
A Additional Experiments

Figure 9: SAC with and without output normalization. SAC in E (no output norm) corresponds to
the canonical version presented in Haarnoja et al. (2018a). Mean and 95% confidence interval are

computed over eight training runs per environment.

Figure 10: Comparison between different actor loss scales (β). Mean and 95% confidence interval
are computed over four training runs per environment.
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Figure 11: Comparison between RTAC (real-time) and SAC in E (turn-based). Mean and 95%
confidence interval are computed over eight training runs per environment.

Figure 12: RTAC with and without output normalization. Mean and 95% confidence interval are
computed over eight and four training runs per environment, respectively.
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B Hyperparameters

Table 1: Hyperparameters
Name RTAC SAC

optimizer Adam Adam (Kingma & Ba, 2014)
learning rate 0.0003 0.0003
discount (γ) 0.99 0.99
hidden layers 2 2
units per layer 256 256
samples per minibatch 256 256
target smoothing coefficient (τ ) 0.005 0.005
gradient steps / environment steps 1 1
reward scale 5 5
entropy scale (α) 1 1
actor-critic loss factor (β) 0.2 -
Pop-Art alpha 0.0003 -
start training after 10000 10000 steps

C Proofs

Theorem 1. 4 A policy πππ : A×XXX → R interacting withRTMDP (E) in the conventional, turn-based
manner gives rise to the same Markov Reward Process as πππ interacting with E in real-time, i.e.

RTMRP (E,πππ) = TBMRP (RTMDP (E),πππ). (3)

Proof. For any environment E = (S,A, µ, p, r), we want to show that the two above MRPs are the
same. Per Def. 2 and 4 for TBMRP (RTMDP (E),πππ) we have

(1) state space S ×A,
(2) initial distribution µ(s)δ(a− c),

(3) transition kernel
∫
A

p(st+1|st, at)δ(at+1 − aaa) πππ(aaa|st, at ) daaa,

(4) state-reward function
∫
A

r(s, a) πππ(aaa|st, at ) daaa.

The transition kernel, using the definition of the Dirac delta function δ, can be simplified to

p(st+1|st, at)
∫
A

δ(at+1 − aaa) πππ(aaa|st, at ) daaa = p(st+1|st, at) πππ(at+1|st, at ). (15)

The state-reward function can be simplified to

r(st, at)

∫
A

π(aaa|xxx) daaa = r(st, at). (16)

It should now be easy to see how the elements above match RTMRP (E,πππ), Def. 3.

4All proofs are in Appendix C.

13



Theorem 2. A policy πππ(aaa|s, b, a) = π(aaa|s) interacting with TBMDP (E) in real time, gives rise to
a Markov Reward Process that contains (Def. 10) the MRP resulting from π interacting with E in the
conventional, turn-based manner, i.e.

TBMRP (E, π) ∝ RTMRP (TBMDP (E),πππ) (4)

Proof. Given MDP E = (S,A, µ, p, r), we have Ψ = (Z, ν, σ, ρ̄) = RTMRP (TBMDP (E),πππ) with

(1) state space Z = S × {0, 1} ×A, (17)
(2) initial distribution ν(s, b, a) = µ(s) δ(b) δ(a− c), (18)
(3) transition kernel σ(st+1, bt+1, at+1 |st, bt, at ) (19)

=

{
δ(st+1 − st) δ(bt+1 − 1) π(at+1|st) if bt = 0

p(st+1|st, at) δ(bt+1) π(at+1|st) if bt = 1
, (20)

(4) state-reward function ρ̄(s, b, a) = r(s, a) b. (21)

We can construct ΩΩΩ = (Z, ν,κκκ, r̄̄r̄r), a sub-MRP with interval n = 2. Since we always skip the step in
which b = 1, we only have to define the transition kernel for bt = 0, i.e.

