ηDdD(G,D,GS , DS , nz) . (63)

10: G̃ = G− ηGdG(G,D,GS , DS , nd, nz) . (64)
11: Sample new mini-batches (nd, nz); do update:
12: D = D − ηDdD(G̃, D̃,GS , DS , nz) . (63)
13: G = G− ηGdG(G̃, D̃,GS , DS , nd, nz) . (64)
14: Output: G,D

where β1, β2 ∈ [0, 1], m0 = 0, v0 = 0, and t = 1, . . . T denotes the iteration. mt and vt are respectively the
estimates of the first and the second moments of the stochastic gradient. To compensate the bias toward 0 due
to initialization, Kingma and Ba (2015) propose to use bias-corrected estimates of these first two moments:

m̂t =
mt

1− βt1
(58)

v̂t =
vt

1− βt2
. (59)

The Adam update rule can be described as:

ωt+1 = ωt − η
m̂t√
v̂t + ε

. (60)

Adam can be understood as an approximate gradient method with a diagonal step size of ηAdam := η√
vt+ε

.
Since VR methods aim to provide a vanishing vt, they lead to a too large step-size ηAdam of ηε . This could
indicate that the update rule of Adam may not be a well-suited method to combine with VR methods.

VRAd. This motivates the introduction of a new Adam-inspired variant of adaptive step sizes that maintain
a reasonable size even when vt vanishes,

ωt+1 = ωt − η
|m̂t|√
v̂t + ε

m̂t . (VRAd)

This adaptive variant of Adam is motivated by the step size η∗ = η
m2

t

vt
derived by Schaul et al. (2013).

(VRAd) is simply the square-root of η∗ in order to stick with Adam’s scaling of vt.

D.2 SVRE-GAN

In order to cope with the issues introduced by the stochastic game formulation of the GAN models, we
proposed the SVRE algorithm Alg. 1 which combines SVRG and extragradient method. We refer to
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the method of applying SVRE to train GANs as the SVRE-GAN method, and we describe it in detail
in Alg. 2 (generalizing it with mini-batching, but using uniform probabilities). Assuming that we have
D[nd] and Z[nz], respectively two mini-batches of size B of the true dataset and the noise dataset, we
compute ∇DLD(G,D,D[nd],Z[nz]) and ∇GLG(G,D,Z[nz]) the respective mini-batches gradient of the
discriminator and the generator:

∇DLD(G,D,D[nd],Z[nz]) :=
1

|nz|
1

|nd|
∑
i∈nz

∑
j∈nd

∇DLD(G,D,Dj ,Zi) (61)

∇GLG(G,D,Z[nz]) :=
1

|nz|
∑
i∈nz

∇GLG(G,D,Zi) , (62)

where Zi and Dj are respectively the ith example of the noise dataset and the jth of the true dataset. Note
that nz and nd are lists and thus that we allow repetitions in the summations over nz and nd. The variance
reduced gradient of the SVRG method are thus given by:

dD(G,D,GS , DS) := µD +∇DLD(G,D,D[nd],Z[nz])−∇DLD(GS , DS ,D[nd],Z[nz]) (63)

dG(G,D,GS , DS) := µG +∇GLG(G,D,Z[nz])−∇LG(GS , DS ,Z[nz]) , (64)

where GS and DS are the snapshots and µD and µG their respective gradients.

Alg. 2 summarizes the SVRG optimization extended to GAN. To obtain that E
[
∇ΘSL(θS ,ϕS , ·) − µ

]
vanishes, when updating θ and ϕ where the expectation is over samples of D and Z respectively, we use
the snapshot networks θS and ϕS for the second term in lines 9, 10, 12 and 13. Moreover, the noise dataset
Z ∼ pz , where |Z| = |D| = n, is fixed. Empirically we observe that directly sampling from pz (contrary
to fixing the noise dataset and re-sampling it with frequency m) does not impact the performance, as |Z| is
usually high.

Note that the double sum in Line 4 can be written as two sums because of the separability of the expectations
in typical GAN objectives. Thus the time complexity for calculating µD is still O(n) and not O(n2) which
would be prohibitively expensive.

