
1 The Architectures of Networks

In Table 1, we deliver the CNNs architecture used in our experiments. We describe the operation
in the format of “filter size / type / # of output channel”. Note that the network architecture of
LLP-GAN for SVHN and CIFAR-100 is the same as that for CIFAR-10. In particular, Dense means
fully connected layer. Transpose_conv is the deconvolution layer. In our model, we choose ReLU as
the activation function.

Following a standard setting in the previous work [1, 4], we perform 11-way softmax on the 10-
dimensional output in the last fully connected layer. In detail, we add an extra dimension to the output
and fix its value as zero, which is a form of over-parameterization. Then, we apply 11-way softmax
to the 11-dimensional vector.

Table 1: Network architectures in LLP-GAN.

Generator Discriminator
MNIST CIFAR-10 MNIST CIFAR-10

Input 28×28 or 32×32 monochrome or RGB image
dropout 0.2

Dense-BN 500 Dense-BN 4*4*512 5×5 conv. 32 3×3 conv. 64
3×3 conv. 64 3×3 conv. 64

3×3 conv. 64
dropout 0.5

Dense-BN 500 5×5 Transpose_conv-BN 256 1×1 conv. 32 3×3 conv. 128
3×3 conv. 128
3×3 conv. 128

dropout 0.5
Dense-BN 784 5×5 Transpose_conv-BN 128 Dense 1024 3×3 conv. 256

1×1 conv. 128
1×1 conv. 64

global meanpooling 8
5×5 Transpose_conv 3 Dense 10 Dense 10

11-way softmax (over-parameterization)

The CNNs architectures used in the baselines for MNIST and CIFAR-10 are given in Table 2, which
are the same as that in [3]. Besides, the CNNs used in the baselines for SVHN and CIFAR-100 are
the same as that in [2].

Table 2: The baseline’s architectures.

MNIST CIFAR-10
Input 28×28 or 32×32 monochrome or RGB image

5×5 conv. ReLU 32 3×3 conv. BN LeakyReLU 96
3×3 conv. BN LeakyReLU 96
3×3 conv. BN LeakyReLU 96

2×2 max-pooling stride 2 BN 2×2 max-pooling stride 2 BN
3×3 conv. BN ReLU 64 3×3 conv. BN LeakyReLU 192
3×3 conv. BN ReLU 64 3×3 conv. BN LeakyReLU 192

3×3 conv. BN LeakyReLU 192
2×2 max-pooling stride 2 BN 2×2 max-pooling stride 2 BN

3×3 conv. 128 BN ReLU 3×3 conv. BN LeakyReLU 192
1×1 conv. BN LeakyReLU 192

1×1 conv. BN ReLU 10 1×1 conv. BN LeakyReLU 10
global meanpool BN global meanpool BN

Dense-BN 10
10-way softmax
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2 More results on Performance

2.1 Binary Case

In addition to the comparison between DLLP and LLP-GAN, we investigate results of other two
representative LLP solvers: InvCal and alter-∝SVM. Because they are originally designed for binary
problem, we randomly select two classes and merely conduct binary classification on all datasets
with four algorithms. The comparison on test error rates is displayed in Table 3.

Table 3: Binary test error rates (%) on benchmark datasets with different bag sizes.

Dataset Algorithm Bag Size
16 32 64 128

MNIST

InvCal 0.50 0.55 1.25 0.1
alter-pSVM 0.20 0.20 0.25 0.2

DLLP 0.049 0.049 0.049 0.049
LLP-GAN 0.047 0.047 0.047 0.047

CIFAR-10

InvCal 28.95 29.16 26.47 31.84
alter-pSVM 24 26.74 30.32 27.95

DLLP 11.31 15.83 18.96 22.59
LLP-GAN 1.39 1.61 11.59 18.29

SVHN

InvCal 11.55 13.35 12.95 12.70
alter-pSVM 7.05 7.95 7.95 11.15

DLLP 1.38 1.7 3.77 24.45
LLP-GAN 1.49 1.8 3.46 9.23

2.2 Multi-class Case

We report multi-calss error rates with the standard deviations of DLLP and LLP-GAN on benchmark
datasets in Figure 1. It is based on the results in Table 1 of our paper.
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Figure 1: Multi-class test error rates (%) on benchmark datasets with different bag sizes.
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2.3 DLLP with Entropy Regularization

Although DLLP with Entropy Regularization is a side contribution of our work, as claimed in the
paper, we consider not to include it as a baseline. The reason is the experimental results suggest that
the original DLLP has already converged to the solution with fairly low instance-level entropy, which
makes the regularization term redundant. We demonstrate this statement in Figure 2.

Figure 2: Sum of instance-level entropy on MNIST.

2.4 The Randomness of Bag Assignment

The distribution of proportions has an huge impact on LLP algorithm performance. Hence, fixing
bag size, we randomly construct bags for multiple times and present the accuracy performance in
Table 2.4. The result shows the stability of our method. Currently, we can only artificially build LLP
datasets from supervised ones. However, the gap between the importance of LLP in real-life and lack
of specific LLP datasets exactly suggests the meaning of our work: It is worthy of devoting efforts to
further study in order to draw more attention from the community.

Table 4: The performance on accuracy with deviation under multiple random bag generations on
MNIST. (Due to the time limitation, # of random are differently chosen.)

Bag Size # of Errors Accuracy (%) Baseline
(# of Random) (Deviation) (CNN)

16 (7) 106 98.94 (0.0285)

99.6432 (22) 124 98.76 (0.0542)
64 (45) 147 98.53 (0.11)
128 (85) 335 96.65 (0.4)
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