κκκ(zt+1|zt) = σ2(st+1, bt+1, at+1 |st, bt, at ) (22)

=

∫
S×A

σ(st+1, bt+1, at+1 |s′, 1, a′ ) σ(s′, 1, a′ |st, 0, at ) d(s′, a′) (23)

=

∫
S×A

p(st+1|s′, a′) δ(bt+1) π(at+1|s′) δ(s′ − st) π(a′|st) d(s′, a′) (24)

=

∫
A

p(st+1|st, a′) δ(bt+1) π(a′|st) da′. (25)

For the state-reward function we have (again only considering b = 0)

r̄̄r̄r(s, b, a) = v2
Ψ(s, b, a) (26)

= ρ̄(s, 0, a)︸ ︷︷ ︸
=0

+

∫
S×A

ρ̄(s′, 1, a′ ) σ(s′, 1, a′ |s, 0, a) d(s′, a′) (27)

=

∫
S×A

r(s′, a′) δ(s′ − s) π(a′|s) d(s′, a′) (28)

=

∫
A

r(s, a′) π(a′|s) da′. (29)

The sub-MRP ΩΩΩ is already very similar to TBMRP (E, π) except for having a larger state-space. To
get rid of the b and a state components, we reduce ΩΩΩ with a state transformation f(s, b, a) = s. The
reduced MRP has

(1) state space {f(z) : z ∈ Z} = S, (30)

(2) initial distribution
∫
f−1(s)

ν(z)dz =

∫
{s}×{0,1}×A
µ(s)δ(b)δ(a− c) d(s, b, a) = µ(s), (31)

(3) transition kernel
∫
f−1(st+1)

κκκ(z′|z) dz′ for almost all z ∈ f−1(st) (32)

=

∫
{st+1}×{0,1}×A
κκκ(z′|z) dz′ for almost all z ∈ {st} × {0, 1} ×A (33)

=

∫
A

p(st+1|st, a′) π(a′|st) da′ (34)

(4) state-reward function r̄̄r̄r(z) for almost all z ∈ f−1(s). (35)

=

∫
A

r(s, a′) π(a′|s) da′, (36)

which is exactly TBMRP (E, π).
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Lemma 1. In a Real-Time Markov Decision Process for the action-value function we have

qπππRTMDP(E)(st,at ,aaat)=r(st,at)+Est+1∼p(·|st,at)[Eaaat+1∼πππ(·|st+1,aaat )[q
πππ
RTMDP(E)(st+1,aaat ,aaat+1)]] (6)

Proof. After starting with the definition of the action-value function for an environment
(XXX,A,µµµ,ppp,rrr) = RTMDP(E) with E = (S,A, µ, p, r), we separate the transition distribution ppp
into its two constituents p and δ and then, integrate over the Dirac delta.

qπππRTMDP(E)(xxxt,aaat) = qπππRTMDP(E)(st,at ,aaat) (37)

= rrr(st,at ,aaat)+Est+1,at+1∼ppp(·|st,at ,aaat)[Eaaat+1∼πππ(·|st+1,at+1 )[q
πππ
RTMDP(E)(st+1,at+1 ,aaat+1)]︸ ︷︷ ︸] (38)

= r(st,at) +

∫
S

p(st+1|st,at)
∫
A

δ(at+1−aaat) ... dat+1 dst+1 (39)

= r(st,at)+

∫
S

p(st+1|st,at) Eaaat+1∼πππ(·|st+1,aaat )[q
πππ
RTMDP(E)(st+1,aaat ,aaat+1)] dst+1 (40)

Lemma 2. In a Real-Time Markov Decision Process for the state-value function we have

vπππRTMDP(E)(st, at ) = r(st, at) + Est+1∼p(·|st,at)[Eaaat∼πππ(·|st, at )[v
πππ
RTMDP(E)(st+1, aaat )]]. (8)

Proof. We follow the same procedure as for Lemma 1.

vπππRTMDP(E)(xxxt) = vπππRTMDP(E)(st,at ) (41)

= Eaaat∼πππ(·|st,at )[rrr(st,at ,aaat)+Est+1,at+1∼ppp(·|st,at ,aaat)[v
πππ
RTMDP(E)(st+1,at+1 )]] (42)

= r(st,at)+Eaaat∼πππ(·|st,at )[

∫
S

p(st+1|st,at)
∫
A

δ(at+1−aaat) vπππRTMDP(E)(st+1,at+1 ) dat+1 dst+1]

(43)

= r(st,at)+

∫
S

p(st+1|st,at) Eaaat∼πππ(·|st,at )[v
πππ
RTMDP(E)(st+1,aaat )] dst+1 (44)

Proposition 1. The following policy loss based on the state-value function

LRTAC
RTMDP (E),πππ = E(st,at)∼DEst+1∼p(·|st,at)DKL(πππ(·|st, at )|| exp( 1

αγvvv(st+1, ·))/Z(st+1)) (10)

has the same policy gradient as LSAC
RTMDP (E),πππ, i.e.