E Restarted SVRE

Alg. 3 describes the restarted version of SVRE presented in § 3.3. With a probability p (fixed) before the
computation of µSϕ and µSθ , we decide whether to restart SVRE (by using the averaged iterate as the new
starting point–Alg. 3, Line 6–ω̄t) or computing the batch snapshot at a point ωt.

F Details on the implementation

For our experiments, we used the PyTorch8 deep learning framework, whereas for computing the FID and IS
metrics, we used the provided implementations in Tensorflow9.

F.1 Metrics

We provide more details about the metrics enumerated in § 4. Both FID and IS use: (i) the Inception v3
network (Szegedy et al., 2015) that has been trained on the ImageNet dataset consisting of ∼1 million RGB
images of 1000 classes, C = 1000. (ii) a sample of m generated images x ∼ pg , where usually m = 50000.

8https://pytorch.org/
9https://www.tensorflow.org/
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Algorithm 3 Pseudocode for Restarted SVRE.
1: Input: Stopping time T , learning rates ηθ, ηϕ, both players’ losses LG and LD, probability of restart p.
2: Initialize: ϕ, θ, t = 0 . t is for the online average computation.
3: for e = 0 to T−1 do
4: Draw restart ∼ B(p). . Check if we restart the algorithm.
5: if restart and e > 0 then
6: ϕ← ϕ̄, θ ← θ̄ and t = 1
7: ϕS ← ϕ and µSϕ ← 1

|Z|
∑n
i=1∇ϕLDi (θS ,ϕS)

8: θS ← θ and µSθ ← 1
|ϕ|
∑n
i=1∇θLGi (θS ,ϕS)

9: N ∼ Geom
(
1/n

)
. Length of the epoch.

10: for i = 0 to N−1 do
11: Sample iθ ∼ πθ, iϕ ∼ πϕ, do extrapolation:
12: ϕ̃← ϕ− ηθdϕ(θ,ϕ,θS ,ϕS) , θ̃ ← θ − ηϕdθ(θ,ϕ,θS ,ϕS) . (63) and (64)
13: Sample iθ ∼ πθ, iϕ ∼ πϕ, do update:
14: ϕ← ϕ− ηθdϕ(θ̃, ϕ̃,θS ,ϕS) , θ ← θ − ηϕdθ(θ̃, ϕ̃,θS ,ϕS) . (63) and (64)

15: θ̄ ← t
t+1 θ̄ + 1

t+1θ and ϕ̄← t
t+1 ϕ̄+ 1

t+1ϕ . Online computation of the average.
16: t← t+ 1 . Increment t for the online average computation.
17: Output: θ,ϕ

F.1.1 Inception Score

Given an image x, IS uses the softmax output of the Inception network p(y|x) which represents the probability
that x is of class ci, i ∈ 1 . . . C, i.e., p(y|x) ∈ [0, 1]C . It then computes the marginal class distribution
p(y) =

∫
x
p(y|x)pg(x). IS measures the Kullback–Leibler divergence DKL between the predicted conditional

label distribution p(y|x) and the marginal class distribution p(y). More precisely, it is computed as follows:

IS(G) = exp
(
Ex∼pg [DKL(p(y|x)||p(y))]

)
= exp

( 1

m

m∑
i=1

C∑
c=1

p(yc|xi) log
p(yc|xi)
p(yc)

)
. (65)

It aims at estimating (i) if the samples look realistic i.e., p(y|x) should have low entropy, and (ii) if the
samples are diverse (from different ImageNet classes) i.e., p(y) should have high entropy. As these are
combined using the Kullback–Leibler divergence, the higher the score is, the better the performance. Note
that the range of IS scores at convergence varies across datasets, as the Inception network is pretrained on the
ImageNet classes. For example, we obtain low IS values on the SVHN dataset as a large fraction of classes
are numbers, which typically do not appear in the ImageNet dataset. Since MNIST has greyscale images, we
used a classifier trained on this dataset and used m = 5000. For the rest of the datasets, we used the original
implementation10 of IS in TensorFlow, and m = 50000.

