
Supplementary Material: Depth-First Proof-Number
Search with Heuristic Edge Cost and Application to

Chemical Synthesis Planning

Anonymous Author(s)
Affiliation
Address
email

1 Example of DFPN1

When basic PNS updates a tree after generating nodes H and I illustrated in Figure 1 (right), pn(A),2

pn(C), pn(F ) remain unchanged. PNS traverses path A→ C → F again when it attempts to find a3

leaf node to expand next, starting from A.4

DFPN addresses re-expansions of nodes A, C and F by introducing the thresholds of the proof and5

disproof numbers thpn(n) and thdn(n) [2]. DFPN keeps examining the search space rooted at node6

n as long as it holds that pn(n) < thpn(n) ∧ dn(n) < thdn(n).7

In Figure 2, we illustrate an example of updating thpn(n). For the sake of simplicity, we deal with8

only thpn(n), since thdn(n) is updated in an analogous way.9

DFPN’s thpn(n) is used to decide whether DFPN needs to select a different path than the current10

one. In Figure 2(left), DFPN starts with thpn(A) = MAXVAL, which is a large value indicating11

that DFPN keeps examining the search space rooted at A until A is solved. C is currently the best12

child of A to examine because pn(C) = 1 < pn(B) = 2. On the other hand, when pn(C) increases13

and pn(B) < pn(C) holds, B will become the best child to examine. To capture this, DFPN sets14

thpn(C) = 3. This indicates that, as long as pn(C) < 3, C remains the best child.15

At node C, DFPN calculates pn(C) = pn(F ) + pn(G) = 1 < thpn(C) = 3. DFPN still examines16

the search space rooted at C, and selects F because dn(F ) < dn(G) (G is already proven). If17

pn(C) = pn(F ) + pn(G) ≥ thpn(C) holds, DFPN must select B. That is, when pn(F ) ≥18

thpn(C)− pn(G) holds, DFPN must move to B, due to the fact that pn(B) < pn(C). Therefore,19

DFPN sets thpn(F ) = thpn(C)− pn(G) = 3.20

Since pn(F ) = min(pn(H), pn(I)) = 1 < thpn(F ) = 3, DFPN can continue exploring the current21

path. Since pn(H) = pn(I) = 1, selecting either H or I looks equally promising. Assume that H is22

chosen for an examination. Since I becomes the best child when pn(H) > pn(I) = 1 holds, DFPN23

sets thpn(H) = 2.24

As in Figure 2(right), DFPN expands H and recalculates pn(H) = pn(J) + pn(K) + pn(L) =25

3 > thpn(H) = 2. Therefore, DFPN updates pn(H) = 3 and recalculates pn(F ) =26

min(pn(H), pn(I)) = 1 < thpn(F ). DFPN selects I , which is the best child of F , and does not prop-27

agate the proof and disproof numbers back toA. DFPN sets thpn(I) = min(thpn(F ), pn(H)+1) =28

3, indicating that path A→ B becomes the best path when pn(I) ≥ thpn(I) holds.29

To enable DFPN to examine search as illustrated here, DFPN selects a child s1 with the smallest30

(dis)proof number for a further examination, with the following thresholds:31

• For OR node n, thpn(s1) = min(thpn(n), pn(s2)+1), and thdn(s1) = thdn(n)−dn(n)+32

dn(s1).33

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Figure 1: Example of PNS, adapted from the main paper

Figure 2: Example of DFPN

• For AND node n, thpn(s1) = thpn(n) − pn(n) + pn(s1), and thdn(s1) =34

min(thdn(n), dn(s2) + 1).35

where s2 be a child with the second smallest (dis)proof number among a list of children of an OR36

