
Appendix A

In the following, we will provide LDA’s complete conditional distibutions for πd, kdn and β, but
firstly, let us remind ourselves of LDA’s generative process:

1. Draw topics proportions πd ∼ Dir(α)
2. For each word xdn:

(a) Draw a topic assignment kdn ∼ Cat(πd)

(b) Draw a word xdn ∼ Cat(β>kdn)

Here, α is a K-dimensional vector of Dirichlet concentration parameters, where K is the number of
topics, πd is K × 1 vector of topic proportions, and β is a K × V matrix where V is the number of
words in a vocabulary. Every βij specifies the conditional probability of a word j given a topic i,
s.t.
∑

j βij = 1. We will use one-hot encoding for words and topics such that xdn is a V × 1 vector,
and kdn is a K × 1 vector. We will drop the indices of documents and words, d and n, to denote the
collection of variables. For example, x is a collection of words across the dataset.

1. The conditional distribution p(πd | kd) is the posterior of a Dirichlet-categorical model, and it can
be shown to take the form:

p(πd | kd) = Dir

(
πd;α+

∑
n

kdn

)

∝ exp

(α+
∑
n

kdn − 1

)>
lnπd

 .

(1)

2. The conditional distribution over topic assignments is given by:

p(kdn | xdn,πd,β) ∝ p(xdn | πd,kdn,β)p(kd | πd,β)

= p(xdn | kdn,β)p(kdn | πd)

=
(
k>dnβxdn

) (
k>dnπd

)
= exp

(
k>dn lnβxdn + k>dn lnπd

)
.

(2)

3. Finally, we derive the posterior distribution of β assuming a Dirichlet prior over the rows of β, i.e.,
p(βk) = Dir(η) for every k = 1, . . . ,K:

p(β | x,k) ∝ p(x | β,k)p(β | k)

=

(∏
dn

k>dnβxdn

)(∏
k

p(βk)

)

=

(∏
dn

k>dnβxdn

)(∏
k

1

B(η)
∏
i

βηi−1
ki

)

= exp

(∑
dn

k>dn lnβxdn + (η − 1)>
∑
k

lnβk −K lnB(η)

)
.

(3)

Here, B is a multivariate beta function.

Appendix B

Given a set of assumptions about the conditional distributions of logistic LDA, we would like to
derive the joint conditional distribution over π, k and θ. For that, we can use Brook’s lemma [1]:
Brook’s Lemma. Let p(y) > 0 for all y. Then for any y and y′ we have

p(y)

p(y′)
=
∏
i

p(yi | y1, ...,yi−1,y′i+1, ...,y
′
M)

p(y′i | y1, ...,yi−1,y′i+1, ...,y
′
M)

.

1

Logistic LDA specifies the following conditionals:

p(πd | kd) ∝ exp

(α+
∑
n

kdn − 1

)>
lnπd

 , (4)

p(kdn | xdn,πd,θ) ∝ exp
(
k>dng(xdn,θ) + k

>
dn lnπd

)
, (5)

p(θ | x,k) ∝ exp

(
r(θ) +

∑
dn

k>dng(xdn,θ)

)
. (6)

Using Brook’s lemma:

p(π,k,θ | x) ∝ p(π | k′)p(k | π,θ′,x)p(θ | k,x)
p(π′ | k′)p(k′ | π,θ′,x)p(θ′ | k,x)

∝ exp

(
(α− 1)>

∑
d

lnπd +
∑
dn

k>dn lnπd +
∑
dn

k>dng(xdn,θ) + r(θ)

) (7)

This is easiest to see if we chose θ′ such that g(xdn,θ
′) = 0, which Brook’s lemma allows us to do.