F.1.2 Fréchet Inception Distance

Contrary to IS, FID aims at comparing the synthetic samples x ∼ pg with those of the training dataset
x ∼ pd in a feature space. The samples are embedded using the first several layers of the Inception network.
Assuming pg and pd are multivariate normal distributions, it then estimates the means mg and md and
covariances Cg and Cd, respectively for pg and pd in that feature space. Finally, FID is computed as:

DFID(pd, pg) ≈ d2((md, Cd), (mg, Cg)) = ||md −mg||22 + Tr(Cd + Cg − 2(CdCg)
1
2 ), (66)

10https://github.com/openai/improved-gan/
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where d2 denotes the Fréchet Distance. Note that as this metric is a distance, the lower it is, the better the
performance. We used the original implementation of FID11 in Tensorflow, along with the provided statistics
of the datasets.

F.1.3 Second Moment Estimate

To evaluate SVRE effectively, we used the second moment estimate (SME, uncentered variance, see § D.1) of
the gradient estimate throughout the iterations t = 1 . . . T per parameter, computed as: vt = γvt−1+(1−γ)g2

t ,
where gt denotes the gradient estimate for the parameter and iteration t, and γ = 0.9. For SVRE, gt is dϕ and
dθ (see Eq. 63 and 64) for G and D, respectively. We initialize g0 = 0 and we use bias-corrected estimates:
v̂ = vt

1−γt . As the second moment estimate is computed per each parameter of the model, we depict the
average of these values for the parameters of G and D separately.

In this work, as we aim at assessing if SVRE effectively reduces the variance of the gradient updates, we use
SME in our analysis as it is computationally inexpensive and fast to compute.

F.1.4 Entropy & Total Variation on MNIST

For the experiments on MNIST illustrated in Fig. 5a & 3b in § 4, we plot in § G the entropy (E) of the
generated samples’ class distribution, as well as the total variation (TV) between the class distribution of the
generated samples and a uniform one (both computed using a pretrained network that classifies its 10 classes).

F.2 Architectures & Hyperparameters

Description of the architectures. We describe the models we used in the empirical evaluation of SVRE
by listing the layers they consist of, as adopted in GAN works, e.g. (Miyato et al., 2018). With “conv.” we
denote a convolutional layer and “transposed conv” a transposed convolution layer (Radford et al., 2016).
The models use Batch Normalization (Ioffe and Szegedy, 2015) and Spectral Normalization layers (Miyato
et al., 2018).

F.2.1 Architectures for experiments on MNIST

For experiments on the MNIST dataset, we used the DCGAN architectures (Radford et al., 2016), listed
in Table 3, and the parameters of the models are initialized using PyTorch default initialization. We used
mini-batch sizes of 50 samples, whereas for full dataset passes we used mini-batches of 500 samples as this
reduces the wall-clock time for its computation. For experiments on this dataset, we used the non saturating
GAN loss as proposed (Goodfellow et al., 2014):

LD = Ex∼pd log(D(x)) + Ez∼pz log(D(G(z))) (67)
LG = Ez∼pz log(D(G(z))), (68)

where pd and pz denote the data and the latent distributions (the latter to be predefined).

For both the baseline and the SVRE variants we tried the following step sizes η = [1 × 10−2,
1 × 10−3, 1 × 10−4]. We observe that SVRE can be used with larger step sizes. In Table 9, we used
η = 1× 10−4 and η = 1× 10−2 for SE–A and SVRE(–VRAd), respectively.