(AND) node n. DFPN sets pn(s2) and dn(s2) to∞ if node n has only one child.37

2 Pseudo Code of DFPN-E38

Algorithms 1-2 show the pseudo code of DFPN-E. The essential differences from Nagai’s DFPN and39

from DFPN+ [2] are highlighted in blue bold (shown in bold in gray scale print). DFPN-E uses a40

heuristic function h(n, s) rather than a constant edge cost, additionally combined with a threshold41

controlling parameter δ of Kishimoto and Müller [1] except that δ is set to a constant in our DFPN-E42

implementation. The proof and disproof numbers of DFPN+ at leaf nodes are initialized by two43

evaluation functions hpn(n) and hdn(n), while DFPN-E currently sets pn(n) = dn(n) = 1 for the44

leaf nodes.45

MAXVAL stands for a large integer. S(n) is a set of children of node n. Node n has 4-fields in46

addition to a state: a threshold for the proof number thpn, a threshold for the disproof number thdn,47

a proof number pn and a disproof number dn. TT is a transposition table that has fields to store a48

proof number pn and a disproof number dn in each transposition table entry. The hash key of node n49

is calculated by the Zobrist function [3], which is commonly used in the game research community.50

The IsStartingMaterial method checks if a node n is a molecule in the starting material database. The51

NoApplicableReactionRule method checks if a node n has no reaction rules applicable to n. The52

GenerateChildren generates the children of n.53

For the sake of simplicity, we omit more detailed, efficient pseudo code, such as finding sbest and54

s2 while calculating pn(n) and dn(n) in one single for-loop. This can be embodied without any55

difficulty, and our actual code implements it.56

References57

[1] A. Kishimoto and M. Müller. Search versus knowledge for solving life and death problems in58

Go. In AAAI, pages 1374–1379, 2005.59

2



Algorithm 1 DFPN-E
Require: Root node r
1: r.thpn = r.thdn = MAXVAL
2: pn = Search(r)
3: if (pn = 0) then
4: return PROOF
5: else if (pn =∞) then
6: return DISPROOF
7: else
8: return UNKNOWN
9: end if

[2] A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis, The60

University of Tokyo, 2002.61

[3] A. L. Zobrist. A new hashing method with applications for game playing. Technical report,62

Department of Computer Science, University of Wisconsin, Madison, 1970. Reprinted in63

International Computer Chess Association Journal, 13(2):169-173, 1990.64

3



Algorithm 2 Search
Require: Node n
1: if (IsStartingMaterial(n)) then
2: TT [n].pn = 0; TT [n].dn =∞ //Proven terminal node
3: return 0
4: else if (NoApplicableReactionRule(n)) then
5: TT [n].pn =∞; TT [n].dn = 0 //Disproven terminal node
6: return ∞
7: end if
8: GenerateChildren(n)
9: if (n is an OR node) then

10: loop
11: n.dn =

∑
s∈S(n) s.dn //Calculate dn(n) for an internal OR node

12: if (n.dn =∞) then
13: n.pn = 0 //Proven internal OR node
14: else
15: n.pn = mins∈S(n)(h(n, s) + s.pn) //Calculate pn(n) with heuristic edge cost initialization
16: end if
17: TT [n].pn = n.pn; TT [n].dn = n.dn //Store updated search result
18: if (n.thpn ≤ n.pn ∨ n.thdn ≤ n.dn) then
19: break
20: end if
21: sbest = arg min

s∈S(n)

(h(n, s) + s.pn); s2 = arg min
s∈S(n)\{sbest}

(h(n, s) + s.pn)

22: sbest.thpn = min(n.thpn, s2.pn+ δ) − h(n, sbest);
23: sbest.thdn = n.thdn− n.dn+ sbest.dn
24: Search(sbest)
25: end loop
26: else
27: loop
28: n.pn =

∑
s∈S(n) s.pn //n is an AND node

29: n.dn = mins∈S(n) s.dn
30: TT [n].pn = n.pn; TT [n].dn = n.dn //Store updated search result
31: if (n.thpn ≤ n.pn ∨ n.thdn ≤ n.dn) then
32: break
33: end if
34: sbest = arg min

s∈S(n)

s.dn; s2 = arg min
s∈S(n)\{sbest}

s.dn

35: sbest.thpn = n.thpn− n.pn+ sbest.pn
36: sbest.thdn = min(n.thdn, s2.dn+ 1);
37: Search(sbest)
38: end loop
39: end if
40: return n.pn

4


	Example of DFPN
	Pseudo Code of DFPN-E

