
A Analysis

Initializing sample-specific models around a population estimate is convenient because the sample-
specific estimations do not diverge from the population estimate unless they have strong reason to
do so. Here, we analyze linear regression minimized by squared loss (e.g., f(X(i)
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We prove Theorem 1 by introducing two helpful lemmas. First, the distance-matching regularizer
does not move the center of mass:
Lemma 2. For any Z, �

nX

i=1

X

j2Br(i)

@

@✓(i)
D

(j)
� (Z,�) = 0.

Proof of Lemma 2. Let g(i, j) = I{j2Br(i)}
@

@✓(i)

⇣
⇢�(U (i)

, U
(j)) � kZ

(i)
� Z

(j)
k
2
⌘2

. Then, for
any symmetric ⇢�, 8 i, j 2 {1, ..., n},

g(i, j) = 2I{j2Br(i)}

⇣
⇢�(U

(i)
, U

(j))� kZ
(i)

� Z
(j)

k
2
⌘
(�2)(Z(i)

� Z
(j)) (9a)

= �2I{i2Br(j)}

⇣
⇢�(U

(i)
, U

(j))� kZ
(i)

� Z
(j)

k
2
⌘
(�2)(Z(j)

� Z
(i)) (9b)

= �g(j, i) (9c)

. So
nX

i=1

X

j2Br(i)

@

@✓(i)
D

(j)
� (Z,�) =

nX

i=1

nX

j=1

g(i, j) (9d)

=
nX

i=1

g(i, i) = 0

This implies that the distance-matching regularizer has no effect on ✓̄. An intuitive explanation is
to visualize each D

(i)
� (Z,�) as a collection of springs connecting estimator i to each of the other

estimators. While the springs will have some control over the pairwise distances, they cannot move
the center of mass of any pair of particles and thus cannot adjust the center of mass of the system.

Second, the update to the center of mass does not grow with the number of samples:
Lemma 3. At iteration t, the update to the center of mass is bounded by:
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Proof of Lemma 3. The update to the barycenter at iteration t is:
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Lipschitz-continuous. Then
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where 11f holds because the population estimator b✓pop was solved by a gradient descent algorithm
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Now we are ready to prove Theorem 1.
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B Experiment details

B.1 Baselines

For each experiment, we use several baseline models to benchmark performance:

• Population model. First, we use elastic net regularization [40] as a generalizable population
estimator.

• Mixture of regressions. To estimate a small collection of models, we use a standard mixture
model optimized by expectation-maximization. Since this model does not share information
between mixture components, the number of components must be much smaller than the
number of samples.

• Varying coefficient model. To estimate sample-specific models, we use an `1-regularized
linear varying-coefficients model [13].
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• Deep neural network. Finally, to compare against models with large representational
capacity, we include a neural network. This neural network contains 5 hidden layers, with
layer sizes and nonlinearities treated as hyperparameters optimized for cross-validation loss
by grid search. The final version contains 250 hidden nodes in each layer with sigmoid
nonlinearities.

For the tasks with continuous outcomes, these are linear regression models; for classification tasks,
these are logistic regression models.

B.2 Subgradients

For personalized linear regression with `1 regularization, we use the standard subgradients:
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B.3 Hyperparameter selection

While the personalized regression approaches estimates a large number of parameters, there are
relatively few hyperparameters. Hyperparameters to be selected are: � the strength of the traditional
regression regularizer, � the strength of the distance-matching regularizer, r the diameter of the
neighborhoods considered by the distance-matching regularizer, � the strength of regularizer on �,
and q the latent dimensionality. � should be set equivalent to the � used in the population estimator.
� requires some tuning and should be set such that the distance-matching regularizer contributes
the a same order of magnitude on the total loss as does the predictive loss. r should be set to reflect
the user’s desired neighborhood of personalization; larger r produces personalized estimates which
reflect covariate distances even for very different samples, smaller r improves computation speed but
decreases the size of the neighborhoods of personalization. Finally, � regularizes � and should be set
to reflect the user’s prior knowledge about the influence of each covariate on personalization.

For our experiments, we use the following hyperparamters:

• Simulation. � = 1e�1, � = 1e5, � = 1e�2, q = 2

• Finance. � = 1, � = 1e8, � = 1e�2, q = 50

• Cancer. � = 1, � = 1e6, � = 1e�2, q = 50

• Election. � = 1e�2, � = 1e3, � = 1e�2, q = 2

For all experiments, we dynamically set r such that each point has on average 10 neighbors, and use
the learning rate schedule of ↵0 = 1e�4, c = 1� 1e�4.

B.4 Datasets

B.4.1 Simulation

To estimate personalized models for the simulated dataset, we initialize the personalized estimations
with a varying-coefficient model, and personalize according to the distance metric d1(x, y) = |x� y|.