F.2.2 Choice of architectures on real-world datasets

We replicate the experimental setup described for CIFAR-10 and SVHN in (Miyato et al., 2018), described
also below in § F.2.4. We observe that this experimental setup is highly sensitive to the choice of the

11https://github.com/bioinf-jku/TTUR
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Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (ker: 3×3, 128→ 512; stride: 1)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 512→ 256, stride: 2)

Batch Normalization
ReLU

transposed conv. (ker: 4×4, 256→ 128, stride: 2)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 128→ 1, stride: 2, pad: 1)

Tanh(·)

Discriminator
Input: x ∈ R1×28×28

conv. (ker: 4×4, 1→ 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)

conv. (ker: 4×4, 64→ 128; stride: 2; pad:1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (ker: 4×4, 128→ 256; stride: 2; pad:1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

conv. (ker: 3×3, 256→ 1; stride: 1)
Sigmoid(·)

Table 3: DCGAN architectures (Radford et al., 2016) used for experiments on MNIST. We use ker and pad
to denote kernel and padding for the (transposed) convolution layers, respectively. With h×w we denote the
kernel size. With cin → yout we denote the number of channels of the input and output, for (transposed)
convolution layers.

hyperparameters (see our results in § G.3), making it more difficult to compare the optimization methods
for a fixed hyperparameter choice. In particular, apart from the different combinations of learning rates for
G and D, for the baseline this also included experimenting with: β1 (see (56)), a multiplicative factor of
exponential learning rate decay scheduling γ, as well as different ratio of updating G and D per iteration.
These observations, combined with that we had limited computational resources, motivated us to use shallower
architectures, which we describe below in § F.2.3, and which use an inductive bias of so-called Self–Attention
layers (Zhang et al., 2018). As a reference, our SAGAN and ResNet architectures for CIFAR-10 have
approximately 35 and 85 layers, respectively–in total for G and D, including the non linearity and the
normalization layers. For clarity, although the deeper and the shallower architectures differ as they are based
on ResNet and SAGAN, we refer these as deep (see § F.2.3) and shallow (see § F.2.4), respectively.

F.2.3 Shallower SAGAN architectures

We used the SAGAN architectures (Zhang et al., 2018), as the techniques of self-attention introduced in
SAGAN were used to obtain the state-of-art GAN results on ImageNet (Brock et al., 2019). In summary,
these architectures: (i) allow for attention-driven, long-range dependency modeling, (ii) use spectral
normalization (Miyato et al., 2018) on both G and D (efficiently computed with the power iteration method);
and (iii) use different learning rates for G and D, as advocated in (Heusel et al., 2017). The foremost is
obtained by combining weights, or alternatively attention vectors, with the convolutions across layers, so as
to allow modeling textures that are consistent globally–for the generator, or enforcing geometric constraints
on the global image structure–for the discriminator.

We used the architectures listed in Table 5 for CIFAR-10 and SVHN datasets, and the architectures described
in Table 6 for the experiments on ImageNet. The models’ parameters are initialized using the default
initialization of PyTorch.

For experiments with SAGAN, we used the hinge version of the adversarial non-saturating loss (Lim and Ye,
2017; Zhang et al., 2018):

LD = Ex∼pd max(0, 1−D(x)) + Ez∼pz max(0, 1 +D(G(z)) (69)
LG = −Ez∼pzD(G(z))., (70)

25



Self–Attention Block (d – input depth)

Input: t ∈ Rd×H×W

i: conv. (ker: 1×1, d→ bd/8c) ii: conv. (ker: 1×1, d→ bd/8c) iii: conv. (ker: 1×1, d→ d)
iv: softmax( (i) ⊗ (ii) )

Output: γ
(
(iv)⊗ (iii)

)
+ t

Table 4: Layers of the self–attention block used in the SAGAN architectures (see Tables 5 and 6), where
⊗ denotes matrix multiplication and γ is a scale parameter initialized with 0. The columns emphasize that
the execution is in parallel, more precisely, that the block input t is input to the convolutional layers (i)–(iii).
The shown row ordering corresponds to consecutive layers’ order, e.g. softmax is done on the product of the
outputs of the (i) and (ii) convolutional layers. The 1× 1 convolutional layers have stride of 1. For complete
details see Zhang et al. (2018).

Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (ker: 4×4, 128→ 256; stride: 1)
Spectral Normalization
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 256→ 128, stride: 2, pad: 1)

Spectral Normalization
Batch Normalization

ReLU
Self–Attention Block (128)

transposed conv. (ker: 4×4, 128→ 64, stride: 2, pad: 1)
Spectral Normalization
Batch Normalization

ReLU
Self–Attention Block (64)

transposed conv. (ker: 4×4, 64→ 3, stride: 2, pad: 1)
Tanh(·)

Discriminator
Input: x ∈ R3×32×32

conv. (ker: 4×4, 3→ 64; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
conv. (ker: 4×4, 64→ 128; stride: 2; pad: 1)

Spectral Normalization
LeakyReLU (negative slope: 0.1)

conv. (ker: 4×4, 128→ 256; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
Self–Attention Block (256)

conv. (ker: 4×4, 256→ 1; stride: 1)

Table 5: Shallow SAGAN architectures for experiments on SVHN and CIFAR-10, for the Generator (left)
and the Discriminator (right). The self-attention block is described in Table 4. We use the default PyTorch
hyperparameters for the Batch Normalization layer.

where consistent with the notation above, pd and pz denote the data and the latent distributions.

For the SE–A baseline we obtained best performances when ηG = 1× 10−4 and ηD = 4× 10−4, for G and
D, respectively. Similarly as noted for MNIST, using SVRE allows for using larger order of the step size on
the rest of the datasets, whereas SE–A with increased step size (ηG = 1× 10−3 and ηD = 4× 10−3 failed to
converge. In Table 2, ηG = 1× 10−3, ηD = 4× 10−3, and ηG = 5× 10−3, ηD = 8× 10−3, β1 = 0.3 for
SVRE and SVRE–VRAd, respectively. We did not use momentum for the vanilla SVRE experiments.

26



Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (ker: 4×4, 128→ 512; stride: 1)
Spectral Normalization
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 512→ 256, stride: 2, pad: 1)

Spectral Normalization
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 256→ 128, stride: 2, pad: 1)

Spectral Normalization
Batch Normalization

ReLU
Self–Attention Block (128)

transposed conv. (ker: 4×4, 128→ 64, stride: 2, pad: 1)
Spectral Normalization
Batch Normalization

ReLU
Self–Attention Block (64)

transposed conv. (ker: 4×4, 64→ 3, stride: 2, pad: 1)
Tanh(·)

Discriminator
Input: x ∈ R3×64×64

conv. (ker: 4×4, 3→ 64; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
conv. (ker: 4×4, 64→ 128; stride: 2; pad: 1)

Spectral Normalization
LeakyReLU (negative slope: 0.1)

conv. (ker: 4×4, 128→ 256; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
Self–Attention Block (256)

conv. (ker: 4×4, 256→ 512; stride: 2; pad: 1)
Spectral Normalization

LeakyReLU (negative slope: 0.1)
Self–Attention Block (512)

conv. (ker: 4×4, 512→ 1; stride: 1)

Table 6: Shallow SAGAN architectures for experiments on ImageNet, for the Generator (left) and the
Discriminator (right). The self–attention block is described in Table 4. Relative to the architectures used for
SVHN and CIFAR-10 (see Table 5), the generator has one additional “common” block (conv.–norm.–ReLU),
whereas the discriminator has additional “common” block as well as self–attention block (both of more
parameters).

F.2.4 Deeper ResNet architectures

We experimented with ResNet (He et al., 2015) architectures on CIFAR-10 and SVHN, using the architectures
listed in Table 8, that replicate the setup described in (Miyato et al., 2018) on CIFAR-10. For experiments with
ResNet, we used the hinge version of the adversarial non-saturating loss, Eq. 69 and 70. For this architectures,
we refer the reader to § G.3 for details on the hyperparameters, where we list the hyperparameters along with
the obtained results.
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G–ResBlock
Bypass:

Upsample(×2)
Feedforward:

Batch Normalization
ReLU

Upsample(×2)
conv. (ker: 3×3, 256→ 256; stride: 1; pad: 1)

Batch Normalization
ReLU

conv. (ker: 3×3, 256→ 256; stride: 1; pad: 1)

D–ResBlock (`–th block)
Bypass:

[AvgPool (ker:2×2 )], if ` = 1
conv. (ker: 1×1, 3`=1/128` 6=1 → 128; stride: 1)