∇πππLRTAC
RTMDP (E),πππ = ∇πππLSAC

RTMDP (E),πππ (11)

Proof. As shown in Haarnoja et al. (2018a), Equation 9 can be reparameterized to obtain the policy
gradient, which, applied in a RTMDP, yields

∇πππLSAC
RTMDP (E),πππ = Exxxt,ε[∇πππ(logπππ(hhhπππ(xxxt, ε),xxxt)− 1

α∇πππq(xxxt,hhhπππ(xxxt, ε))] (45)

and reparameterizing Equation 10 yields

∇πππLRTAC
RTMDP (E),πππ = Exxxt,ε[∇πππ(logπππ(hhhπππ(xxxt, ε),xxxt)− 1

αγ∇πππEst+1∼p(·|xxxt)[vvv(st+1,hhhπππ(xxxt, ε))]] (46)

where hhhπππ is a function mapping from state and noise to an action distributed according to πππ. This
leaves us to show that

∇aaatq(xxxt, aaat) = ∇aaatrrr(xxxt, aaat)︸ ︷︷ ︸
=0

+∇aaatγExxxt+1∼ppp(·|xxxt,aaat)[vvv(xxxt+1)] = γ∇aaatEst+1∼p(·|xxxt)[vvv(st+1, aaat)]

(47)
which follows from the definition of the soft action-value function and simplifying quantities defined
in the RTMDP.
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D Definitions

Definition 7. A Turn-Based Markov Decision Process (Z,A, ν, q, ρ) = TBMDP (E) augments
another Markov Decision Process E = (S,A, µ, p, r), such that

(1) state space Z = S × {0, 1},
(2) action space A,

(3) initial state distribution ν(s0, b0 ) = µ(s0) δ(b0),

(4) transition distribution q(st+1, bt+1 |st, bt , at) =

{
δ(st+1 − st) δ(bt+1 − 1) if bt = 0

p(st+1|st, at) δ(bt+1) if bt = 1

(5) reward function ρ(s, b, a) = r(s, a) b.

Definition 8. ΩΩΩ = (Z, ν,κκκ, r̄̄r̄r) is a sub-MRP of Ψ = (Z, ν, σ, ρ̄) if its states are sub-sampled with
interval n ∈ N and rewards are summed over each interval, i.e. for almost all z

κκκ(z′|z) = κn(z′|z) and r̄̄r̄r(z) = vnΨ(z). (48)

Definition 9. A MRP Ω = (S, µ, κ, r̄) is a reduction of ΩΩΩ = (Z, ν,κκκ, r̄̄r̄r) if there is a state transfor-
mation f : ZZZ → S that neither affects the evolution of states nor the rewards, i.e.

(1) state space S = {f(z) : z ∈ Z}, (49)

(2) initial distribution µ(s) =

∫
f−1(s)

ν(z)dz, (50)

(3) transition kernel κ(st+1|s) =

∫
f−1(st+1)

κκκ(z′|z) dz′ for almost all z ∈ f−1(s), (51)

(4) state-reward function r(s) = r̄̄r̄r(z) for almost all z ∈ f−1(s). (52)

Definition 10. A MRP Ψ contains another MRP Ω (we write Ω ∝ Ψ) if Ψ works at a higher frequency
and has a richer state than Ψ but behaves otherwise identically. More precisely,

Ω ∝ Ψ ⇐⇒ Ω is a reduction (Def. 9) of a sub-MRP (Def. 8) of Ψ. (53)

Definition 11. The n-step transition function of a MRP Ω = (S, µ, κ, r̄) is

κn(st+n|st) =

∫
S

κ(st+n|st+n−1)κn−1(st+n−1|st) dst+n−1.
∣∣ with κ1 = κ (54)

Definition 12. The n-step value function vnΩ of a MRP Ω = (S, µ, κ, r̄) is

vnΩ(st) = r̄(st) +

∫
S

κ(st+1|st)vn−1
Ω (st+1) dst+1.

∣∣ with v1
Ω = r̄ (55)
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