In case of logistic LDA with labels, we have a slightly different set of conditionals:

p(cd | πd) ∝ exp
(
λc>d lnπd

)
, (8)

p(πd | kd, cd) ∝ exp

(α+
∑
n

kdn − 1 + λcd

)>
lnπd

 , (9)

p(kdn | xdn,πd,θ) ∝ exp
(
k>dng(xdn,θ) + k

>
dn lnπd

)
, (10)

p(θ | x,k) ∝ exp

(
r(θ) +

∑
dn

k>dng(xdn,θ)

)
. (11)

Similarly to Eq. 7, we can derive a joint distribution as:

p(π,k, c,θ | x) ∝ p(π | k′)p(k | π,θ′,x)p(c | π)p(θ | k,x)
p(π′ | k′)p(k′ | π,θ′,x)p(c′ | π)p(θ′ | k,x)

∝ exp

(
(α− 1)>

∑
d

lnπd +
∑
dn

k>dn lnπd + λ
∑
d

c>d lnπd +
∑
dn

k>dng(xdn,θ) + r(θ)

)

Appendix C

We assume the following parameterizations of the variational distributions:

q(cd) = c
>
d p̂d

q(πd) = Dir(πd; α̂d)

q(kdn) = k
>
dnp̂dn

(12)

For now, we will fix θ to its point estimate θ̂ and derive the optimal variational densities for other
latent variables. Our derivation is based on the coordinate ascent variational inference algorithm
(CAVI) [2].

1. Optimal variational density for πd:

q∗(πd) ∝ exp

(
Eq(kdn),q(cd)

[∑
n

k>dn lnπd + (α− 1)> lnπd + λc>d lnπd

])

= exp

(
(α+

∑
n

Eq(kdn)kdn + λEq(cd)cd − 1)> lnπd

)

= exp

(
(α+

∑
n

p̂dn + λp̂d − 1)> lnπd

) (13)

2

Thus, the CAVI update for the variational parameter α̂ is:

α̂ = α+
∑
n

p̂dn + λp̂d. (14)

2. Optimal variational density for kdn:

q(kdn) ∝ exp
(
Eθ∼q(θ),πd∼q(πd)

[
k>dn lnπd + k

>
dng(xdn,θ)

])
= exp

(
k>dnEq(πd) [lnπd] + k

>
dng(xdn, θ̂)

)
= exp

(
k>dn(ψ(α̂d)− ψ

(∑
k

α̂dk

)
+ g(xdn, θ̂))

) (15)

We now see that ln p̂dn ∝ exp(ψ(α̂d)− ψ(
∑

k α̂dk) + g(xdn, θ̂)). After renormalizing:

p̂dn =
exp(ψ(α̂d) + g(xdn, θ̂))∑
k exp(ψ(α̂dk) + gk(xdn, θ̂))

. (16)

3. Optimal variational density for cd:

q(cd) ∝ expEπd∼q(πd)

[
λc>d lnπd

]
= exp

(
λc>d

(
ψ(α̂d)− ψ(

∑
k

α̂dk)

))
(17)

Thus, the update for p̂d becomes:

p̂d =
exp (λψ(α̂d)∑
k exp (λψ(α̂dk))

. (18)

4. To find the updates for the neural network parameters, we now fix p̂dn and search for θ̂ that
maximises the following:

q(θ) ∝ expEkdn∼q(kdn)

[
r(θ) +

∑
dn

k>dng(xdn,θ)

]

= exp

(
r(θ) +

∑
dn

Eq(kdn)

[
k>dn
]
g(xdn,θ)

)

= exp

(
r(θ) +

∑
dn

p̂>dng(xdn,θ)

) (19)

Appendix D

In the following, we describe further approximations which will make it easier to implement our
approach in practice. In particular, we would like to be able to update α̂d and θ̂ after observering just
a single item (or a mini batch of data points) and not have to process large collections of items or
entire datasets in each iteration.