Spectral Normalization
[AvgPool (ker:2×2, stride:2)], if ` 6= 1

Feedforward:
[ ReLU ], if ` 6= 1

conv. (ker: 3×3, 3`=1/128` 6=1 → 128; stride: 1; pad: 1)
Spectral Normalization

ReLU
conv. (ker: 3×3, 128→ 128; stride: 1; pad: 1)

Spectral Normalization
AvgPool (ker:2×2 )

Table 7: ResNet blocks used for the ResNet architectures (see Table 8), for the Generator (left) and the
Discriminator (right). Each ResNet block contains skip connection (bypass), and a sequence of convolutional
layers, normalization, and the ReLU non–linearity. The skip connection of the ResNet blocks for the Generator
(left) upsamples the input using a factor of 2 (we use the default PyTorch upsampling algorithm–nearest
neighbor), whose output is then added to the one obtained from the ResNet block listed above. For clarity we
list the layers sequentially, however, note that the bypass layers operate in parallel with the layers denoted as
“feedforward” (He et al., 2015). The ResNet block for the Discriminator (right) differs if it is the first block
in the network (following the input to the Discriminator), ` = 1, or a subsequent one, ` > 1, so as to avoid
performing the ReLU non–linearity immediate on the input.

Generator Discriminator

Input: z ∈ R128 ∼ N (0, I) Input: x ∈ R3×32×32

Linear(128→ 4096) D–ResBlock
G–ResBlock D–ResBlock
G–ResBlock D–ResBlock
G–ResBlock D–ResBlock

Batch Normalization ReLU
ReLU AvgPool (ker:8×8 )

conv. (ker: 3×3, 256→ 3; stride: 1; pad:1) Linear(128→ 1)
Tanh(·) Spectral Normalization

Table 8: Deep ResNet architectures used for experiments on SVHN and CIFAR-10, where G–ResBlock and
D–ResBlock for the Generator (left) and the Discriminator (right), respectively, are described in Table 7. The
models’ parameters are initialized using the Xavier initialization (Glorot and Bengio, 2010).
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IS FID

SE–A SVRE SVRE–VRAd SE–A SVRE SVRE–VRAd

MNIST 8.62 8.58 8.56 0.17 0.15 0.18
CIFAR-10 6.61 6.50 6.67 37.20 39.20 38.88

SVHN 2.83 3.01 3.04 39.95 24.01 19.40
ImageNet 7.22 8.08 7.50 89.40 75.60 81.24

Table 9: Best obtained IS and FID scores for the different optimization methods, using shallow architectures,
for a fixed number of iterations (see § F). The architectures for each dataset are described in: MNIST–Table 3,
SVHN and CIFAR-10–Table 5, and ImageNet–Table 6. The standard deviation of the Inception scores is
around 0.1 and is omitted. Although the IS metric gives relatively close values on SVHN due to the dataset
properties (see § F.1), we include it for completeness.

G Additional Experiments

G.1 Results on MNIST

The results in Table 2 on MNIST are obtained using 5 runs with different seeds, and the shown performances
are the averaged values. Each experiment was run for 100K iterations. The corresponding scores with the
standard deviations are as follows: (i) IS: 8.62±.02, 8.58±.08, 8.56±.11; (ii) FID: 0.17±.03, 0.15±.01,
0.18±.02; for SE–A, SVRE, and SVRE–VRAd, respectively. On this dataset, we obtain similar final
performances if run for many iterations, however SVRE converges faster (see Fig. 3). Fig. 5 illustrates
additional metrics of the experiments shown in Fig. 3.