B.4.2 Finance

The financial dataset is constructed by joining stock and ETF trading histories1 to a database of global
news headlines from Bloomberg [6] and Reddit2. We transform news headlines into continuous

1https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs/version/3
2https://www.kaggle.com/aaron7sun/stocknews
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representations by tf-idf weighting averaging [4] of word embeddings under the GLoVE model [26]
pre-trained on Wikipedia and Gigaword corpora3. After dimensionality reduction, this news dataset
consists of a 50-dimensional vector for each date. We split the dataset into training and test sets at
the 80th percentile date, which is approximately the beginning of 2011. To estimate personalized
models for the financial dataset, we intiialize the personalized estimators with the population model
and personalize according to the `1 distance for time and the discrete metric for the other covariates.

B.4.3 Cancer

As described in the main text, we test the capacity of personalized models to distinguish benign from
malignant skin cancers. The dataset contains 17,053 total samples from 17 patients. Each sample
consists of 2,734 spectra intensities and is labeled with a binary outcome (0=benign, 1=malignant).
Data from 9 patients are used to fit models, while data from 8 patients are held-out for evaluation.
In this dataset, the only explicit covariate is the patient label. To produce covariates which are
most useful for personalization, we augment the patient labels with 1500 of the predictive features
compressed to 2 dimensions by t-SNE dimensionality reduction. These 1500 predictive features are
excluded from the set of predictors for PR, while baseline methods use the entire set of features as
predictors. We fit the personalized regression according to the distance function d1(x, y) = I{x 6=y},
d2(x, y) = |x� y|, d3(x, y) = |x� y|, where the first function checks if the patients are the same
and the final two calculate distance in the continuous covariates.

B.4.4 Election

The election predictors are taken from the 2012 U.S. presidential election and consists of discrete
representations of each candidate based on candidate positions compiled by ProCon.4 Outcomes are
the county-level vote proportions in the 2012 U.S. presidential election.5 For the covariates U , we
used county demographic information from the 2010 U.S. Census.6

C Additional figures and discussion

C.1 Simulations

We adapt the procedure of Section 3.1 to higher p by generating multidimensional U and using
a coordinate of U to personalize each value in ✓. More precisely, we have X ⇠ Unif(�1, 1)p,
U ⇠ Unif(0, 1)K , a ⇠ Unif(0, 1)p, b ⇠ Unif(0, 1)p, c ⇠ Cat(K)p, ✓j = I{Ucj>aj} + bj sinUcj ,
Y

(i) = X
(i)
✓
(i) + N(0, 0.01). These experiments all use K = 5 covariates. PR outperforms

baselines in all cases, and is strongest for large n, small p (as expected).

C.2 Finance

As described in the main text, we fit a variety of personalized models to a financial dataset of stock
market price histories and world news headlines. Shown in Fig. S4 are visualizations of the model
parameters, colored by each of the covariates used for personalization. We see that all of these
covariates contribute to distribution of personalized models.

To understand the relevance of each feature, we visualize the coefficients for each security in Fig. S5.
The striped pattern is a result of the alternating arrangement of news and prices. In all securities, the
effects of the Great Financial Crisis in 2008 are clear. Interestingly, other recessions do not seem to
have similar lasting effects on parameter values, implying that these recessions had fewer structural
effects than the Great Financial Crisis.

C.3 Cancer

Fig. S6 depicts the personalized regression models estimated for this task. We see that there is strong
clustering according to patient label, indicating that patients have different “types" of tumor. However,

3https://nlp.stanford.edu/projects/glove
4https://2012election.procon.org/view.source-summary-chart.php
5https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/21919
6https://www.census.gov/data/datasets/2016/demo/popest/counties-detail.html

16



p Model ||⌦̂� ⌦||2 R
2 MSE

2

Pop. 9.97 0.87 0.13
MR 9.86 0.88 0.12
VC 14.55 0.76 0.22

DNN 30.42 0.75 0.24
PR 7.82 0.89 0.09

10

Pop. 15.19 0.79 0.73
MR 14.81 0.80 0.70
VC 23.86 0.69 1.09

DNN 67.49 0.80 0.85
PR 14.52 0.82 0.65

25

Pop. 25.86 0.85 1.26
MR 25.75 0.86 1.20
VC 38.77 0.66 3.05

DNN 103.72 0.68 2.78
PR 24.53 0.87 1.10

Table S2: Simulations with n = 500.

n Model ||⌦̂� ⌦||2 R
2 MSE

100

Pop. 6.36 0.90 0.23
MR 6.48 0.90 0.23
VC 10.75 0.78 0.50

DNN 22.30 0.39 0.75
PR 6.03 0.91 0.21

500

Pop. 11.83 0.84 0.29
MR 11.78 0.84 0.30
VC 19.06 0.74 0.49

DNN 47.33 0.81 0.37
PR 10.30 0.86 0.26

2500

Pop. 33.03 0.87 0.26
MR 31.75 0.88 0.26
VC 33.71 0.87 0.27

DNN 102.88 0.88 0.29
PR 26.11 0.90 0.21

Table S3: Simulations with p = 5.

this clustering by patient is not complete – there is also significant heterogeneity in the models for
each patient. This may point to the view of “mosaic" tumors, in which multiple cell lines combine
within single tumors [19].