For every document, we keep an estimate of the expected topic counts from which we can calculate
α̂d in Eq. 14:

p̄d =
∑
n

p̂dn. (20)

Assume that at training step t we update p̂dn, then we would also want to perform the following
update:

p̄td = p̄t−1d + p̂tdn − p̂t−1dn (21)

3

Unfortunately, this requires keeping in memory the previous value of p̂dn, which is too costly for
datasets containing a lot of items. Instead, in every update of p̄d we subtract an equal fraction of all
p̂dn:

p̄td = p̄t−1d + p̂tdn − p̄t−1d /Nd. (22)

Using Jensen’s inequality, let us bring the regularizer into a form which is more amenable to stochastic
approximation:

r(θ,x) = γ · 1> ln
∑
dn

exp g(xdn,θ)

= γ
∑
k

ln
∑
dn

rdnk
rdnk

exp gk(xdn,θ)

≥ γ
∑
k

∑
dn

rdnk ln
exp gk(xdn,θ)

rdnk

(23)

Eq. 23 provides us with a lower bound on the regularizer for arbitrary rdnk with
∑

dn rdnk = 1 for
every k. The bound is tight when

rdnk =
exp gk(xdn,θ)∑
dn exp gk(xdn,θ)

. (24)

Intuitively, rdnk is the responsibility of a word xdn for topic k. If it is large, a word is associated
more strongly with a topic than other words in the dataset.

With the approximation to the regularizer, we obtain a simpler form for the loss function of θ̂:

−`(θ̂) =
∑
dn

p̂>dng(xdn, θ̂) + γ · 1> ln
∑
dn

exp g(xdn, θ̂)

≥
∑
dn

p̂>dng(xdn, θ̂) + γ
∑
dn

r>dng(xdn, θ̂)− γ
∑
dn

r>dn ln rdn

=
∑
dn

p̂>dng(xdn, θ̂) + γ
∑
dn

r>dng(xdn, θ̂) + const

(25)

Here, we assumed that rdnk is computed based on a fixed value of neural network parameters and
thus is a constant with respect to θ. If rdn is such that the bound in Eq. 23 is tight, then the gradient
at θ̂ will be the same as for the original loss.

Unfortunately, the denominator in Eq. 24 depends on the entire dataset. We therefore propose to
estimate the denominator with a running average. If at training step t we observe xdn, our estimate r̄
is updated as follows:

r̂∗dn = exp g(xdn, θ̂), r̄t+1 = r̄t + ε (M r̂∗dn − r̄t) , (26)

where M =
∑

dNd is the number of words in the document. With this we can estimate responsibili-
ties as r̂dn = r̂∗dn/r̄, and stochastically approximate the loss with

−`(θ̂)/M ≈ p̂>dng(xdn, θ̂) + γ · r̂>dng(xdn, θ̂). (27)

This corresponds to a cross-entropy loss, where the targets of the neural network are given by
p̂dn + γ · r̂dn. The full algorithm for stochastic training of logistic LDA (supervised version) is given
in Algorithm 1. An inference procedure which can be used at test time is given in Algorithm 2.

4

Algorithm 1 Training step given a single word
xdn and a document label cd. Before training,
p̄d = 0 and r̄ = M

K 1. Nd is the number of words
in each document and M is the total number of
words in the dataset.

Require: xdn, cd, θ̂, p̄d, r̄, Nd,M

% Compute logits and fix their values
fdn ← f(xdn, θ̂)

% Compute beliefs over latent variables
α̂d ← α+ p̄d + λcd
p̂dn ← softmax (fdn + ψ(α̂d))

% Compute responsibilities
r̂∗dn ← softmax (fdn)
r̂dn ← r̂∗dn/r̄

% Update neural network’s parameters
θ̂ ← θ̂−ε∇θcrossent

(
p̂dn + γ · r̂dn, f(xdn, θ̂)

)
% Update statistics
p̄d ← p̄d + p̂dn − p̄d/Nd
r̄ ← r + r̂∗dn − r̄/M

return θ̂, p̄d, r̄

Algorithm 2 Stochastic inference, estimating
topic proportions by looking at words one by
one. This algorithm is expected to be called
many times with words sampled from the cor-
pus.

