
Meta-Curvature: Supplementary Materials

Anonymous Author(s)
Affiliation
Address
email

1 Meta-training algorithm1

Alg. 1 shows the details of the algorithm to train meta-curvature matrices and the initial model param-2

eters. To avoid cluttered notation, we assumed the model has only one layer and it is straightforward3

to extend to multiple layers.4

2 Case study5

In this section, we provide a case study of the linear regression example. Let Xtr,Xval,Xnew ∈ Rm×p6

training, validation, and test set and their targets are Ytr,Yval,Ynew ∈ Rm. With the model’s7

parameter θ ∈ Rp, a typical loss function for the linear regression is defined as follows.8

J(θ) =
1

2
‖Y −Xθ‖2. (1)

The gradient w.r.t the model’s parameter θ is9

∇θJ(θ) = −X>(Y −Xθ). (2)

Given the meta-curvature matrix, M, a fixed inner learning rate α, then the meta-objective function is10

Jval(θ) =
1

2
‖Yval −Xval(θ

tr)‖2 (3)

Following the derivation from the main text and given the new test set, we perform one inner and11

outer optimization steps. And the transformed gradient for the new test set is as follow.12

Mnew∇θJnew(θ) (4)

= M∇θJnew(θ) + β
(
∇θJtr(θ)

>∇θJnew(θ)
)
α∇θJval(θ

tr) (5)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)

]
α∇θJval(θ

tr) (6)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)

]
α
[
X>val(Yval −Xvalθ

tr)
]

(7)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)

]
α
[
X>valYval −X>valXval(θ − αMX>tr (Ytr −Xtrθ))

]
(8)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)︸ ︷︷ ︸

A

]
[
αX>val(Yval −Xvalθ)︸ ︷︷ ︸

B

−α2X>valXval︸ ︷︷ ︸
C

MX>tr (Ytr −Xtrθ)︸ ︷︷ ︸
D

]
. (9)

The term A is the gradient similarity term, and in linear regression case, it is defined as a bilinear form13

e.g. x>Ay, where A = XtrX
>
new. It is multiplied by both training and test residuals. A is related to14

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Algorithm 1 Training MAML with the meta-curvature for few-shot supervised learning
Input: task distribution p(T ), learning rate α, β
Initialize Mo,Mi,Mf = I
while not converged do

Sample batch of tasks τi ∼ p(T )
for all τi do do
θτi = θ − αMmc∇Lτitr (θ) {Assuming one gradient step}

end for
θ ← ADAM

(
θ, β,∇θ

∑
τi
Lτival(θ

τi)
)

Mo ← ADAM
(
Mo, β,∇Mo

∑
τi
Lτival(θ

τi)
)

Mi ← ADAM
(
Mi, β,∇Mi

∑
τi
Lτival(θ

τi)
)

Mf ← ADAM
(
Mf , β,∇Mf

∑
τi
Lτival(θ

τi)
)

end while

Table 1: Few-shot regression results on sinusoidal functions.

Method 5-shot 10-shot 20-shot

MAML 0.686 ± 0.070 0.435 ± 0.039 0.228 ± 0.024
Meta-SGD 0.482 ± 0.061 0.258 ± 0.026 0.127 ± 0.013
LayerLR 0.528 ± 0.068 0.269 ± 0.027 0.134 ± 0.014
MC1 0.426 ± 0.054 0.239 ± 0.025 0.125 ± 0.013
MC2 0.405 ± 0.048 0.201 ± 0.020 0.112 ± 0.011

covariance matrix, but between training set and the new test set. The term B is the validation gradient15

term. The terms C and D correspond to O(α2). Since the loss function of the linear regression has a16

quadratic form and its derivative has a linear form. Therefore, the Taylor expansion of the derivative17

has up to α2 order. The term D is the transformed gradient and the term C is a covariance matrix of18

validation dataset (assuming it’s centered).19

3 Few-shot regression20

Experimental setup We used the same experimental setups in [1]. During training and testing, the21

amplitude and the phase vary within [0.1, 5.0] and [0, π] respectively, and data points are sampled22

from uniform distribution [−5, 5]. We used one gradient step with the fixed learning rate 0.01 and23