G.2 Results with shallow architectures

Fig. 6 depicts the results on ImageNet using the shallow architectures described in Table 6, § F.2.3. Table 9
summarizes the results obtained on SVHN, CIFAR-10 and ImageNet with these architectures. Fig. 7 depicts
the SME metric (see § F.1.3) for the the SE–A baseline and SVRE shown in Fig. 3c, on SVHN.
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Figure 5: Stochastic, full-batch and variance reduced versions of the extragradient method ran on MNIST,
see § 4.1. *BatchE–A emphasizes that this method is not scaled with the number of passes (x-axis). The input
space is 1×28×28, see § F.2 for details on the implementation.
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Figure 6: Comparison between SVRE and the SE–A baseline on Imagenet, using the shallow architectures
described in Table 6. See § F.1 for details on the used IS and FID metrics.
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Figure 7: Average second moment estimate (see § F.1.3) on SVHN for the Generator (left) and the Discrimi-
nator (right), using the shallow architectures described in Table 5. The corresponding FID scores for these
experiments are shown in Fig. 3c.
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G.3 Results with deeper architectures

We observe that GAN training is more challenging when using deeper architectures and some empirical
observations differ in the two settings. For example, our stochastic baseline is drastically more unstable
and often does not start to converge, whereas SVRE is notably stable, but slower compared to when using
shallower architectures. In this section, all our discussions focus on deep architectures (see § F.2.4).

Stability: convergence of the GAN training. For our stochastic baselines, irrespective whether we use the
extragradient or gradient method, we observe that the convergence is notably more unstable (see Fig. 8) when
using the deep architectures described in § F.2.4. More precisely, either the training fails to converge or it
diverges at later iterations. When updating G and D equal number of times i.e. using 1 : 1 update ratio, using
SE–A on CIFAR-10 we obtained best FID score of 24.91 using ηG = 2× 10−4, ηD = 4× 10−4, β1 = 0,
while experimenting with several combinations of ηG, ηD, β1. Using exponential learning rate decay with
a multiplicative factor of 0.99, improved the best FID score to 20.70, obtained for the experiment with
ηG = 2 × 10−4, ηD = 2 × 10−4, β1 = 0. Finally, using 1 : 5 update ratio, with ηG = 2 × 10−4,
ηD = 2 × 10−4, β1 = 0 provided best FID of 18.65 for the baseline. Figures 8a and 8b depict the hyper-
parameter sensitivity of SE–A and SG–A, respectively. The latter denotes the alternating GAN training with
Adam, that is most commonly used for GAN training.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iterations ×105

50

100

150

200

250

300

Fr
éc

he
t I

nc
ep

tio
n 

Di
st

an
ce

G = 1×10 4, D = 4×10 4

G = 1×10 4, D = 1×10 3

G = 2×10 4, D = 2×10 4

G = 2×10 4, D = 4×10 4

G = 2×10 4, D = 1×10 3

G = 1×10 4, D = 4×10 4, 1 = 0.5
G = 1×10 4, D = 4×10 4, = 0.99
G = 2×10 4, D = 2×10 4, = 0.99
G = 1×10 4, D = 1×10 3, = 0.99
G = 2×10 4, D = 2×10 3, r = 1 : 5

(a) SE–A, CIFAR-10
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Figure 8: FID scores (lower is better) with different hyperparameters for the SE–A baseline on CIFAR10
(left) and the SG–A baseline on SVHN (right), using the deep architectures described in Table 8, § F.2.4.
SG–A denotes the standard stochastic alternating GAN training, with the Adam optimization method. Where
omitted, β1 = 0, see (56) where this hyperparameter is defined. With r we denote the update ratio of
generator versus discriminator: in particular 1 : 5 denotes that D is updated 5 times for each update of G. γ
denotes a multiplicative factor of exponential learning rate decay scheduling. In Fig. 8b, γ = 0.99 for all the
experiments. We observed in all our experiments that training diverged in later iterations for the stochastic
baseline, when using deep architectures.