Require: xdn, p̄d
% Beliefs over class labels
p̂d ← 1/K

% Beliefs over topic proportions
for i from 1 to Niter do
α̂d ← α+ p̄d + λp̂d
p̂d ← softmax(λψ(α̂d))

end for

% Make prediction for word
p̂dn ← softmax

(
f(xdn, θ̂) + ψ(α̂d)

)
% Update document’s topic counts
p̄d ← p̄d + p̂dn − p̄d/Nd

return p̄d, p̂d, p̂dn

Appendix E

For supervised models, we used random search across the following range of hyperparameters:

– number of hidden units in up to three hidden layers:
128, 256, 512, 1024, [1024 512], [512 256], [256 128], [512 256 128]

– initial learning rate: 0.001, 0.003
– exponential learning rate decay every 2000 iterations: 0.5 to 0.9
– batch size: 8 to 128
– number of training steps: 50000 to 200000
– Dirichlet prior parameter (α): 0.5 to 10

For models trained with a mean-field variational inference (Section 5.1 in the main text):

– λ: 10.0 to 8000.0
– γ: 0.1 to 1000.0
– number of variational iterations (Niter): 1 to 5

For models trained with the empirical loss (Section 5.2 in the main text):

– λ: 1.0
– number of variational iterations (Niter): 1 to 20

Twitter

The Twitter model was trained with a stochastic approximation of mean-field variational inference as
given in Algorithm 1 for approximately 20 minutes on a CPU. For all models evaluated in Table 1 of
the main text, we randomly sampled 100 sets of hyperameters. A single model was chosen based on
a validation set and evaluated on the test set. The model which achieved 38.7% on the author-level
community prediction used the following hyperparameters:

5

– number of hidden units: [256, 128]
– initial learning rate: 0.0005
– exponential learning rate decay every 2000 iterations: 0.8
– batch size (number of items): 64
– number of training iterations: 60000
– λ: 2000.0
– α: 0.5
– γ: 0.25

Pinterest

The Pinterest model was trained with a stochastic approximation of mean-field variational inference
as given in Algorithm 1 for 5 hours on a CPU with the following hyperparameters:

– number of hidden units: [256, 128]
– initial learning rate: 0.001
– exponential learning rate decay every 2000 iterations: 0.8
– batch size (number of items): 8
– number of training iterations: 50000
– λ: 8000.0
– α: 5.0
– γ: 20.0

The unsupervised logistic LDA model for Pinterest had quite a different range of suitable hyperpa-
rameters. We used the model with the following hyperparameters:

– number of topics: 14
– number of hidden units: [128]
– initial learning rate: 0.0001
– exponential learning rate decay every 2000 iterations: 0.6
– batch size (number of items): 4
– number of training iterations: 60000
– λ: 1.
– α: 1.0
– γ: 1000.0

20-Newsgroups

The logistic LDA model that achieves 15.6% error rate on 20-Newsgroups was trained for 11h on a
CPU with the following hyperparameters:

– number of hidden units: [1024 512]
– initial learning rate: 0.001
– exponential learning rate decay every 2000 iterations: 0.7
– number of documents in a batch: 16
– number of training iterations: 100000
– number of variational iterations (Niter): 20
– α, λ: 1.

For the unsupervised logistic LDA trained with a general mean-field VI objective, the range of suitable
hyperparameters is quite different. For example, we noticed that it requires lower learning rates and
stronger regularization in the form of γ from Eq. 27. Thanks to the stochastic approximations, the
unsupervised model takes minutes to train on a CPU. To produce the resutls in Table 3 from the main
text and tables in Appendix H, we used logistic LDA with the following hyperparameters:

6

– number of hidden units: 128

– initial learning rate: 0.0005

– exponential learning rate decay every 2000 iterations: 0.8

– number of documents in a batch: 16

– number of training iterations: 50000

– α: 5.

– λ: 1.

– γ: 100.

Appendix F

Twitter

For the training data, we first collected English tweets from 200 000 Twitter users with more than
5,000 followers. The creation dates of the tweets ranged from October 8 to October 10, 2018. Tweets
with less than 3 tokens were ommited. Authors were clustered and assigned to communities based
on their follower graph. The communities were manually annotated based on a sample of of tweets
from the community. We retained 300 communities containing 66,455 authors and discarded the rest,
leaving a dataset of 1.45 million tweets.