Adam was used for meta-training with the outer loop learning rate 0.001. We used the same network24

architecture, which has two 40 dimension fully connected layers with ReLU activation. We sampled25

25 tasks for every iterations and trained 70000 iterations. We reported the performance from the26

trained model that had the minimum loss value. [1] reported the MSE for 5-shot setting, and we could27

reproduced the results. [2] has slightly different settings, so the MSE are not directly comparable to28

theirs.29

Qualitative results: We provide qualitative results of few-shot regression task on sinusoidal functions30

in Figure 1. The star shape markers are the few data points for training, and we draw the curves based31

on each methods, MAML, Meta-SGD, and the proposed MC2. The left column is 5-shot and the32

right column is 10-shot experiments.33

4 Few-shot classification on Omniglot dataset34

We used the same experimental setups in [1]. Out of 1623 characters, we used 1100 characters for35

training, 100 characters for validation, and remaining 423 characters for testing. The network archi-36

tecture is 4 convolutional layers with 64 filters and 1 fully connected layer for the final classification.37

We only used one inner gradient step with 0.4 learning rate for all meta-curvature experiments for38

training and testing. The batch size was set to 32 (5-way) and 16 (20-way), and outer loop learning39

rate is 0.001 and we trained 60000 iterations.40

2



5 Few-shot classification on miniImagenet and tieredImagenet dataset41

5.1 baseline CNNs42

For both 5-way 1-shot and 5-way 5-shot classification, we set the batch size 4 for 1 step experiments43

and 2 for 5 step experiments. 15 examples per class were used for evaluating the model after updates.44

In total, we ran 100,000 iterations for 1 step experiments and 200,000 iterations for 2 step experiments.45

The inner/outer learning rates are β = 0.001, α = 0.01. We apply dropout rate 0.2 in the final linear46

layer for only MC1 and MC2 (other methods did perform worse with dropout). For cutout data47

augmentation, we cut out 36× 36 random crops.48

5.2 WRN-28-10 features and MLP49

We used the WRN-28-10 features provided by [4]. Although they also provide multi-view features50

(average of center and corner crops), we used a feature from the image center. The dimension of51

feature was 640 and we used one hidden layer (2048 units, ReLU activation function) followed52

by a softmax classifier. We used one gradient step for 1-shot experiments and 5 steps for 5-shot53

experiments. For 5-shot experiments, we used separate meta-curvature matrices for each iterations.54

Every training iterations, we sample random 16 tasks, and set the initial learning rate 0.005 and55

decay the learning rate down to 0.0001 by using a cosine annealing schedule. And we trained 3000056

iterations and used early stopping scheme to report the final performance.57

6 Few-shot reinforcement learning58

The goal of few-shot learning in reinforcement learning (RL) is that an agent can quickly adapt to a59

new task with little prior experience. A distinct feature from the few-shot supervised learning task is60

that the RL objective is not generally differentiable. Therefore, we use policy gradient methods to61

estimate the gradient both for inner and outer loop gradients. In addition, policy gradient methods62

are generally on-policy, which means that the training data depends on the agent’s initial policy.63

Therefore, the initial policy (with the meta-learned initial parameters) needs to explore as diverse64

experiences as possible to get proper feedback from a new task. We described the method and65

interpretation with respect to supervised classification tasks, but it can be easily modified to RL66

setting.67

6.1 Experimental setup68

We tested our method on complex high-dimensional locomotion tasks with the MuJoCo simulator69

[7]. Most of the settings are based on [1] for fair comparison. We consider two simulated robots70

(HalfCheetah and Walker2d) and two types of task environments (to run in a forward/backward71

direction or a particular velocity). The network architecture is two hidden layers of size 100 with72

ReLU activations for both. We used the standard linear feature baseline estimator. We evaluated73

the performance after one policy gradient step with 20 trajectories. We compare against MAML-74