We observe that SVRE is more stable in terms of hyperparameter selection, as it always starts to converge and
does not diverge at later iterations. Relative to experiments with shallower architectures, we observe that with
deeper architectures SVRE takes longer to converge than its baseline for this architecture. With constant step
size of ηG = 1× 10−3, ηD = 4× 10−3 we obtain FID score of 23.56 on CIFAR-10. Note that this result
outperforms the baseline when using no additional tricks (which themselves require additional hyperparameter
tuning). Fig. 9 depicts the FID scores obtained when training with SVRE on the SVHN dataset, for two
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Figure 9: Obtained FID (lower is better) scores for SVRE, using the deep architectures (see § F.2.4) on SVHN.
With s we denote the fixed random seed. The update ratio for all the experiments is 1 : 1. We illustrate our
results on the same plot (besides the reduced clarity) so as to summarize our observation that, contrary to the
SE–A baseline for these architectures, SVRE always converges, and does not diverge.
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Figure 10: Obtained FID (lower is better) scores for WS–SVRE, using the deep architectures (see § F.2.4)
on CIFAR-10, where the seed is fixed to 1 for all the experiments. With r we denote the update ratio of
generator versus discriminator: in particular 1 : 5 denotes that D is updated 5 times for each update of G. We
start from the best obtained FID score for the stochastic baseline, i.e. FID of 18.65 (see Table 2)–shown with
dashed line, and we continue to train with SVRE.
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different hyperparameter settings, using four different seeds for each. From this set of experiments, we
observe that contrary to the baseline that either did not converge or diverged in all our experiments, SVRE
always converges. However, we observe different performances for different seeds. This suggests that more
exhaustive empirical hyperparameter search that aims to find an empirical setup that works best for SVRE
or further combining SVRE with adaptive step size techniques are both promising research directions (see
our discussion below). Fig. 10 depicts our WS–SVRE experiment, where we start from a stored checkpoint
for which we obtained best FID score for the SE–A baseline, and we continue the training with SVRE. It is
interesting that besides that the baseline diverged after the stored checkpoint, SVRE further reduced the FID
score. Moreover, we observe that using different update ratios does not impact much the performance, what
on the other hand was necessary to make the baseline algorithm converge.
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Figure 11: Average second moment estimate (SME, see § F.1.3) on CIFAR-10 for the Generator (left) and
the Discriminator (right), using the deep architectures described in Table 8. The obtained FID scores for these
experiments are shown in Fig. 8a, where we omit some of the experiments for clarity. All of the baseline
SE–A experiments diverge at some point, what correlates with the iterations at which large oscillations of
SME appear for the Discriminator. Note that the SE–A experiments were stopped after the algorithm diverges,
hence the plotted SME is up to a particular iteration for two of the experiments (shown in blue and orange).
The SE–A experiment with γ = 0.99 diverged at later iteration relative to the experiments without learning
rate decay, and has lower SME.

Second moment estimate (SME). Fig. 11 depicts the second moment estimate (see § F.1.3) for the
experiments with deep architectures. We observe that: (i) the estimated SME quantity is more bounded and
changes more smoothly for SVRE (as we do not observe large oscillations of it as it is the case for SE–A);
as well as that (ii) divergence of the SE–A baseline correlates with large oscillations of SME, in this case,
observed for the Discriminator. Regarding the latter, there exist larger in magnitude oscillations of SME (note
that the exponential moving average hyperparameter for computing SME is γ = 0.9, see § F.1.3).

Conclusion & future directions. In summary, we observe the following most important advantages of
SVRE when using deep architectures: (i) consistency of convergence, and improved stability; as well as
(ii) reduced number of hyperparameters. Apart from the practical benefit for applications, the former could
allow for a more fair comparison of GAN variants. The latter refers to the fact that SVRE omits the tuning
of the sensitive (for the stochastic baseline) β1 hyperparameter (see (56)), as well as r and γ–as training
converges for SVRE without using different update ratio and step size schedule, respectively. It is important
to note that the stochastic baseline does not converge when using constant step size (i.e. when SGD is used
instead of Adam). In our experiments we compared SVRE that uses constant step size, with Adam, making
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the comparison unfair toward SVRE. Hence, our results indicate that SVRE can be further combined with
adaptive step size schemes, so as to obtain both stable GAN performances and fast convergence when using
these architectures. Nonetheless, the fact that the baseline either does not start to converge or it diverges later
makes SVRE and WS–SVRE a promising approach for practitioners using these deep architectures, whereas,
for shallower ones, SVRE speeds up the convergence and often provides better final performances.
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