The test data was generated by sampling 30,000 tweets created between July 1 and August 1, 2018.
As for the training data, tweets with fewer than 3 tokens were filtered out. Each tweet is manually
annotated with a topic from a taxonomy of over 400 topics. After only retaining tweets corresponding
to one of the 300 communities, we were left with 18,864 tweets. For each of the 18,765 authors of
these tweets, we sampled a number of additional unlabeled tweets, yielding a total of 3.14 million
tweets.

Tweet text was preprocessed by removing accents, replacing certain characters (e.g., "æ" becomes
"ae"), and lowercasing words, but no stemming was applied.

Pinterest

The Pinterest dataset [5] contains around 46,000 boards divided almost equally among 468 categories.
We noticed that board labels are often noisy and sometimes incorrect. Therefore, we manually selected
a subset of 90 categories, which we merged into 14 broader classes: food, animals, women_fashion,
men_fashion, garden, architecture, wedding, cars, hair, home, travel, DIY, fitness, and fashion. This
resulted in a set of 8,989 boards, which we splitted into 7,191 and 1,798 boards for training and
testing. On average, every board contains 58 pinned images. We only kept images with a height to
width ratio between 0.4 and 2.0, and rescaled every image to 224× 224 pixels.

20-Newsgroups

We used the preprocessed ‘all-terms’ version of 20 Newsgroups [3], where attachments, PGP keys,
duplicates and empty messages were removed. This version was chosen for our results to be
comparable with the results of Dai and Le [4]. Note that scores can differ greatly when using other
variants of 20 Newsgroups, e.g., versions with headers, footers or quotes removed. Unfortunately,
the preprocessing done by Cardoso-Cachopo [3] also removed special characters, punctuation,
capitalization and numbers. This prevented us to restore sentences and, for instance, reduce the noise
coming from mishandling contractions. In order for us to use GloVe word embeddings, we further
processed the documents by applying tokenization and stemming.

7

Appendix G

Figure 1: Sample of pins from test Pinterest boards covering most of the topics. Board labels
and predictions are on the left. Pins predictions and probabilities from logistic LDA and MLP
are given below every image. There are some examples where MLP outputs seemingly improper
predictions, e.g. ‘food’ in the top row, due to its lack of context. The same predictions we would
get from our model if we let p̂dn ∝ f(xdn,θ) instead of p̂dn ∝ f(xdn,θ) + ψ(α̂d). Thus, having a
context-dependent bias in the form of α̂d leads to more meaningful predictions.

8

Appendix H

An unsupervised logistic LDA trained on the Pinterest data discovers topics as illustrated in Figure 2.
Here, we classified every pin as belonging to one of the 14 topics, sorted the pins according to
p(k | x), and selected the top-9 pins per topic. The occasional duplicates come from the fact that the
same image can be pinned multiple times.

Figure 2: Examples of nine topics discovered by unsupervised logistic LDA in the Pinterest dataset.

Appendix I

In the unsupervised 20-Newsgroups experiments, we used the vocabulary provided by Srivastava
and Sutton [10]. Miao et al. [8] used identical settings. For direct comparison, we also chose the
same number of topics, namely 50. We cannot use perplexity or topic coherence to compare logistic
LDA with ProdLDA [10] and GSM Miao et al. [8] since our model does not model the distribution
of inputs needed for those metrics. Therefore, we can only qualitatively evaluate the models by
inspecting the topics. For ProdLDA [10] and GSM Miao et al. [8], a topic is a distribution over words,
so the top-10 words in Table 3 and Table 4 are sorted based on p(x | k). On the other hand, logistic
LDA models the probability of topics given a word p(k | x). Thus, we can classify every word in the

9

vocabulary as belonging to some topic and sort the words within each topic according to the topic
probability. In Table 1 and Table2 we list top-10 of those words.