TRPO and MAML-PPO. In the original MAML, TRPO [5] was used as the outer loop optimizer75

but we found out that using PPO [6] consistently outperformed the TRPO. MAML-PPO is also76

computationally more efficient since MAML-TRPO requires third-order gradients (or computed by77

hessian-vector product instead). To the best of our knowledge, MAML-PPO has not been tested on78

this setup. We evaluated two variations of meta-curvature similar to the classification setup, MC1 and79

MC2, and used PPO as the meta-optimizer. Note that this is a preliminary result, so this is not by80

no means conclusive. We provide this information for the readers who might be interested in this81

direction.82

6.2 Experimental results83

Fig. 2 shows the rewards obtained after one step policy gradient update. In the HalfCheetahDir84

experiment, our methods outperformed both strong baselines. MC1-PPO reached the same perfor-85

mance of a strong baseline, MAML-PPO three times faster. In HalfCheetahVel and Walker2dDir86

experiments, both MC2-PPO and MAML-PPO reached nearly the same performance, but in a more87

sample efficient manner. For Walker2dVel, MAML-TRPO showed the fastest convergence at the88

3



earlier meta-training stage, but our meta-curvatures outperformed eventually. In this setting, most of89

the rewards come from the survival reward (the agent gets 1.0 reward for every step if they do not90

fall over). All methods were able to survive throughout the episode, but our methods run better at a91

given velocity. One thing we noticed that it stops obtaining more rewards and starts to degrade the92

performance in Walker2dDir experiment. The recently proposed approach [3] may alleviate this issue93

through better credit assignment in the meta-gradients. Combining it would be interesting direction94

to be explored.95

7 Visualization96

Fig. 3 is a visualization of meta-trained meta-curvature matrices for 5-way 1-shot classification task.97

To visualize the full matrix, Mmc, we picked up the matrices from the first convolutional layer in the98

small model (filter size 64). Therefore with the 3 color input channels, Mf ∈ R9×9, Mi ∈ R3×3,99

Mo ∈ R64×64, and Mmc ∈ R1728×1728. The diagonal elements are high values, mostly > 0.5.100

Interestingly, there are also a lot of off-diagonal elements > 0.5 or < −0.5. Thus, they capture the101

dependencies between the gradients.102

References103

[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast104

Adaptation of Deep Networks. In International Conference on Machine Learning (ICML), 2017.105

[2] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to Learn Quickly for106

Few Shot Learning. arXiv:1707.09835, 2017.107

[3] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal108

meta-policy search. In International Conference on Learning Representations (ICLR), 2019.109

[4] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-110

dero, and Raia Hadsell. Meta-Learning with Latent Embedding Optimization. In International111

Conference on Learning Representations (ICLR), 2019.112

[5] John Schulman, Sergey Levine, Philipp Moritz, and Pieter Abbeel Michael I. Jordan. Trust region113

policy optimization. In International Conference on Machine Learning (ICML), 2015.114

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal115

Policy Optimization Algorithms. arXiv:1707.06347, 2017.116

[7] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based117

control. In International Conference on Intelligent Robots and Systems (IROS), 2012.118

4



Figure 1: Qualitative results of few-shot regression on sinusoidal functions. The left column - 5 shot,
The right column - 10 shot

5



Figure 2: Reinforcement learning experimental results. Y-axis: rewards after the model updates.
X-axis: meta-training steps. We performed at least three runs with random seeds and the curves are
averaged over them.

Figure 3: Visualization of meta-curvature matrices. We clipped the values [−1, 1] for better visualiza-
tion (Best viewed in color)

6


	Meta-training algorithm
	Case study
	Few-shot regression
	Few-shot classification on Omniglot dataset
	Few-shot classification on miniImagenet and tieredImagenet dataset
	baseline CNNs
	WRN-28-10 features and MLP

	Few-shot reinforcement learning
	Experimental setup
	Experimental results

	Visualization