Finally, by aggregating feature importance across each patient, we determine which feature is the
most predictive of the sample labels for each patient (Table S4). We see that there are 9 different
clusters, which are not accurately estimated by mixture models due to the sample heterogeneity
within each mixture.

Table S4: Most predictive features, aggregated over each patient.
Patient ID Molecular Weight

0 163.627
1 191.834
2 566.833
3 177.541
4 234.167
5 163.125
6 191.834
7 177.541
8 113.083
9 566.833
10 163.125
11 231.958
12 234.666
13 191.834
14 163.627
15 177.541
16 163.627

C.4 Election

As described in the main text, we fit personalized models to a dataset of election results. Repre-
sentations of the personalized models for Pennsylvania counties are shown in Fig. S8, with a key
to the abbrevations in Table S5. These embeddings show that the demographics (Fig. S8a) do not
completely correspond to voting outcome, so using these factors to understand election preferences
leaves out significant latent factors. In contrast, the personalized models (Fig. S8c) form structure
which trades off fidelity to demographic data with voting outcome. These trends are not captured by
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(a) Industry (b) Region

(c) Security (d) Time

Figure S4: Representations of the model parameters fit to the financial dataset. Each point represents
a single sample, colored according to covariates.

the baseline methods, such as the varying-coefficients model (Fig. S8d). In addition, concatenating
the demographic and voting outcomes does not recover the same structure (Fig. S8e). These patterns
are replicated in the election of 2008 (Fig. S9).

18



(a) AAPL (b) AMZN (c) BP

(d) BRK-B (e) CHIX (f) E

(g) FB (h) GM (i) GOOGL

(j) HSBC (k) IEO (l) JPM

(m) LMT (n) MU (o) NVDA
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(p) OA (q) RDS-A (r) SNP

(s) SPY (t) TSLA (u) VOO

(v) WMT (w) XIV (x) YANG

Figure S5: Visualizations of the models fit to each security over time. The vertical axis indexes time,
while the horizontal axis indexes features. Features are arranged according to each day of a two-week
time span for each prediction, with alternating news and stock histories in each day.

Figure S6: Personalized models for patients in the training set of the cancer dataset. Each point
represents a model for a single sample, colored by the patient ID. There is strong clustering according
to patient label, but also intra-patient heterogeneity (notably Patients 1,3,4, and 6).
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Figure S7: Histogram of the number of skin cancer samples for which each feature is the most
predictive according to the magnitude of coefficients of the personalized models.
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(a) Demographics, U (b) Outcome, Y

(c) Personalized Estimation, bZ (d) VC Embeddings.

(e) Concatenated Embeddings.

Figure S8: Embeddings of Pennsylvania counties. Each point represents the t-SNE embedding of
a representation of a county, with color gradient corresponding to the 2012 election result (red for
Republican candidate, blue for Democratic candidate). (a) The county demographics (U) lie near a
low-dimensional manifold that does not correspond to voter outcome. (b) The observed voting results
lie near a one-dimensional manifold. (c) Personalized regression produces sample embeddings ( bZ)
that interpolate between demographic and voting information.
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(a) Demographics, U (b) Voting Outcome, Y

(c) Personalized Estimation, bZ (d) Varying-Coefficients

(e) Concatenated

Figure S9: Embeddings of Pennsylvania counties. Each point represents the t-SNE embedding of
a representation of a county, with color gradient corresponding to the 2008 election result (red for
Republican candidate, blue for Democratic candidate).
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Table S5: Abbrevations of Counties

Abbreviation Full Name

Alle. Allegheny
Mont. Montour
York York
Faye. Fayette
Adam. Adams
Unio. Union
Carb. Carbon
Fore. Forest
Perr. Perry
Came. Cameron
Pott. Potter
Clin. Clinton
Daup. Dauphin
Merc. Mercer
Fult. Fulton
Cent. Centre
Dela. Delaware
Mont. Montgomery
Warr. Warren
Pike Pike
Lehi. Lehigh
Schu. Schuylkill
Miff. Mifflin
Susq. Susquehanna
Juni. Juniata
Bedf. Bedford
Luze. Luzerne
Brad. Bradford
Lack. Lackawanna
Some. Somerset
Elk Elk
Butl. Butler
Erie Erie
Lyco. Lycoming
Sull. Sullivan
Indi. Indiana
Ches. Chester
Monr. Monroe
Nort. Northampton
Craw. Crawford
Arms. Armstrong
Leba. Lebanon
Cumb. Cumberland
Camb. Cambria
Hunt. Huntingdon
West. Westmoreland
Colu. Columbia
Buck. Bucks
Berk. Berks
Clar. Clarion
Vena. Venango
Lanc. Lancaster
Snyd. Snyder
Fran. Franklin
McKe. McKean
Clea. Clearfield
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