Table 1: Selected topics discovered by unsupervised logistic LDA represented by top-10 words
1 bmw, motor, car, honda, motorcycle, auto, mg, engine, ford, bike
2 christianity, prophet, atheist, religion, holy, scripture, biblical, catholic, homosexual, religious, atheist
3 spacecraft, orbit, probe, ship, satellite, rocket, surface, shipping, moon, launch
4 user, computer, microsoft, monitor,programmer, electronic, processing, data, app, systems
5 congress, administration, economic, accord, trade, criminal, seriously, fight, responsible, future

Table 2: Five randomly selected topics discovered by logistic LDA represented by top-10 words
1 homicide, city, south, area, national, north, department, since, highest, disease
2 marry, mother, father, love, lord, mary, soul, hell, author, life
3 angeles, philadelphia, chicago, vancouver, toronto, pittsburgh, colorado, detroit, university, nhl
4 science, editor, english, letter, journal, art, together, first, award, study
5 gif, jpeg, pixel, font, postscript, unix, email, server, binary, directory

Table 3: Five randomly selected topics discovered by ProdLDA [10] represented by top-10 words
1 motherboard, meg, printer, quadra, hd, windows, processor, vga, mhz, connector
2 armenian, genocide, turks, turkish, muslim, massacre, turkey, armenians, armenia, greek
3 voltage, nec, outlet, circuit, cable, wiring, wire, panel, motor, install
4 season, nhl, team, hockey, playoff, puck, league, flyers, defensive, player
5 israel, israeli, lebanese, arab, lebanon, arabs, civilian, territory, palestinian, militia

Table 4: Selected topics discovered by GSM [8] represented by top-10 words
1 space, satellite, april, sequence, launch, president, station, radar, training, committee
2 god, atheism, exist, atheist, moral, existence, marriage, system, parent, murder
3 encryption, device, technology, protect, americans, chip, use, privacy, industry, enforcement
4 player, hall, defensive, team, average, career, league, play, bob, year
5 science, theory, scientific, universe, experiment, observation, evidence, exist, god, mistake

To quantitatively evaluate the quality of discovered topics, we computed the NPMI topic coherence
scores [7] of our model and compared them to the scores published by Miao et al. [8]. The results are
given in the table below. We find that logistic LDA outperforms other topic models, but performs
similar to document models which represent topics implicitly and are thus more difficult to interpret.

K = 50 K = 200 Explicit topics Generative
LogisticLDA 0.215 0.179 X ×

OnlineLDA [6] 0.131 0.112 X X
NVDM [9] 0.186 0.157 × X

NVLDA [10] 0.110 0.110 X X
ProdLDA [10] 0.240 0.190 × X

References
[1] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal

Statistical Society. Series B (Methodological), 36(2):pp. 192–236.

[2] Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg.

[3] Cardoso-Cachopo, A. (2007). Improving Methods for Single-label Text Categorization. PhD Thesis,
Instituto Superior Tecnico, Universidade Tecnica de Lisboa.

10

[4] Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in Neural Information
Processing Systems 28.

[5] Geng, X., Zhang, H., Bian, J., and Chua, T. (2015). Learning image and user features for recommendation
in social networks. In 2015 IEEE International Conference on Computer Vision, pages 4274–4282.

[6] Hoffman, M. D., Blei, D. M., and Bach, F. (2010). Online learning for latent Dirichlet allocation. In
Advances in Neural Information Processing Systems 23.

[7] Lau, J. H., Newman, D., and Baldwin, T. (2014). Machine reading tea leaves: Automatically evaluating
topic coherence and topic model quality. In Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics.

[8] Miao, Y., Grefenstette, E., and Blunsom, P. (2017). Discovering discrete latent topics with neural variational
inference. In Proceedings of the 34th International Conference on Machine Learning, pages 2410–2419.

[9] Miao, Y., Yu, L., and Blunsom, P. (2016). Neural variational inference for text processing. In Proceedings
of the 33rd International Conference on Machine Learning, pages 1727–1736.

[10] Srivastava, A. and Sutton, C. A. (2016). Neural variational inference for topic models. In Bayesian deep
learning workshop.

11

